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1. Introduction

The existence of solutions for quasilinear parabolic equation with boundary conditions and
initial conditions can be discussed by maximal regularity, and more and more works on this
field show that the maximal regularity method is efficient. Here we will use some of recently
results developed by H. Amann to investigate a specific boundary value problems and then
apply the existence theorem to two nonlocal problems.

This paper consists of three parts. In the next section we present and prove the
existence and unique theorem of an abstract boundary problem. Then we give some
applications of the results in Sections 3 and 4 to two reaction-diffusion model problems that
arise from nonstationary radiative heat transfer in a system ofmoving absolutely black bodies
and a reaction-diffusion equation with nonlocal boundary flux conditions.

2. Notations and Abstract Result

We consider the following quasilinear parabolic initial boundary value problem (IBVP for
short):

ut +A(t, x, u)u = f(t, x, u,∇u), in QT,
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B(t, x, u)u = δg(t, x, u,∇u), on ∂Ω,

u(x, 0) = u0(x), on Ω,

(2.1)

where Ω is a bounded strictly Lipschitz domain with its boundary Γ = ∂Ω = Γ0 ∪ Γ1 and
Γ0 ∩ Γ1 = ∅, QT = [0, T) ×Ω,

A(t, x, u)u = −∇(a(t, x, u)∇u), (2.2)

and −A is a second-order strongly elliptic differential operator with the boundary operator
given by

B(t, x, u)u := δ∂νau + (1 − δ)γu. (2.3)

The coefficient matrix a = (aij)n×n satisfies regularity conditions on QT × R, respectively. The
directional derivative ∂νau := γa∇u · ν, ν is the outer unit-normal vector on Γ; the function
δ : Γ → {0, 1} is defined as δ−1(j) := Γj for j = 0, 1; γ denotes the trace operator.

We introduce precise assumptions:

f : QT × R
n+1 −→ R,

g : R
+ × Γ × R

n+1 −→ R,
(2.4)

where (R+ := [0,+∞)) are Carathéodory functions; that is, f (resp., g) is measurable in (t, x) ∈
QT (resp., in (t, x, y) ∈ R

+ × Γ × Ω) for each u ∈ R and continuous in u for a.e. (t, x) ∈ QT

(resp., (t, x) ∈ R
+ × Γ). More general, the function g can be a nonlocal function, for example,

g(t, x, u) =
∫
Ωk(t, x, y, u)dy or g(t, x, u) =

∫
Γk(t, x, u)dσ.

Let X and Y be Banach spaces, we introduce some notations as follows:

(i) JT := [0, T),
◦
JT := JT \ {0}. α ∧ β := min{α, β}, α ∨ β := max{α, β}.

(ii) D(D,Y ) := {φ ∈ C∞(D), φ : D �→ Y, supp φ ⊂ D} for D ⊂ R
l, D1 := {v ∈ D(JT ×

Ω)} ∩ {v|Γ0 = 0}.

(iii) L(X,Y ) := {all continuous linear operators from X into Y}, and L(X) := L(X,X).

(iv) f(t, u) denotes the Nemytskii operator induced by f(t, x, u(t, x),∇u(t, x)).

(v) C1−(X,Y ) denotes the set of all locally Lipschitz-continuous functions from X into
Y .
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(vi) Car0,λ,λ(M × R × R
n,R), λ, and λ ≥ 1, denotes the set of all Carathéodory functions

f on m ∈ M such that f(m, 0) = 0, and there exists a nondecreasing function ψ ≥ 0
with

∣
∣f(m,u, ξ) − f(m,v, ξ)∣∣ ≤ ψ(ρ)

(
1 + |ξ|λ−1

)
|u − v|,

∣
∣f(m,u, ξ) − f(m,u, η)∣∣ ≤ ψ(ρ)

(
1 + |ξ|λ−1 + ∣∣η∣∣λ−1

)∣
∣ξ − η∣∣

for |u|, |v| ≤ ρ. (2.5)

Particularly, f is independent of ξ if λ ∧ λ ≤ 1.

(vii) Ws
p(Ω) denotes the Sobolev-Slobodeckii space for s ∈ R and p ≥ 1 with the norm

‖ · ‖Ws
p
, especially,W0

p(Ω) = Lp(Ω); and

∂Ws
p := ∂Ws

p(Γ) :=W
s−1/p
p (Γ0) ×Ws−1−1/p

p (Γ1)
(
p > 1

)
. (2.6)

(viii) Ws
p,B(Ω), s ∈ [−2, 2] \ {Z + 1/p} (Z is the set of integral numbers), is defined as

Ws
q,B

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{
u ∈Ws

q ;Bu = 0
}
, 1 +

1
q
< s ≤ 2,

{
u ∈Ws

q ; γu = 0 on Γ0
}
,

1
q
< s < 1 +

1
q
,

Ws
q , 0 ≤ s < 1

q
,

(
W−s

q′,B
)′
, −2 ≤ s < 0, s /∈Z +

1
q
,

(2.7)

where q′ = q/(q − 1), X′ is the dual space of X, and B is the formally adjoint operator.

