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1. Introduction

Crack detection is a problem in nondestructive testing of materials which has been often
addressed in literature and more recently in the context of inverse problems. Early works on
the direct and inverse scattering problem for cracks date back to 1995 in [1] by Kress. In that
paper, Kress considered the direct and inverse scattering problem for a perfectly conducting
crack and used Newton’s method to reconstruct the shape of the crack from a knowledge of
the far-field pattern. In 1997, Mönch considered the same scattering problem for sound-hard
crack [2], and in the same year, Alves and Ha Duong discussed the scattering problem but
for flat cracks in [3]. Later in 2000, Kress’s work was continued by Kirsch and Ritter in [4]
who used the factorization method to reconstruct the shape of the crack from the knowledge
of the far-field pattern. In 2003, Cakoni and Colton in [5] considered the direct and inverse
scattering problem for cracks which (possibly) coated on one side by a material with surface
impedance λ. Later in 2008, Lee considered an inverse scattering problem from an impedance
crack and tried to recover impedance function from the far field pattern in [6]. However,
studying an inverse problem always requires a solid knowledge of the corresponding direct
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problem. Therefore, in the following we just consider the direct scattering problem for a
mixture of a crack Γ and a bounded domain D, and the corresponding inverse scattering
problem can be considered by similar methods in [1, 2, 4–12] and the reference therein.

Briefly speaking, in this paper we consider the scattering of an electromagnetic time-
harmonic plane wave by an infinite cylinder having an open crack Γ and a bounded domain
D in R2 as cross section. We assume that the cylinder is (possibly) partially coated on one side
by amaterial with surface impedance λ. This corresponds to the situation when the boundary
or more generally a portion of the boundary is coated with an unknown material in order to
avoid detection. Assuming that the electric field is polarized in the TM mode, this leads to
a mixed boundary value problem for the Helmholtz equation defined in the exterior of a
mixture in R2.

Our aim is to establish the existence and uniqueness of a solution to this direct
scattering problem. As is known, the method of boundary integral equations has widely
applications to various direct and inverse scattering problems (see [13–17] and the reference
therein). A few authors have applied such method to study the scattering problem with
mixture of cracks and obstacles. In the following, we will use the method of boundary
integral equations and Fredholm theory to obtain the existence and uniqueness of a solution.
The difficult thing is to prove the corresponding boundary integral operator A which is a
Fredholm operator with index zero since the boundary is a mixture and we have complicated
boundary conditions.

The outline of the paper is as follows. In Section 2, the direct scattering problem is
considered, and we will establish uniqueness to the problem and reformulate the problem
as a boundary integral system by using single- and double-layer potentials. The existence
and uniqueness of a solution to the corresponding boundary integral system will be given
in Section 3. The potential theory and Fredholm theory will be used to prove our main
results.

2. Boundary Integral Equations of the Direct Scattering Problem

Consider the scattering of time-harmonic electromagnetic plane waves from an infinite
cylinder with a mixture of an open crack Γ and a bounded domain D in R2 as cross section.
For further considerations, we suppose that D has smooth boundary ∂D (e.g., ∂D ∈ C2),
and the crack Γ (smooth) can be extended to an arbitrary smooth, simply connected, closed
curve ∂Ω enclosing a bounded domain Ω such that the normal vector ν on Γ coincides with
the outward normal vector on ∂Ω which we again denote by ν. The bounded domain D is
located inside the domain Ω, and ∂D

⋂
∂Ω = ∅.

In the whole paper, we assume that ∂D ∈ C2 and ∂Ω ∈ C2.
Suppose that

Γ = {z(s) : s ∈ [s0, s1]}, (2.1)

where z : [s0, s1] → R2 is an injective piecewise C1 function. We denote the outside of Γwith
respect to the chosen orientation by Γ+ and the inside by Γ−. Here we suppose that the Γ is
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divided into two parts Γ1 and Γ2 and consider the electromagnetic field E-polarized. Different
boundary conditions on Γ±1 , Γ

±
2 , and ∂D lead to the following problem:

ΔU + k2U = 0 in R2 \
(
D ∪ Γ

)
,

U± = 0 on Γ±1 ,

U− = 0 on Γ−2 ,

∂U+

∂ν
+ ikλU+ = 0 on Γ+2 ,

U = 0 on ∂D,

(2.2)

where U±(x) = limh→ 0+U(x ± hν) for x ∈ Γ and ∂U±/∂ν = limh→ 0+ν · ∇U(x ± hν) for x ∈ Γ.
The total field U is decomposed into the given incident field ui(x) = eikx·d, |d| = 1, and the
unknown scattered field uwhich is required to satisfy the Sommerfeld radiation condition

lim
ν→∞

√
r

(
∂u

∂r
− iku

)

= 0 (2.3)

uniformly in x̂ = x/|x|with r = |x|.
We recall some usual Sobolev spaces and some trace spaces on Γ in the following.
Let Γ̃ ⊆ Γ be a piece of the boundary. UseH1(D) andH1

loc(R
2 \D) to denote the usual

Sobolev spaces,H1/2(Γ) is the trace space, and we define

H1/2
(
Γ̃
)
=
{
u|Γ̃ : u ∈ H1/2(Γ)

}
,

H̃1/2
(
Γ̃
)
=
{
u ∈ H1/2(Γ) : suppu ⊆ Γ̃

}
,

H−1/2
(
Γ̃
)
=
(
H̃1/2

(
Γ̃
))′

the dual space of H̃1/2
(
Γ̃
)
,

H̃−1/2
(
Γ̃
)
=
(
H1/2(Γ̃)

)′
the dual space of H1/2

(
Γ̃
)
.

