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1. Introduction

Minimax theorems are one of powerful tools for investigation on the solution of differential
equations and differential systems. The investigation on the solution of differential equations
and differential systems with non-C1 perturbation term using minimax theorems came into
being in the paper of Stepan A.Tersian in 1986 [1]. Tersian proved that the equation Lu(t) =
f(t, u(t)) (L = −(d2/dt2)) exists exactly one generalized solution under the operators Bj(j =
1, 2) related to the perturbation term f(t, u(t)) being selfadjoint and commuting with the
operator L(= −(d2/dt2)) and some other conditions in [1]. HuangWenhua extended Tersian’s
theorems in [1] in 2005 and 2006, respectively, and studied the existence and uniqueness of
solutions of some differential equations and differential systems with non-C1 perturbation
term [2–4], the conditions attached to the non-C1 perturbation term are that the operator
B(u) related to the term is self-adjoint and commutes with the operator A (where A is a
selfadjoint operator in the equation Au = f(t, u)). Recently, by further research, we observe
that the conditions imposed upon B(u) can be weakened, the self-adjointness of B(u) can be
removed and B(u) is not necessarily commuting with the operator A.

In this note, we consider a two-point boundary value problem of a class of Duffing-
type systems with non-C1 perturbation term and present a result as the operator B(u) related
to the perturbation term is not necessarily a selfadjoint and commuting with the operator
L. We obtain several valuable results in the present paper under the weaker conditions than
those in [2–4].
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2. Preliminaries

Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖ , respectively, let X and
Y be two orthogonal closed subspaces ofH such thatH = X⊕Y . Let P : H → X,Q : H → Y
denote the projections from H to X and from H to Y , respectively. The following theorem
will be employed to prove our main theorem.

Theorem 2.1 ([2]). Let H be a real Hilbert space, f : H → R an everywhere defined functional
with Gâteaux derivative ∇f : H → H everywhere defined and hemicontinuous. Suppose that
there exist two closed subspaces X and Y such that H = X ⊕ Yand two nonincreasing functions α :
[0,+∞) → (0,+∞), β : [0,+∞) → (0,+∞) satisfying

s · α(s) −→ +∞, s · β(s) −→ +∞, as s −→ +∞ (2.1)

and

〈∇f
(
h1 + y

) − ∇f
(
h2 + y

)
, h1 − h2

〉 ≤ −α(‖h1 − h2‖)‖h1 − h2‖2, (2.2)

for all h1, h2 ∈ X, y ∈ Y , and

〈∇f(x + k1) − ∇f(x + k2), k1 − k2
〉 ≥ β(‖k1 − k2‖)‖k1 − k2‖2, (2.3)

for all x ∈ X, k1, k2 ∈ Y . Then

(a) f has a unique critical point v0 ∈ H such that ∇f(v0) = 0;

(b) f(v0) = maxx∈X miny∈Yf(x + y) = miny∈Y maxx∈Xf(x + y).

We also need the following lemma in the present work. To the best of our knowledge,
the lemma seems to be new.

Lemma 2.2. Let A and B be two diagonalization n × n matrices, let μ1 ≤ μ2 ≤ · · · ≤ μn and λ1 ≤
λ2 ≤ · · · ≤ λn be the eigenvalues of A and B, respectively, where each eigenvalue is repeated according
to its multiplicity. If A commutes with B, that is, AB = BA, then A + B is a diagonalization matrix
and μ1 + λ1 ≤ μ2 + λ2 ≤ · · · ≤ μn + λn are the eigenvalues of A + B.