(x) W
1
p(J) := W

1
p(J, (E1, E0)) := W1

p(J, E0) ∩ Lp(J, E1) if E1
d
↪→ E0 and J is an interval in

R.

(xi) MRp(JT ) := MRp(JT , (E1, E0)) denotes all maps B possessing the property of
maximal Lp regularity on JT with respect to (E1, E0), that is, given h ∈ Lp(JT , E0),
the initial problem

v̇ + Bv = h, in
◦
JT , v(0) = 0 (2.8)

has a unique solution v ∈ W
1
p(JT , (E1, E0)).

Now we turn to discuss the local existence result. We write

E1 =Ws
p,B(Ω), E0 =Ws−2

p,B (Ω), E = E1/p′,p =W
s−2/p
p,B , (2.9)
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then,

W
1
p(JT , (E1, E0)) ↪→

⎧
⎨

⎩

C(JT , E),

C
(
QT

)
, if p > n + 2.

(2.10)

Exactly, W1
p(JT , (E1, E0)) ↪→ BUC(QT ) as p > n + 2, where BUC(QT ) denotes the Banach space

of all functions being bounded and uniformly continuous inQT . So, we will not emphasize it
in the following.

A (weak) solution u of IBVP (2.1) is defined as a W
1
p(JT , (E1, E0)) function u, s ∈ [1, 1 +

1/p), satisfying

∫T

0
(〈−v̇, u〉 + 〈∇v, a(t, u)∇u〉)dt − 〈v(0), u0〉

=
∫T

0

{〈v, f(t, u)〉 + 〈γv, g(t, u)〉∂1
}
dt ∀v ∈ D1,

(2.11)

where 〈·, ·〉 and 〈·, ·〉∂j denote the obvious duality pairings on Ω and Γj , respectively.
Set

f(t, u) := f0(t) + f1(t, u), g(t, u) := g0(t) + g1(t, u) with f1(t, 0) = g1(t, 0) = 0. (2.12)

After these preparations we introduce the following hypotheses:

(H1) p > n + 2 and s ∈ [1, 1 + 1/p).

(H2) a(t, x, u) ∈ C0,α,1−(JT × Ω × R,Rn×n) with α + 1 > s, and there exists a δ0 ∈ (0, 1) such
that

δ0|ξ|2 ≤ ξ · a(t, x, u)ξ ≤ |ξ|2/δ0, ∀(t, x, u) ∈ JT ×Ω × R. (2.13)

(f0, g0) ∈ Lp(J, E0 × ∂Ws
p(Γ)), f1 ∈ Car0,λ0,λ1(QT × R × R

n) with λ0 ∈ [1, 2), and
λ1 < 1 + p(s − 1)/(2 + p(1 − s)).

(H3) g1(t, ·) ∈ C1−(W1
p(JT ), Lr(JT , ∂W

s
p(Γ))) for some r > p.

Theorem 2.1. Let assumptions (H1)–(H3) be satisfied. Then for each u0 ∈ E the quasilinear problem
(2.1) possesses a unique weak solution u(t, x) ∈ W

1
p(JT∗ , (E1, E0)) for some T ∗ > 0.

Proof. Recall that

E1 ↪→ Cs−n/p
(
Ω
)
, E ↪→ Cs−(n+2)/p

(
Ω
)
. (2.14)

The Nemytskii operator a(·, u) is defined as a(·, u)(t, x) := a(t, x, u(t, x)). The fact

a(·, u)(t, x) ∈ C0,α∧(s−(n+2)/p)
(
QT

)
(2.15)
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shows the maximal regularity of the operator A. By [1, Theorem 2.1], if, for t ≤ T , f1 ∈
C1−(W1

p(Jt), Lr(Jt, E0)) for some r > p, then the existence and the uniqueness of a local
solution will be proved.

The remain work is to check the Lipschitz-continuity. Set

q :=
np

n + (2 − s)p ,

θ := 1 +
p

2
(1 − s).

(2.16)

Then Lq(Ω) ↪→ E0. So, for u, v ∈ W
1
p(Jt) with |u|, |v| ≤ ρ we have

∥
∥f1(t, x, u,∇u) − f1(t, x, u,∇v)

∥
∥
Lr(Jt,E0)

≤ ∥∥f1(t, x, u,∇u) − f1(t, x, u,∇v)
∥∥
Lr(Jt,Lq(Ω))

≤ c(ρ)
∥∥∥|∇u|λ1−1|∇(u − v)|

∥∥∥
Lr(Jt,Lq(Ω))

≤ c(ρ)
∥∥∥∥‖∇u‖λ1−1L(λ1−1)pq/(p−q)(Ω) ‖∇(u − v)‖Lp(Ω)

∥∥∥∥
Lr(Jt)

.