(2.4)

Just consider the scattered field u, then (2.2) and (2.3) are a special case of the following
problem.

Given f ∈ H1/2(Γ1), g ∈ H1/2(Γ2), h ∈ H−1/2(Γ2), and r ∈ H1/2(∂D) find u ∈ H1
loc
(R2 \

(D ∪ Γ)) such that

Δu + k2u = 0 in R2 \
(
D ∪ Γ

)
,

u± = f on Γ±1 ,

u− = g on Γ−2 ,

∂u+
∂ν

+ ikλu+ = h on Γ+2 ,

u = r on ∂D,

(2.5)
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and u is required to satisfy the Sommerfeld radiation condition (2.3). For simplicity, we
assume that k > 0 and λ > 0.

Theorem 2.1. The problems (2.5) and (2.3) have at most one solution.

Proof. Let u be a solution to the problem (2.5) with f = g = h = r = 0, we want to show that
u = 0 in R2 \ (D ∪ Γ).

Suppose that BR (with boundary ∂BR) is a sufficiently large ball which contains
the domain Ω. Obviously, to the Helmholtz equation in (2.5), the solution u ∈ H1(BR \
Ω)
⋃
H1(Ω\D) satisfies the following transmission boundary conditions on the complemen-

tary part ∂Ω \ Γ of ∂Ω:

u+ = u−,

∂u+
∂ν

=
∂u−
∂ν

,
(2.6)

where “±” denote the limit approaching ∂Ω from outside and inside Ω, respectively.
Applying Green’s formula for u and u in Ω \D and BR \Ω, we have

∫

Ω\D
(uΔu +∇u · ∇u)dx =

∫

∂Ω\Γ
u−
∂u−
∂ν

ds +
∫

Γ1
u−
∂u−
∂ν

ds +
∫

Γ2
u−
∂u−
∂ν

ds,

∫

BR\Ω
(uΔu +∇u · ∇u)dx

=
∫

∂BR

u
∂u

∂ν
ds +
∫

∂Ω\Γ
u+
∂u+
∂ν

ds +
∫

Γ1
u+
∂u+
∂ν

ds +
∫

Γ2
u+
∂u+
∂ν

ds,

(2.7)

where ν is directed into the exterior of the corresponding domain.
Using boundary conditions on Γ1, Γ2 and the above transmission boundary condition

(2.6), we have

∫

∂BR

u
∂u

∂ν
ds =

(∫

BR\Ω
+
∫

Ω\D

)
(
|∇u|2 − k2|u|2

)
dx +

∫

Γ2
ikλ|u+|2ds. (2.8)

Hence

Im

(∫

∂BR

u
∂u

∂ν
ds

)

≥ 0. (2.9)

So, from [13, Theorem 2.12] and a unique continuation argument we obtain that u = 0 in
R2 \ (D ∪ Γ).

We use [u] = u− − u+ and [∂u/∂ν] = (∂u−/∂ν) − (∂u+/∂ν) to denote the jump of u and
∂u/∂ν across the crack Γ, respectively. Then we have the following.
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Lemma 2.2. If u is a solution of (2.5) and (2.3), then [u] ∈ H̃1/2(Γ) and [∂u/∂ν] ∈ H̃−1/2(Γ).

The proof of this lemma can be found in [11].
We are now ready to prove the existence of a solution to the above scattering problem

by using an integral equation approaching. For x ∈ Ω \D, by Green representation formula

u(x) =
∫

∂Ω

[
∂u

∂ν
Φ
(
x, y
) − u∂Φ

(
x, y
)

∂ν

]

dsy +
∫

∂D

[
∂u

∂ν
Φ
(
x, y
) − u∂Φ

(
x, y
)

∂ν

]

dsy (2.10)

and for x ∈ R2 \Ω

u(x) =
∫

∂Ω

[

u
∂Φ
(
x, y
)

∂ν
− ∂u

∂ν
Φ
(
x, y
)
]

dsy, (2.11)

where

Φ
(
x, y
)
=
i

4
H

(1)
0

(
k
∣
∣x − y∣∣) (2.12)

is the fundamental solution to the Helmholtz equation in R2, and H
(1)
0 is a Hankel function

of the first kind of order zero.
By making use of the known jump relationships of the single- and double-layer

potentials across the boundary ∂Ω (see [5, 11]) and approaching the boundary ∂Ω from inside
Ω \D, we obtain (for x ∈ ∂Ω)

u−(x) = SΩΩ
∂u−
∂ν

−KΩΩu− + 2
∫

∂D

[
∂u
(
y
)

∂ν
Φ
(
x, y
) − u(y)∂Φ

(
x, y
)

∂ν

]

dsy, (2.13)

∂u−(x)
∂ν

= K′
ΩΩ

∂u−
∂ν

− TΩΩu− + 2
∂

∂ν(x)

∫

∂D

[
∂u
(
y
)