(2.17)

From (λ1 − 1)q < p − q, we infer that

∥∥f1(t, x, u,∇u) − f1(t, x, u,∇v)
∥∥
Lr(Jt,E0)

≤ c(ρ)
∥∥∥∥‖u‖λ1−1W1

p (Ω)
‖u − v‖W1

p (Ω)

∥∥∥∥
Lr(Jt)

≤ c(ρ) ‖u‖(λ1−1)(1−θ)C(It,E)
· ‖u − v‖1−θC(It,E) ·

∥∥∥‖u‖(λ1−1)θE1
‖u − v‖θE1

∥∥∥
Lr(Jt)

≤ c(ρ) ‖u‖(λ1−1)(1−θ)C(It,E)
· ‖u − v‖1−θC(It,E) · ‖u‖

θ(λ1−1)
Lr∗ (Jt,E1)

· ‖u − v‖θLp(Jt,E1),

(2.18)

where r∗ := (λ1 − 1)prθ/(p − θr). Note that λ1θ < 1, we can choose r > p such that

∥∥f1(t, x, u,∇u) − f1(t, x, u,∇v)
∥∥
Lr(Jt,E0)

≤ c
(
‖u‖

W
1
p(Jt)

)
· ‖u − v‖

W
1
p(Jt). (2.19)

On the other hand, the hypotheses guarantee that

∥∥f(t, x, u,∇v) − f(t, x, v,∇v)∥∥Lr(Jt,E0)

≤ ∥∥f(t, x, u,∇v) − f(t, x, v,∇v)∥∥Lr(Jt,Lq(Ω))

≤ c(ρ)
∥∥∥|∇v|λ0−1|u − v|

∥∥∥
Lr(Jt,Lq(Ω))

≤ c(ρ)‖u − v‖C(Jt,E) ·
∥∥∥|∇v|λ0−1

∥∥∥
Lr(Jt,Lq(Ω))

.

(2.20)
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Due to q < p and λ0 ∈ [1, 2), Hölder inequality follows that

∥
∥f(t, x, u,∇v) − f(t, x, v,∇v)∥∥Lr(Jt,E0)

≤ c(ρ) ‖u − v‖C(Jt,E) ·
(∫ t

0
‖∇v‖(λ0−1)rLp(Ω) dτ

)1/r

. (2.21)

The hypothesis of λ0 means that one can find an r > p such that

∥
∥f(t, x, u,∇v) − f(t, x, v,∇v)∥∥Lr(Jt,E0)

≤ c
(
ρ, ‖v‖

W
1
p(Jt)

)
· ‖u − v‖

W
1
p(Jt). (2.22)

Obviously, if λ0 = 1, the above inequality is followed from (2.20) immediately. Hence it
follows from (2.19) and (2.22) that

∥∥f(t, x, u,∇u) − f(t, x, v,∇v)∥∥Lr(Jt,E0)
≤ c
(
‖u, v‖

W
1
p(Jt)

)
· ‖u − v‖

W
1
p(Jt). (2.23)

This ends the proof.

We apply the above theorem to the following two examples in next sections. For this,
in the remainder we suppose that hypotheses (H1)-(H2) hold and that

Γ = Γ1(Γ0 = ∅), ṗ :=
(n − 1)p

n + (1 − s)p . (2.24)

3. A Radiative Heat Transfer Problem

We see a nonlinear initial-boundary value problem, which, in particular, describes a
nonstationary radiative heat transfer in a system of absolutely black bodies (e.g., refer to
[2]). A problem is

ut − ∇(a(t, x, u)∇u) = f0(t, x) in QT,

∂νa(u)u =
∫

Γ
h
(
u
(
t, y
))
ϕ
(
t, x, y

)
dσ
(
y
) − h(u(t, x)) + g0(t, x) on [0, T) × Γ,

u(0, x) = u0(x), on Ω.

(3.1)

3.1. Local Solvability

We assume that (Hr)

(Hr1) ϕ ∈ Lr(JT , Lṗ(Γ × Γ));

(Hr2) h is locally Lipschitz continuous and h(0) = 0.

Theorem 3.1. Let assumptions (H1)-(H2) and (Hr) be satisfied. Then problem (3.1), for all u0 ∈ E,
has a unique u ∈ W

1
p(JT∗) for some T ∗ > 0.
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Proof. Note that the embedding (2.14) holds:

Lṗ(Γ) ↪→ ∂Ws
p, Lṗ(Γ) ↪→W

1/p−s
p′ (Γ) =

(
W

s−1/p
p (Γ)

)′
. (3.2)

Hence Theorem 2.1 implies the result immediately.

In fact, Amosov proved in 2005 the uniqueness of the solution for a simple case, that
is, problem in which the matrix a is independent of u (see [2, Theorem 1.4]). In this paper,
we also can get the positivity of the solution and the estimates of the solution in W1

2 (Ω)
and L∞(Ω) in this part. We have tried to achieve the global existence, but it is still an open
problem.

In the rest of this section, we always assume that (H1)-(H2) and (Hr) hold.

3.2. Positivity

Assume that

(H+) h(u) is nondecreasing with h(0) = 0, and

ϕ
(
t, x, y

)
= ϕ
(
t, y, x

) ≥ 0,

ϕ̃(t, x) :=
∫

Γ
ϕ
(
t, x, y

)
dσ
(
y
)
< 1.

(3.3)

Theorem 3.2. Let assumption (H+) be satisfied. If (f0, g0, u0) is nonnegative, then the solution u of
problem (3.1) is also nonnegative.

Proof. Put u− := 0 ∧ u. Multiplying the equation with u− and integrating over Ω, we have

∫

Ω
f0u−dx =

1
2

∫

Ω

(
u2−
)

t
dx −

∫

Ω
∇(a(u)∇u) u−dx

=
1
2

∫

Ω

(
u2−
)

t
dx +

∫

Ω
a(u)∇u · ∇u−dx −

∫

Γ

∂u

∂νa
u−dσ

=
1
2

∫

Ω

(
u2−
)

t
dx +

∫

Ω
a(u)∇u− · ∇u−dx

+
∫

Γ

[
h(u(t, x)) −

∫

Γ
h
(
u
(
t, y
))
ϕ
(
t, x, y

)
dσ
(
y
)
]
u−dσ −

∫

Γ
g0u−dσ.

(3.4)

By using the assumption of (H+), we can get following equality:

∫

Γ×Γ
h
(
u
(
t, y
))
ϕ
(
t, x, y

)(
u
(
t, y
) − u(t, x))dσ(y)dσ

=
1
2

∫

Γ×Γ

[
h(u(t, x)) − h(u(t, y))]ϕ(t, y, x)(u(t, x) − u(t, y))dσ(y)dσ.

(3.5)



8 Boundary Value Problems

So,

∫

Γ

[
h(u(t, x)) −

∫

Γ
h
(
u
(
t, y
))
ϕ
(
t, x, y

)
dσ
(
y
)
]
u−(t, x)dσ

=
∫

Γ
h(u(t, x))u−(t, x)

(
1 − ϕ̃(t, x))dσ

+
∫

Γ×Γ
h
(
u
(
t, y
))
ϕ
(
t, x, y

)(
u−
(
t, y
) − u−(t, x)

)
dσ
(
y
)
dσ

=
∫

Γ
h(u(t, x))u−(t, x)

(
1 − ϕ̃(t, x))dσ

+
1
2

∫

Γ×Γ

[
h(u(t, x)) − h(u(t, y))](u−(t, x) − u−

(
t, y
))

ϕ
(
t, y, x

)
dσ
(
y
)
dσ ≥ 0.

(3.6)

At the last inequality, the monotonity of h on u and the restriction ϕ̃ < 1 are used. Therefore,

d

dt
‖u−‖2L2(Ω) ≤

∫

Ω
f0u−dx +

∫

Γ
g0u−dσ ≤ 0. (3.7)

If u0 ≥ 0, then u−(t, x) ≡ 0. The assertion follows.

3.3. W1
2 (Ω)-norm

We denote by Jmax the maximal interval of the solution of problem (3.1).

Lemma 3.3. There exists a constant C = C(T ; f0, g0, u0) such that the solution u of problem (3.1)
satisfies

‖u(t, ·)‖L2(Ω) + ‖∇u‖2L2(Qt) ≤ C for t ≤ Jmax. (3.8)

Proof. Multiplying by u and integrating over Ω, we have

∫

Ω
[ut − ∇(a(u)∇u)u]dx =

∫

Ω
f0 udx. (3.9)

That is,

1
2

d

dt

∫

Ω
|u|2dx +

∫

Ω
a(u)∇u · ∇udx −

∫

Γ
u ∂νaudσ =

∫

Ω
f0 udx. (3.10)
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As similar as the inequality (3.6), we have

−
∫

Γ
u ∂νaudσ = −

∫

Γ
u

[∫

Γ
h
(
u
(
t, y
)
ϕ
(
t, x, y

)
dσ
(
y
) − h(t, x)) + g0

]
dσ

=
∫

Γ

(
1 − ϕ̃(t, x)) h(u(t, x)) udσ −

∫

Γ
g0 udσ

+
1
2

∫

Γ×Γ

{
h(u(t, x)) − h(u(t, y))}[u(t, x) − u(t, y)]ϕ(t, x, y)dσ dσ

≥ −
∫

Γ
g0 udσ.

(3.11)

Hence,

1
2
d

dt

∫

Ω
|u|2dx + δ0

∫

Ω
|∇u|2dx ≤

∫

Ω
f0 udx +

∫

Γ
g0 udσ

≤ ε
{∫

Ω
u2dx +

∫

Γ
u2dσ

}
+
1
ε

{∫

Ω
f2
0dx +

∫

Γ
g2
0dσ

}
.