∂ν
Φ
(
x, y
) − u(y)∂Φ

(
x, y
)

∂ν

]

dsy, (2.14)

where SΩΩ, KΩΩ, K′
ΩΩ, and TΩΩ are boundary integral operators:

SΩΩ : H−1/2(∂Ω) −→ H1/2(∂Ω), KΩΩ : H1/2(∂Ω) −→ H1/2(∂Ω)

K′
ΩΩ : H−1/2(∂Ω) −→ H−1/2(∂Ω), TΩΩ : H1/2(∂Ω) −→ H−1/2(∂Ω),

(2.15)

defined by (for x ∈ ∂Ω)

SΩΩϕ(x) = 2
∫

∂Ω
ϕ
(
y
)
Φ
(
x, y
)
dsy, KΩΩϕ(x) = 2

∫

∂Ω
ϕ
(
y
)Φ
(
x, y
)

∂νy
dsy,

K′
ΩΩϕ(x) = 2

∫

∂Ω
ϕ
(
y
)∂Φ
(
x, y
)

∂νx
dsy, TΩΩϕ(x) = 2

∂

∂νx

∫

∂Ω
ϕ
(
y
)∂Φ
(
x, y
)

∂νy
dsy.

(2.16)
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Similarly, approaching the boundary ∂Ω from inside R2 \Ωwe obtain (for x ∈ ∂Ω)

u+(x) = −SΩΩ
∂u+
∂ν

+KΩΩu+, (2.17)

∂u+(x)
∂ν

= −K′
ΩΩ

∂u+
∂ν

+ TΩΩu+. (2.18)

From (2.13)–(2.18), we have

u− + u+ = SΩΩ

(
∂u−
∂ν

− ∂u+
∂ν

)

−KΩΩ(u− − u+)

+ 2
∫

∂D

[
∂u
(
y
)

∂ν
Φ
(
x, y
) − u(y)∂Φ

(
x, y
)

∂ν

]

dsy,

(2.19)

∂u−
∂ν

+
∂u+
∂ν

= K′
ΩΩ

(
∂u−
∂ν

− ∂u+
∂ν

)

− TΩΩ(u− − u+)

+ 2
∂

∂ν(x)

∫

∂D

[
∂u
(
y
)

∂ν
Φ
(
x, y
) − u(y)∂Φ

(
x, y
)

∂ν

]

dsy.

(2.20)

Restrict u on Γ±1 , from (2.19)we have

2f(x) = SΩΩ

(
∂u−
∂ν

− ∂u+
∂ν

)∣
∣
∣
∣
Γ1
− KΩΩ(u− − u+)|Γ1

+2
∫

∂D

∂u(y)
∂ν

Φ(x, y)dsy

∣
∣
∣
∣
Γ1

− 2
∫

∂D

u(y)
∂Φ(x, y)

∂ν
dsy

∣
∣
∣
∣
Γ1

(2.21)

where (·)|Γ1 means a restriction to Γ1.
Define

SΩΓ1ϕ(x) = 2
∫

∂Ω
ϕ(y)Φ(x, y)dsy

∣
∣
∣
∣
Γ1

,

KΩΓ1ϕ(x) = 2
∫

∂Ω

∂Φ(x, y)
∂ν

ϕ(y)dsy

∣
∣
∣
∣
Γ1

,

SDΓ1ϕ(x) = 2
∫

∂D

ϕ
(
y
)
Φ
(
x, y
)
dsy

∣
∣
∣
∣
Γ1

,

∂u

∂ν

∣
∣
∣
∣
∂D

= a,
[
∂u

∂ν

]∣
∣
∣
∣
Γ1

=
(
∂u−
∂ν

− ∂u+
∂ν

)∣
∣
∣
∣
Γ1

= b,

[
∂u

∂ν

]∣
∣
∣
∣
Γ2

=
(
∂u−
∂ν

− ∂u+
∂ν

)∣
∣
∣
∣
Γ2

= c, [u]|Γ2 = (u− − u+)|Γ2 = d.

(2.22)
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Then zero extend b, c, and d to the whole ∂Ω in the following:

b̃ =

⎧
⎨

⎩

0, on ∂Ω \ Γ1,
b, on Γ1,

c̃ =

⎧
⎨

⎩

0, on ∂Ω \ Γ2,
c, on Γ2,

d̃ =

⎧
⎨

⎩

0, on ∂Ω \ Γ2,
d, on Γ2.

(2.23)

By using the boundary conditions in (2.5), we rewrite (2.21) as

SDΓ1a + SΩΓ1

(
b̃ + c̃
)
−KΩΓ1 d̃ = p1(x), (2.24)

where

p1(x) = 2f(x) + 2
∫

∂D

∂Φ(x, y)
∂ν(y)

r(y)dsy

∣
∣
∣
∣
Γ1

. (2.25)

Furthermore, we modify (2.24) as

SDΓ1a + SΓ1Γ1b + SΓ2Γ1c −KΓ2Γ1d = p1(x), (2.26)

where the operator SΓ2Γ1 is the operator applied to a function with supp ⊆ Γ2 and evaluated
on Γ1, with analogous definition for SDΓ1 , SΓ1Γ1 , and KΓ2Γ1 . We have mapping properties (see
[5, 11])

SDΓ1 : H̃
−1/2(∂D) −→ H1/2(Γ1),

SΓ1Γ1 : H̃
−1/2(Γ1) −→ H1/2(Γ1),

SΓ2Γ1 : H̃
−1/2(Γ2) −→ H1/2(Γ1),

KΓ2Γ1 : H̃
1/2(Γ2) −→ H1/2(Γ1).