(3.12)

By using the embeddingW1
2,B(Ω) ↪→ L2(Γ) and letting ε small enough, it is easy to get that

‖u‖2L2(Ω) + ‖∇u‖2L2(Qt) ≤ C
(
T ; f0, g0, u0

)
, for t ≤ Jmax. (3.13)

3.4. L∞(Ω)-norm

Theorem 3.4. If f0 ∈ L∞(QT ) and g0 ∈ L∞([0, T] × Γ), then the solution u(t, x) of problem (3.1) is
bounded with its L∞-norm for all t ∈ Jmax.

Proof. From the hypothesis (H1) and embedding (2.10), one has that u ∈ C(QT ) and un ∈
W1

2 (Ω), n = 1, 2, . . .. By multiplying with u2
k−1 (k ∈ Z

+ and k ≥ 2) and integrating overΩ, we
have

∫

Ω
[ut − ∇(a(u)∇u)]u2k−1dx =

∫

Ω
f0 u

2k−1dx. (3.14)

That is,

2−k
d

dt

∫

Ω
|u|2kdx +

∫

Ω
a(u)∇u · ∇u2k−1dx −

∫

Γ
u2

k−1 ∂νaudσ =
∫

Ω
f0 u

2k−1dx. (3.15)
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But,

∫

Ω
a(u)∇u · ∇u2k−1dx =

(
2k − 1

)∫

Ω
u2

k−2 a(u)∇u · ∇udx

=
(
2k − 1

)
22−2k

∫

Ω
a(u)∇u2k−1 · ∇u2k−1dx,

−
∫

Γ
u2

k−1∂νaudσ = −
∫

Γ
u2

k−1
[∫

Γ
h
(
u
(
t, y
))
ϕ
(
t, x, y

)
dσ
(
y
) − h((t, x)) + g0

]
dσ

=
∫

Γ

(
1 − ϕ̃(t, x))u2k−1 h(u(t, x))udσ −

∫

Γ
g0u

2k−1dσ

+
1
2

∫

Γ×Γ

{
h(u(t, x))−h(u(t, y))}

[
u2

k−1(t, x)−u2k−1(t, y)
]
ϕ
(
t, x, y

)
dσ2,

≥ −
∫

Γ
g0u

2k−1dσ.

(3.16)

Therefore,

1
2k

d

dt

∫

Ω
|u|2kdx + δ0

(
2k − 1

)∫

Ω
|u|2k−2|∇u|2dx

=
1
2k

d

dt

∫

Ω
|u|2kdx + δ0

2k − 1
4k−1

∫

Ω

∣∣∣∇u2k−1
∣∣∣
2
dx

≤
∫

Ω
f u2

k−1dx +
∫

Γ
g0 u

2k−1dσ

≤ ε
(
1 − 2−k

){∫

Ω
u2

k

dx +
∫

Γ
u2

k

dσ

}

+ ε1−2
k

2−k
{∫

Ω
f2k
0 dx +

∫

Γ
g2k
0 dσ

}
,

(3.17)

where Young’s inequality, αβ ≤ (ε/r)αr + ε−r
′/r/r ′βr

′
(α, β ≥ 0, 0 < ε < 1), has been used at the

last inequality. We apply the embeddingW1
2,B(Ω) ↪→ L2(Γ) again with v = u2

k−1
and choose ε

small enough, then we attain the following inequality:

d

dt

∫

Ω
u2

k

dx −
{
(ε + C)2k − ε

}∫

Ω
u2

k

dx ≤ ε1−2k
{∫

Ω
f2k
0 dx +

∫

Γ
g2k
0 dσ

}
. (3.18)

By Gronwall’s inequality, the inequality (3.18) becomes

∫

Ω
u2

k

dx ≤ e[(ε+C)2k−ε]t ·
∫

Ω
u2

k

0 dx + ε1−2
k

∫ t

0
e[(ε+C)2

k−ε](t−τ)
{∫

Ω
f2k
0 dx +

∫

Γ
g2k
0 dσ

}
dτ. (3.19)
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Set B∞ := 1 + ‖u0‖L∞(Ω) + ‖f0‖L∞(QT )
+ ‖g0‖L∞([0,T]×Γ), then we deduce that

‖u‖L2k (Ω) ≤
B∞e(ε+C)t

ε

[

e−εt
∫

Ω

(εu0)
2k

B2k∞
dx + ε

∫ t

0

{∫

Ω

f2k
0

B2k∞
dx +

∫

Γ

g2k
0

B2k∞
dσ

}

dτ

]1/2k

≤ ε−1B∞e(ε+C)t[|Ω| + t(|Ω| + |Γ|)]1/2k .

(3.20)

Let k → +∞, the inequality (3.20) implies

‖u(t, ·)‖L∞(Ω) ≤ e(ε+C)t‖u0‖L∞(Ω) + C
(
T ;
∥
∥f0
∥
∥
L∞(QT )

,
∥
∥g0

∥
∥
L∞([0,T]×Γ)

)
for t ∈ Jmax. (3.21)

The claim follows.