(2.27)

Again from (2.13)–(2.18), restricting u to boundary Γ−2 we have

2g(x) = SΩΩ

(
∂u−
∂ν

− ∂u+
∂ν

)∣
∣
∣
∣
Γ2
− KΩΩ(u− − u+)|Γ2 + (u− − u+)|Γ2

+ 2
∫

∂D

∂u(y)
∂ν(y)

Φ(x, y)dsy

∣
∣
∣
∣
Γ2

− 2
∫

∂D

∂Φ(x, y)
∂ν(y)

r(y)dsy

∣
∣
∣
∣
Γ2

(2.28)
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or

2
∫

∂D

∂u(y)
∂ν(y)

Φ(x, y)dsy

∣
∣
∣
∣
Γ2

+ SΩΩ

(
∂u−
∂ν

− ∂u+
∂ν

)∣
∣
∣
∣
Γ2
− KΩΩ(u− − u+)|Γ2 + (u− − u+)|Γ2

= 2g(x) + 2
∫

∂D

∂Φ(x, y)
∂ν(y)

r(y)dsy

∣
∣
∣
∣
Γ2

.

(2.29)

Like previous, define

SΩΓ2ϕ(x) = 2
∫

∂Ω
ϕ(y)Φ(x, y)dsy

∣
∣
∣
∣
Γ2

,

KΩΓ2ϕ(x) = 2
∫

∂Ω

∂Φ(x, y)
∂ν

ϕ(y)dsy

∣
∣
∣
∣
Γ2

,

SDΓ2ϕ(x) = 2
∫

∂D

ϕ(y)Φ(x, y)dsy

∣
∣
∣
∣
Γ2

.

(2.30)

Then we can rewrite (2.29) as

SDΓ2a + SΩΓ2

(
b̃ + c̃
)
−KΩΓ2 d̃ + d = p2(x), x ∈ Γ−2 , (2.31)

where

p2(x) = 2g(x) + 2
∫

∂D

∂Φ(x, y)
∂ν(y)

r(y)dsy

∣
∣
∣
∣
Γ−2

. (2.32)

Similar to (2.26), we modify (2.31) as

SDΓ2a + SΓ1Γ2b + SΓ2Γ2c + (I −KΓ2Γ2)d = p2(x) (2.33)

and we have mapping properties:

SDΓ2 : H̃
−1/2(∂D) −→ H1/2(Γ2),

SΓ2Γ2 : H̃
−1/2(Γ2) −→ H1/2(Γ2),

SΓ1Γ2 : H̃
−1/2(Γ1) −→ H1/2(Γ2),

KΓ2Γ2 : H̃
1/2(Γ2) −→ H1/2(Γ2).

(2.34)
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Combining (2.13) and (2.14),

− ikλ
(

SΩΩ
∂u−
∂ν

−KΩΩu−

)

= −ikλ
{

u− − 2
∫

∂D

[
∂u
(
y
)

∂ν
Φ
(
x, y
) − u∂Φ

(
x, y
)

∂ν
(
y
)

]

dsy

}

= −ikλu− + 2ikλ
∫

∂D

∂u
(
y
)

∂ν
Φ
(
x, y
)
dsy − 2ikλ

∫

∂D

r
(
y
)∂Φ
(
x, y
)

∂ν
(
y
) dsy,

−K′
ΩΩ

∂u−
∂ν

+ TΩΩu−

= −∂u−
∂ν

+ 2
∂

∂ν(x)

∫

∂D

∂u
(
y
)

∂ν
Φ
(
x, y
)
dsy − 2

∂

∂ν(x)

∫

∂D

r
(
y
)∂Φ
(
x, y
)

∂ν
dsy,

(2.35)

− ikλu− − ∂u−
∂ν

= −ikλ(u− − u+) −
(
∂u−
∂ν

− ∂u+
∂ν

)

− ikλu+ − ∂u+
∂ν

.

(2.36)

Using (2.17) and (2.18),

∂u+
∂ν

+ ikλu+ = −K′
ΩΩ

∂u+
∂ν

+ TΩΩu+ + ikλ
(

KΩΩu+ − SΩΩ
∂u+
∂ν

)

= K′
ΩΩ

(
∂u−
∂ν

− ∂u+
∂ν

)

− TΩΩ(u− − u+) + ikλSΩΩ

(
∂u−
∂ν

− ∂u+
∂ν

)

− ikλKΩΩ(u− − u+) − ikλ
(

SΩΩ
∂u−
∂ν

−KΩΩu−

)

−K′
ΩΩ

∂u−
∂ν

+ TΩΩu−

= K′
ΩΩ

(
∂u−
∂ν

− ∂u+
∂ν

)

− TΩΩ(u− − u+) + ikλSΩ

(
∂u−
∂ν

− ∂u+
∂ν

)

− ikλKΩΩ(u− − u+) − ikλu− − ∂u−
∂ν

+ 2ikλ
∫

∂D

∂u
(
y
)

∂ν
Φ
(
x, y
)
dsy + 2

∂

∂ν(x)

∫

∂D

∂u
(
y
)

∂ν
Φ
(
x, y
)
dsy

− 2ikλ
∫

∂D

r
(
y
)∂Φ
(
x, y
)

∂ν
(
y
) dsy − 2

∂

∂ν(x)

∫

∂D

r
(
y
)∂Φ
(
x, y
)

∂ν
(
y
) dsy.

(2.37)
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Then using (2.36),

2
(
∂u+
∂ν

+ ikλu+
)

= K′
ΩΩ

(
∂u−
∂ν

− ∂u+
∂ν

)

− TΩΩ(u− − u+) + ikλSΩΩ

(
∂u−
∂ν

− ∂u+
∂ν

)

− ikλKΩΩ(u− − u+) − ikλ(u− − u+) −
(
∂u−
∂ν

− ∂u+
∂ν

)

+ 2ikλ
∫

∂D

∂u
(
y
)

∂ν
Φ
(
x, y
)
dsy + 2

∂

∂ν(x)

∫

∂D

∂u
(
y
)

∂ν
Φ
(
x, y
)
dsy

− 2ikλ
∫

∂D

r
(
y
)∂Φ
(
x, y
)

∂ν
(
y
) dsy − 2

∂

∂ν(x)

∫

∂D

r
(
y
)∂Φ
(
x, y
)

∂ν
(
y
) dsy.

(2.38)

From (2.29), we have

2ikλg(x) = ikλ

[

SΩΩ

(
∂u−
∂ν

− ∂u+
∂ν

)∣
∣
∣
∣
Γ2
− KΩΩ(u− − u+)|Γ2 + (u− − u+)|Γ2

+2
∫

∂D

∂u(y)
∂ν

Φ(x, y)dsy

∣
∣
∣
∣
Γ2

− 2
∫

∂D

r(y)
∂Φ(x, y)
∂ν(y)

dsy

∣
∣
∣
∣
Γ2

]

.

(2.39)

Restricting (2.38) to Γ+2 and using (2.39), we modify (2.38) as

2
∂

∂ν(x)

∫

∂D

∂u(y)
∂ν

Φ(x, y)dsy

∣
∣
∣
∣
Γ+2

+ K′
ΩΩ

(
∂u−

∂ν
− ∂u+

∂ν

)∣
∣
∣
∣
Γ+2

− TΩΩ(u− − u+)
∣
∣
Γ+2

−
(
∂u−

∂ν
− ∂u+

∂ν

)∣
∣
∣
∣
Γ+2

− 2ikλ(u− − u+)|Γ+2 = p3(x),
(2.40)

where

p3(x) = 2h(x) − 2ikλg(x) +
∫

∂D

r(y)
∂Φ(x, y)
∂ν(y)

dsy

∣
∣
∣
∣
Γ+2

(2.41)

for x ∈ Γ+.
Define

K′
DΓ2ϕ(x) = 2

∂

∂ν(x)

∫

∂D

ϕ(y)Φ(x, y)dsy

∣
∣
∣
∣
Γ+2

, (2.42)

and using the notation in previous, we can rewrite (2.40) as

K′
DΓ2a +K′

ΩΓ2

(
b̃ + c̃
)
− TΩΓ2 d̃ − c − 2ikλd = p3(x) (2.43)
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or

K′
DΓ2a +K′

Γ1Γ2b +
(
K′

Γ2Γ2 − I
)
c − (TΓ2Γ2 + 2ikλI)d = p3(x), (2.44)

where the operatorsK′
Γ1Γ2

,K′
Γ2Γ2

, and TΓ2Γ2 are restriction operators (see (2.29)). As before, we
have mapping properties:

K′
DΓ2 : H̃

−1/2(∂D) −→ H−1/2(Γ2),

K′
Γ1Γ2 : H̃

−1/2(Γ1) −→ H−1/2(Γ2),

K′
Γ2Γ2 : H̃

−1/2(Γ2) −→ H−1/2(Γ2),

TΓ2Γ2 : H̃
1/2(Γ2) −→ H−1/2(Γ2).

(2.45)

By using Green formula and approaching the boundary ∂D from inside Ω \D we obtain (for
x ∈ ∂D)

u(x) = 2
∫

∂D

∂u
(
y
)

∂ν
Φ
(
x, y
)
dsy + 2

∫

∂D

∂Φ
(
x, y
)

∂ν
u
(
y
)
dsy

+ 2
∫

∂Ω

[
∂u−
(
y
)

∂ν
Φ
(
x, y
) − u−

(
y
)∂Φ
(
x, y
)

∂ν

]

dsy.

(2.46)

The last term in (2.46) can be reformulated as

2
∫

∂Ω

[
∂u−
(
y
)

∂ν
Φ
(
x, y
) − u−

(
y
)∂Φ
(
x, y
)

∂ν
u
(
y
)
]

dsy

= 2
∫

∂Ω

[(
∂u−
(
y
)

∂ν
− ∂u+

(
y
)

∂ν

)

Φ
(
x, y
) − (u−

(
y
) − u+

(
y
))∂Φ

(
x, y
)

∂ν

]

dsy

+ 2
∫

∂Ω

[
∂u+
(
y
)

∂ν
Φ
(
x, y
) − u+

(
y
)∂Φ
(
x, y
)

∂ν

]

dsy.