One immediate consequence of the above theorem is.

Corollary 3.5. The L∞-norm of the solution u, that is, ‖u(t, ·)‖L∞(Ω), of problem (3.1) is
nonincreasing if f0 = g0 = 0.

4. A Nonlocal Boundary Value Problem

We now consider the problem (2.1)with the following boundary value condition:

B(t, x, u) = g(t, x, u,∇u) = Φ(u)(t, x) + g1(t, x, u) + g0. (4.1)

The function Φ in (4.1) can be in nonlocal form.
IBVP (2.1)with a nonlocal term stands, for example, for a model problem arising from

quasistatic thermoelasticity. Results on linear problems can be found in [3–5]. As far as we
know, this kind of nonlocal boundary condition appeared first in 1952 in a paper [6] by W.
Feller who discussed the existence of semigroups. There are other problems leading to this
boundary condition, for example, control theory (see [7–12] etc.). Some other fields such
as environmental science [13] and chemical diffusion [14] also give rise to such kinds of
problems. We do not give further comments here.

Carl and Heikkilä [15] proved the existence of local solutions of the semilinear
problem by using upper and lower solutions and pseudomonotone operators. But their
results based on the monotonicity hypotheses of f , g, and Φwith respect to u.

In this section, we assume that (H1) and (H2) always hold and assume that

(Hn1) Φ(0) = 0 and Φ ∈ C1−(W1
p(JT), Lr(JT , Lṗ(Γ))) for some r > p;

(Hn2) g1(t, x, 0) = 0, g1 satisfies the Carathéodory condition on (t, x) and g1(t, x, ·) ∈
C1−(R).

By the embedding theorem and Theorem 2.1, we get immediately.

Theorem 4.1. Suppose hypotheses of (Hn) satisfy. Then problem (2.1), for all u0 ∈ E, with g defined
in (4.1) has a unique u ∈ W

1
p(JT∗) for some T ∗ > 0.



12 Boundary Value Problems

For the simplicity in expression, we turn to consider a problem with nonlocal
boundary value

ut +A(t, x, u)u = f(t, x, u,∇u), in QT,

B(t, x, u)u = κ(u)(t, x) + g1(t, x, u) + g0, on ∂Ω,

u(x, 0) = u0(x), on Ω,

(4.2)

where

κ(u)(t, x) :=
∫

Ω
k
(
t, x, y, u

(
t, y
)
,∇u(t, y))dy, (4.3)

and

(Hk) The function k satisfies the Carathéodory condition on (t, x, y) ∈ QT := [0, T] × Γ ×
Ω,k|u=0 = 0 and f k ∈ Car0,λ2,λ̃2(QT × R × R

n) with

λ2 < 1 +
p(s − 1)

2 + p(1 − s) , λ̃2 < p + 1. (4.4)

Theorem 4.2. Let assumption (Hk) be satisfied. Then Problem (4.2), for any u0 ∈ E, has a unique
solution u ∈ W

1
p(JT∗) for some T ∗ > 0.

Proof. First, we see that

∥∥∥∥

∫

Ω
|∇u|λ2−1|∇(u − v)|dy

∥∥∥∥
Lr(Jt)

≤
∥∥∥‖∇u‖λ2−1L(λ2−1)p′ (Ω) · ‖∇(u − v)‖Lp(Ω)

∥∥∥
Lr(Jt)

≤ c
∥∥∥∥‖u‖λ2−1W1

p
· ‖u − v‖W1

p

∥∥∥∥
Lr(Jt)

.

(4.5)

Choose θ ∈ (0, 1) such that λ1θ < 1, then (λ2 − 1)θ/(1 − θ) < 1. Consequently, there exists
r > p such that

∥∥∥∥

∫

Ω
|∇u|λ2−1|∇(u − v)|dy

∥∥∥∥
Lr(Jt)

≤ c ‖u‖(λ2−1)(1−θ)C(Jt,E)
‖u − v‖1−θC(Jt,E) ·

∥∥∥‖u‖(λ2−1)pθ/(p−θr)E1

∥∥∥
Lr(Jt)

∥∥∥‖u − v‖θE1

∥∥∥
Lr(Jt)

≤ c
(
‖u‖W1

p (Jt)

)
· ‖u − v‖W1

p (Jt).

(4.6)
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Similarly, from λ̃2 ≤ p + 1 we have

∥
∥
∥∥

∫

Ω
|∇u|λ̃2−1|u − v|dy

∥
∥
∥∥
Lr(Jt)

≤ c ‖u − v‖C(Jt,E) ·
(∫ t

0
‖u‖r

W1
p
dτ

)1/r

≤ c
(
‖u‖W1

p (Jt)

)
· ‖u − v‖W1

p (Jt).