(2.47)

Since x ∈ ∂D and y ∈ ∂Ω in (2.47), we have the following result (see [13]).

Lemma 2.3. By using Green formula and the Sommerfeld radiation condition (2.3), one obtains

∫

∂Ω

[
∂u+
(
y
)

∂ν
Φ
(
x, y
) − u+

(
y
)∂Φ
(
x, y
)

∂ν

]

dsy = 0. (2.48)

Proof. Denote by BR a sufficiently large ball with radius R containing Ω and use Green
formula inside BR \Ω. Furthermore noticing x ∈ ∂D, y ∈ ∂Ω, and the Sommerfeld radiation
condition (2.3), we can prove this lemma.
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Combining (2.46), (2.47), and Lemma 2.3 and restricting x to ∂D we have

2
∫

∂D

∂u(y)
∂ν

Φ(x, y)dsy

∣
∣
∣
∣
∂D

+ 2
∫

∂Ω

[
∂u−
(
y
)

∂ν
− ∂u+

(
y
)

∂ν

]

Φ(x, y)dsy

∣
∣
∣
∣
∣
∂D

− 2
∫

∂Ω

[
u−
(
y
) − u+

(
y
)]∂Φ(x, y)

∂ν
dsy

∣
∣
∣
∣
∂D

= p0(x),

(2.49)

where

p0(x) = r(x) − 2
∫

∂D

r(y)
∂Φ(x, y)

∂ν
dsy

∣
∣
∣
∣
∂D

. (2.50)

Define

SDDϕ(x) = 2
∫

∂D

ϕ(y)Φ(x, y)dsy

∣
∣
∣
∣
∂D

, (2.51)

and then we can rewrite (2.49) as

SDDa + SΓ1Db + SΓ2Dc −KΓ2Dd = p0(x). (2.52)

Similarly, SΓD and KΓD are restriction operators as before, and we have mapping properties:

SDD : H̃−1/2(∂D) −→ H1/2(∂D),

SΓD : H̃−1/2(Γ) −→ H1/2(∂D),

KΓD : H̃1/2(Γ) −→ H1/2(∂D).

(2.53)

Combining (2.52), (2.26), (2.33), and (2.44), we have

SDDa + SΓ1Db + SΓ2Dc −KΓ2Dd = p0(x),

SDΓ1a + SΓ1Γ1b + SΓ2Γ1c −KΓ2Γ1d = p1(x),

SDΓ2a + SΓ1Γ2b + SΓ2Γ2c + (I −KΓ2Γ2)d = p2(x),

K′
DΓ2a +K′

Γ1Γ2b +
(
K′

Γ2Γ2 − I
)
c − (TΓ2Γ2 + 2ikλI)d = p3(x).

(2.54)
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If we define

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

SDD SΓ1D SΓ2D −KΓ2D

SDΓ1 SΓ1Γ1 SΓ2Γ1 −KΓ2Γ1

SDΓ2 SΓ1Γ2 SΓ2Γ2 I −KΓ2Γ2

K′
DΓ2

K′
Γ1Γ2

K′
Γ2Γ2

− I −(TΓ2Γ2 + 2ikλI)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

−→p =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

p0(x)

p1(x)

p2(x)

p3(x)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

(2.55)

then (2.54) can be rewritten as a boundary integral system:

A

⎛

⎜
⎜
⎜
⎜
⎜
⎝

a

b

c

d

⎞

⎟
⎟
⎟
⎟
⎟
⎠

= −→p . (2.56)

Remark 2.4. If the above system (2.56) has a unique solution, our problem (2.5)with (2.3)will
have a unique solution (see [13, 14]).

3. Existence and Uniqueness

Based on the Fredholm theory, we show the existence and uniqueness of a solution to the
integral system (2.56).

Define

H = H−1/2(∂D) × H̃−1/2(Γ1) × H̃−1/2(Γ2) × H̃1/2(Γ2) (3.1)

and its dual space

H∗ = H1/2(∂D) × H̃1/2(Γ1) × H̃1/2(Γ2) × H̃−1/2(Γ2). (3.2)

Theorem 3.1. The operator A mapsH continuously intoH∗ and is Fredholm with index zero.

Proof. As is known, the operator SDD is positive and bounded below up to a compact
perturbation (see [18]); that is, there exists a compact operator

LD : H−1/2(∂D) −→ H1/2(∂D) (3.3)
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such that

Re
(〈
(SDD + LD)ψ, ψ

〉) ≥ C∥∥ψ∥∥2H−1/2(∂D), for ψ ∈ H−1/2(∂D) (3.4)

where 〈, 〉 denote the duality betweenH−1/2(∂D) andH1/2(∂D).
For convenience, in the following discussion we define

S0 = SDD + LD. (3.5)

Similarly, the operators SΩΩ and −TΩΩ are positive and bounded below up to compact
perturbations (see [18]), that is, there exist compact operators

LΩ : H−1/2(∂Ω) −→ H1/2(∂Ω)

LT : H1/2(∂Ω) −→ H−1/2(∂Ω)
(3.6)

such that

Re
(〈
(SΩΩ + LΩ)ψ, ψ

〉) ≥ C∥∥ψ∥∥2H−1/2(∂D), for ψ ∈ H−1/2(∂Ω),

Re
(〈−(TΩΩ + LT )ϕ, ϕ

〉) ≥ C∥∥ϕ∥∥2H1/2(∂D), for ϕ ∈ H1/2(∂Ω).

(3.7)

Define S1 = SΩΩ + LΩ and T1 = −(TΩΩ + LT ), then S1 and T1 are bounded below up and
positive.

Take a ∈ H−1/2(∂D), and let b̃ ∈ H−1/2(∂Ω), c̃ ∈ H−1/2(∂Ω), and d̃ ∈ H1/2(∂Ω) be the
extension by zero to ∂Ω of b ∈ H̃−1/2(Γ1), c ∈ H̃−1/2(Γ2), and d ∈ H̃1/2(Γ2), respectively.

Denote
−→
ξ = (a, b, c, d)T .

It is easy to check that the operators SΓ1D, SΓ2D, SDΓ1 , SDΓ2 ,KΓ2D, andK
′
DΓ2

are compact

operators, and then we can rewrite A
−→
ξ as the following:

A
−→
ξ = A

⎛

⎜
⎜
⎜
⎜
⎜
⎝

a

b

c

d

⎞

⎟
⎟
⎟
⎟
⎟
⎠

= A0

⎛

⎜
⎜
⎜
⎜
⎜
⎝

a

b

c

d

⎞

⎟
⎟
⎟
⎟
⎟
⎠

+AC

⎛

⎜
⎜
⎜
⎜
⎜
⎝

a

b

c

d

⎞

⎟
⎟
⎟
⎟
⎟
⎠

= A0
−→
ξ +AC

−→
ξ (3.8)
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with

AC
−→
ξ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−LDa|∂D + SΓ1Db + SΓ2Dc −KΓ2Dd

SDΓ1a −
(
LΩb̃ + LΩc̃

)∣
∣
∣
Γ1

SDΓ2a −
(
LΩb̃ + LΩc̃

)∣
∣
∣
Γ2

K′
DΓ2

+ LT d̃
∣
∣
∣
Γ2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

A0
−→
ξ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

S0a
(
S1b̃ + S1c̃

)∣
∣
∣
Γ1
−KΓ2Γ1d

(
S1b̃ + S1c̃

)∣
∣
∣
Γ2
+ (I −KΓ2Γ2)d

K′
Γ1Γ2

b +
(
K′

Γ2Γ2
− I
)
c + T1d̃

∣
∣
∣
Γ2
− 2ikλd

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

(3.9)

where AC : H → H∗ is compact and A0 : H → H∗ defines a sesquilinear form, that is,

〈

A0
−→
ξ ,

−→
ξ

〉

H,H∗
= (S0a, a) +

(
S1b̃ + S1c̃, b̃

)
− (KΓ2Γ1d, b)|Γ1

+
(
S1b̃ + S1c̃, c̃

)
+ (d, c) − (KΓ2Γ2d, c)|Γ2

+ (K′
Γ1Γ2b, d)

∣
∣
∣
Γ2
+ (K′

Γ2Γ2c, d)
∣
∣
∣
Γ2
− (c, d) +

(
T1d̃, d̃

)
− 2ikλ(d, d).

(3.10)

Here (u, v) denotes the scalar product on L2(∂D) or L2(∂Ω) defined by
∫
∂Duvds or

∫
∂Ωuvds,

and (u, v)|Γi is the scalar product on L2(Γi) (i = 1, 2).
By properties of the operators S0, S1, and T1, we have

Re(S0a, a) ≥ C‖a‖2H−1/2(∂D),

Re
[(
S1b̃ + S1c̃, b̃

)
+
(
S1b̃ + S1c̃, c̃

)
+
(
T1d̃, d̃

)]
= Re
[(
S1

(
b̃ + c̃
)
, b̃ + c̃

)
+
(
T1d̃, d̃

)]

≥ C
(∥
∥
∥b̃ + c̃

∥
∥
∥
H−1/2(∂Ω)

+
∥
∥
∥d̃
∥
∥
∥
H1/2(∂Ω)

)

= C
(
‖b‖2

H̃−1/2(Γ1)
+ ‖c‖2

H̃−1/2(Γ2)
+ ‖d‖2

H̃1/2(Γ2)

)
.

(3.11)
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Similarly,

Re
[

(K′
Γ1Γ2b, d)

∣
∣
∣
Γ2
− (KΓ2Γ1d, b)|Γ1

]

= Re
[
(b,KΓ2Γ1d)|Γ1 − (KΓ2Γ1d, b)|Γ1

]

= Re
[

(KΓ2Γ1d, b)
∣
∣
∣
Γ1
− (KΓ2Γ1d, b)|Γ1

]

= 0,

Re
[

(K′
Γ2Γ2c, d)

∣
∣
∣
Γ2
− (KΓ2Γ2d, c)|Γ2

]

= 0,

Re[(d, c) − (c, d) − 2idλ(d, d)] = Re
[
(d, c) − (d, c) − 2ikλ(d, d)

]

= 0.