(4.7)

Combining two inequalities (4.6) and (4.7), we obtain that

‖κ(u) − κ(v)‖Lr(Jt,∂Ws
p)

≤
∥∥∥∥

∫

Ω
k(t, x, y, u,∇u) − k(t, x, y, v,∇v)dy

∥∥∥∥
Lr(Jt,Lṗ(Γ))

≤ c
∥∥∥∥

∫

Ω
ψ(ρ)

[(
1 + |∇u|λ2−1 + |∇v|λ2−1

)
| ∇(u − v) | +

(
1 + |∇v|λ̃2−1

)
|u − v|

]
dy

∥∥∥∥
Lr(Jt)

≤ c
(
‖u‖W1

p (Jt)

)
· ‖u − v‖W1

p (Jt).

(4.8)

The claim follows immediately from Theorem 4.1.

A special case of problem (4.2) is

ut − ∇(a(u)∇u) = f(t, x, u), in QT,

∂νa(u)u =
∫

Ω
k
(
t, x, y, u

)
dy + g(t, x, u),

u(0, x) = u0(x), on Ω.

on [0, T) × Γ, (4.9)

That is, f and k in (4.9) are independent of gradient ∇u.

4.1. W1
2 (Ω)-norm

In order to discuss the global existence of solution, in the rest of this section we assume the
following.

(Hkl) Suppose there exists a continuous function φ : R
+ → R

+ such that

∣∣f1(t, x, u)
∣∣,

∣∣k
(
t, x, y, u

) ∣∣,
∣∣g1 (t, x, u)

∣∣ ≤ φ(t)|u|. (4.10)
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Lemma 4.3. There exists a constant C = C(T ; f0, g0, u0) such that the solution of problem (4.9)
satisfies

‖u‖2L2(Ω) + ‖∇u‖2L2(Qt) ≤ C, for t ≤ Jmax. (4.11)

Proof. We multiply the first equation in (4.9) with u and then integrate over Ω, and we find
that

1
2
d

dt
‖u‖2L2(Ω) + δ0‖∇u‖2L2(Ω)

≤
∫

Ω
f(t, x, u)udx +

∫

Γ
u

[∫

Ω
k
(
t, x, y, u

)
dy + g(t, x, u)

]
dσ(x)

≤ φ(t)
{
‖u‖2L2(Ω) + ‖u‖L1(Γ)

(
‖u‖L1(Ω) + ‖u‖L1(Γ)

)}
+ ε1

(
‖u‖2L2(Ω) + ‖u‖2L2(Γ)

)

+
1
ε1

(∥∥f0
∥∥2
L2(Ω) +

∥∥g0
∥∥2
L2(Γ)

)
.

(4.12)

SinceWθ
2 (Ω) ↪→ L2(Γ) for θ ∈ (1/2, 1), by interpolation inequality and Young’s inequality we

have that

‖u‖L2(Γ) ≤ C ‖u‖Wθ
2 (Ω)

≤ C ‖u‖θ
W1

2 (Ω)‖u‖
1−θ
L2(Ω)

≤ ε2‖u‖W1
2 (Ω) + C(ε2)‖u‖L2(Ω).

(4.13)

Apply Young’s inequality again and then choose εj small enough (j = 1, 2); it is not difficult
to get

1
2
d

dt
‖u‖2L2(Ω) − C(ε)φ(t)‖u‖2L2(Ω) +

(
δ0 − ε

(
φ(t) + 1

))‖∇u‖2L2(Ω)

≤ 1
ε1

(∥∥f0
∥∥2
L2(Ω) +

∥∥g0
∥∥2
L2(Γ)

)
,

(4.14)

where δ0 − ε(φ(t) + 1) > 0 for t ∈ [0, T]. Therefore, by multiplying with e−2C(ε)
∫ t
0φ(τ)dτ and

integrating over [0, t], the inequality (4.14) follows the claim.

4.2. L∞(Ω)-norm

Lemma 4.4. Let assumptions of Lemma 4.3 be satisfied. If (f0, g0) ∈ L∞(QT × ([0, T] × Γ)), then the
solution u of problem (4.9) satisfies

‖u‖L∞(Ω) ≤ C
(
T ; f0, g0, u0

)
, for t ≤ Jmax. (4.15)
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Proof. We multiply the first equation in (4.9) with u2
k−1 and integrate over Ω, then we reach

that

J(t) :=
1
2k

d

dt
‖u‖2kL2k (Ω) +

δ0
(
2k − 1

)

4k−1

∥∥
∥∇u2k−1

∥∥
∥
2

L2(Ω)

≤
∫

Ω
f(t, x, u)u2

k−1dx

+
∫

Γ
u2

k−1
[∫

Ω
k
(
t, x, y, u

)
dy + g(t, x, u)

]
dσ(x)

≤ φ(t)
{
‖u‖2kL2k (Ω) + ‖u‖2k−1L2k (Γ)

(
‖u‖L1(Ω)|Γ|2

−k
+ ‖u‖L2k (Γ)

)}

+
∫

Ω
f0u

2k−1dx +
∫

Γ
g0u

2k−1dσ.

(4.16)

As the same as the inequality (4.13), we have

‖u‖2kL2k (Ω) ≤ ε1
∥∥∥∇u2k−1

∥∥∥
2

L2(Ω)
+ C(ε1)‖u‖2

k

L2k (Ω),

‖u‖2k−1L2k (Ω) · ‖u‖L1(Ω) ≤
(
ε1
∥∥∥∇u2k−1

∥∥∥
2

L2(Ω)
+ C(ε1)‖u‖2

k

L2k (Ω)

)1−2−k
· ‖u‖L1(Ω)

≤ ε1−2−k1

∥∥∥∇u2k−1
∥∥∥
2(1−2−k)

L2(Ω)
· ‖u‖L1(Ω)

+ C(ε1)‖u‖2
k

L2k (Ω).

(4.17)

Hence,

J(t) ≤ {φ(t)(1 + C(ε1)) + C(ε2)
}‖u‖2kL2k (Ω)

+ (ε1 + ε2)
∥∥∥∇u2k−1

∥∥∥
2

L2(Ω)
+ ε1−2

−k
1 |Γ|2−k ·

∥∥∥∇u2k−1
∥∥∥
2(1−2−k)

L2(Ω)

+ C(ε2)2−k
{∥∥f0

∥∥2k
L2k (Ω) +

∥∥g0
∥∥2k
L2k (Γ)

}
.

(4.18)

We might as well assume that ‖u‖L2(Ω) > 0, so,

∥∥∥∇u2k−1
∥∥∥
−21−k

L2(Ω)
= 4(1−k)2

−k
[∫

Ω
u2

k−2|∇u|2dx
]−2−k

−→ ‖u‖−1L∞(Ω) as k −→ +∞. (4.19)

The boundedness of solution ‖u‖L2(Ω) ≤ C for t ≤ Jmax is used in above deduction.
Let εj (j = 1, 2) small enough, then we have

2−k
d

dt
‖u‖2kL2k (Ω) − C(ε)φ(t)‖u‖2

k

L2k (Ω) ≤ C(ε)2−k
{∥∥f0

∥∥2k
L2k (Ω) +

∥∥g0
∥∥2k
L2k (Γ)

}
. (4.20)
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Multiplying with 2k · e−C(ε)2k
∫ t
0φ(τ)dτ , then integrating over [0, t], we obtain that

(
‖u‖L2k (Ω)e

−C(ε)∫ t0φ(τ)dτ
)2k

≤ ‖u0‖2
k

L2k (Ω) + C(ε)
∫ t

0
e−C(ε)2

k
∫s
0φ(τ)dτ

{∥
∥f0
∥
∥2k
L2k (Ω) +

∥
∥g0

∥
∥2k
L2k (Γ)

}
ds.

(4.21)

By a similar limitation process as in (3.21), we get

‖u‖L∞(Ω) ≤ C
(
T ; f0, g0, u0

)
for t ≤ Jmax. (4.22)

This closes the end of proof.

4.3. Decay Behavior

In order to investigate the decay behavior of solution for problem (4.9), we assume that

(Hkd) there are two continuous function ϕ(t) > 0 and ε(t) ≥ 0 (t ≥ 0) such that

f1(t, x, u)u ≤ −ϕ(t)u2,
g1(t, x, u)u ≤ 0,

∣∣k
(
t, x, y, u

)∣∣ ≤ ε(t)|u|
(4.23)

for all (t, x, y) ∈ R
+ ×Ω × Γ.

Theorem 4.5. Let the assumption (Hkd) be satisfied and, u be the solution of problem (4.9) with
(f0, g0) = 0. Then ‖u‖L2(Ω) decay to zero as t → ∞ for some small functions ε(t).

Proof. We use u to multiply the first equation in the system (4.9) and then integrate over Ω.
Thus, we get that

1
2
d

dt
‖u‖2L2(Ω) + δ0‖∇u‖2L2(Ω)

≤
∫

Ω
f(t, x, u)udx +

∫

Γ
u

[∫

Ω
k
(
t, x, y, u

)
dy + g(t, x, u)

]
dσ

≤ −ϕ(t)‖u‖2L2(Ω) + ε(t)‖u‖L1(Γ)‖u‖L(Ω)

≤
{
Cε(t)

√
|Γ||Ω| − ϕ(t)

}
· ‖u‖2L2(Ω) + Cε(t)

√
|Γ||Ω|‖∇u‖2

W1
2 (Ω).

(4.24)

In the above process the inequality (4.13) is used. If we choose ε(t) as

ε(t) ≤ 1

C
√
|Γ||Ω|

·min
{
δ0, min

t∈[0, T]
ϕ(t)

}
, t ∈ [0, T], (4.25)
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then

‖u‖L2(Ω) ≤ ‖u0‖L2(Ω) · e−
∫ t
0ϕ̃(τ)dτ , t ∈ [0, T]. (4.26)

This ends the proof.
Moreover, one can verify that ‖u‖Lp(Ω) also decay to zero (as t → ∞) if p ≥ 2.
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