(3.12)

So the operator A0 is coercive, that is,

Re
(〈

(A −Ac)ξ, ξ
〉

H,H∗

)

≥ C‖ξ‖2H for ξ ∈ H, (3.13)

whence the operator A is Fredholm with index zero.

Theorem 3.2. The operator A has a trivial kernel if −k2 is not Dirichlet eigenvalue of the Laplace
operator in D.

Proof. In this part, we show that KernA = {0}. To this end let −→ψ = (a, b, c, d)T ∈ H be a
solution of the homogeneous system A−→ψ =

−→
0 , and we want to prove that −→ψ ≡ −→

0 .
However, A−→ψ =

−→
0 means that

SDDa + SΓ1Db + SΓ2Dc −KΓ2Dd = 0,

SDΓ1a + SΓ1Γ1b + SΓ2Γ1c −KΓ2Γ1d = 0,

SDΓ2a + SΓ1Γ2b + SΓ2Γ2c + (I −KΓ2Γ2)d = 0,

K′
DΓ2a +K′

Γ1Γ2b +
(
K′

Γ2Γ2 − I
)
c − (TΓ2Γ2 + 2ikλI)d = 0.

(3.14)

Define a potential

v(x) = SDa + SΩb̃ + SΩc̃ −KΩd̃ (3.15)
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where b̃, c̃ and d̃ have the same meaning as before and

SDϕ(x) =
∫

∂D

ϕ
(
y
)
Φ
(
x, y
)
dsy,

SΩϕ(x) =
∫

∂Ω
ϕ
(
y
)
Φ
(
x, y
)
dsy,

KΩϕ(x) =
∫

∂Ω
ϕ
(
y
)∂Φ
(
x, y
)

∂ν
(
y
) dsy.

(3.16)

This potential v(x) satisfies Helmholtz equation in R2 \ (D∪Γ) and the Sommerfeld radiation
condition (see [13, 14]).

Considering the potential v(x) inside Ω \D and approaching the boundary ∂D (x →
∂D), we have

v(x) =
1
2
{SDDa + SΓ1Db + SΓ2Dc −KΓ2Dd} (3.17)

and (3.14) implies that

v(x)|∂D = 0. (3.18)

Similarly, considering the potential v(x) inside Ω \ D and approaching the boundary ∂Ω
(x → ∂Ω), then restricting v(x) to the partial boundary Γ−1 :

v(x)|Γ−1 =
1
2
{SDΓ1a + SΓ1Γ1b + SΓ2Γ1c −KΓ2Γ1d} = 0, x ∈ Γ−1 , (3.19)

and restricting v(x) to the partial boundary Γ−2 , we have

v(x)|Γ−2 =
1
2
{SDΓ2a + SΓ1Γ2b + SΓ2Γ2c + d −KΓ2Γ2d} = 0, x ∈ Γ−2 . (3.20)

Now, we consider the potential v(x) in the region R2 \ Ω and approach the boundary ∂Ω
(x → ∂Ω), and then restricting v(x) to the partial boundary Γ+1 , similar to (3.19), we have

v(x)|Γ+1 = 0, x ∈ Γ−1 . (3.21)

Refering to (3.20),

v(x)|Γ+2 = − [v]|Γ+2 = 0, x ∈ Γ+2 ,

∂v(x)
∂ν

∣
∣
∣
∣
Γ+2

=
1
2

{
K′
DΓ2a +K′

Γ1Γ2b +
(
K′

Γ2Γ2 − I
)
c − TΓ2Γ2d

}
, x ∈ Γ+2 .

(3.22)
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Combining (3.22), from (3.14) we have

2(
∂v(x)
∂ν

+ ikλv(x))
∣
∣
∣
∣
Γ+2

= K′
DΓ2a +K′

Γ1Γ2b +
(
K′

Γ2Γ2 − I
)
c − TΓ2Γ2d − 2ikλd

= 0.

(3.23)

From (3.18)–(3.23), the potential v(x) satisfies the following boundary value problem:

Δv + k2v = 0 in R2 \
(
D ∪ Γ

)
,

v± = 0 on Γ±1 ,

v− = 0 on Γ−2 ,

∂v+
∂ν

+ ikλv+ = 0 on Γ+2 ,

v = 0 on ∂D,

(3.24)

and the Sommerfeld radiation condition:

lim
ν→∞

√
r

(
∂v

∂r
− ikv

)

= 0 (3.25)

uniformly in x̂ = x/|x|with r = |x|.
The uniqueness result Theorem 2.1 in Section 2 implies that

v(x) = 0, x ∈ R2 \ (D ∪ Γ). (3.26)

Notice that −k2 is not Dirichlet eigenvalue of the Laplace operator in D, and so

v(x) = 0, x ∈ D. (3.27)

Therefore, the well-known jump relationships (see [13, 14]) imply that

−→ψ = (a, b, c, d)T = (0, 0, 0, 0)T . (3.28)

So we complete the proof of the theorem.
Combining Theorems 3.1 and 3.2, we have the following

Theorem 3.3. The boundary integral system (2.56) has a unique solution.

Remark 3.4. If we remove the condition that “−k2 is not Dirichlet eigenvalue of the Laplace
operator in D,” instead of it by the assumption that Im k > 0, then Theorem 2.1 in Section 2
and Theorem 3.3 in Section 3 are also true.
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