Proof. Since A is a diagonalization n × n matrix, there exists an inverse matrix P such that
P−1AP = diag (μ1E1, μ2E2, . . . , μsEs), where μ1 < μ2 < · · · < μs(1 ≤ s ≤ n) are the distinct
eigenvalues of A, Ei(i = 1, 2, . . . , s) are the ri × ri(r1 + r2 + · · · + rs = n) identity matrices. And
since AB = BA, that is,

P diag
(
μ1E1, μ2E2, . . . , μsEs

)
P−1B = BP diag

(
μ1E1, μ2E2, . . . , μsEs

)
P−1, (2.4)

we have

diag
(
μ1E1, μ2E2, . . . , μsEs

)
P−1BP = P−1BP diag

(
μ1E1, μ2E2, . . . , μsEs

)
. (2.5)
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Denote P−1BP = (Cij), where Cij are the submatrices such that EiCij and CijEi(i = 1, 2, . . . , s)
are defined, then, by (2.5),

μiCij = μjCij

(
i, j = 1, 2, . . . , s

)
. (2.6)

Noticed that μi /=μj (i /= j), we have Cij = O (i /= j), and hence

P−1BP = diag (C11,C22, . . . ,Css), (2.7)

where Cii and Ei (i = 1, 2, . . . , s) are the same order square matrices. Since B is a
diagonalization n × nmatrix, there exists an invertible matrix Q = diag (Q1,Q2, . . . ,Qs) such
that

Q−1
(
P−1BP

)
Q = diag

(
Q−1

1 ,Q−1
2 , . . . ,Q−1

s

)
· diag (C11,C22, . . . ,Css) · diag (Q1,Q2, . . . ,Qs)

= diag
(
Q−1

1 C11Q1,Q−1
2 C22Q2, . . . ,Q−1

s CssQs

)
= diag (λ1, λ2, . . . , λn),

(2.8)

where λ1 ≤ λ2 ≤ · · · ≤ λn are the eigenvalues of B.
Let R = PQ, then R is an invertible matrix such that R−1BR = diag (λ1, λ2, . . . , λn) and

R−1(A + B)R = R−1AR + R−1BR = Q−1
(
P−1AP

)
Q + R−1BR

= diag
(
Q−1

1 ,Q−1
2 , . . . ,Q−1

s

)
· diag (

μ1E1, μ2E2, . . . , μsEs

) · diag (Q1,Q2, . . . ,Qs)

+ diag (λ1, λ2, . . . , λn)

= diag
(
μ1E1, μ2E2, . . . , μsEs

)
+ diag (λ1, λ2, . . . , λn)

= diag
(
μ1, μ2, . . . , μn

)
+ diag (λ1, λ2, . . . , λn)

= diag
(
μ1 + λ1, μ2 + λ2, . . . , μn + λn

)
.

(2.9)

A + B is a diagonalization matrix and μ1 + λ1 ≤ μ2 + λ2 ≤ · · · ≤ μn + λn are the eigenvalues of
A + B.

The proof of Lemma 2.2 is fulfilled.

Let (·, ·) denote the usual inner product on R
n and denote the corresponding norm

by |u| = {∑n
i=1 u

2
i }

1/2 , where u = (u1, u2, . . . , un)
T. Let [·, ·] denote the inner product on

L2([0, π],Rn). It is known very well that L2([0, π],Rn) is a Hilbert space with inner product

[u,v] =
∫π

0
(u(t),v(t))dt,

(
u,v ∈ L2([0, π],Rn)

)
(2.10)

and norm ‖u‖ =
√
[u,u] = (

∫π
0 (u(t),u(t))dt)

1/2
, respectively.
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Now, we consider the boundary value problem

⎧
⎨

⎩

u′′ +Au + g(t,u) = h(t), t ∈ (0, π),

u(0) = a, u(π) = b,
(2.11)

where u : [0, π] → R
n,A is a real constant diagonalization n×nmatrix with real eigenvalues

μ1 ≤ μ2 ≤ · · · ≤ μn (each eigenvalue is repeated according to its multiplicity), g : [0, π] ×
R

n → R
n is a potential Carathéodory vector-valued function , h : [0, π] → R

n is continuous,
a = (a1, a2, . . . , an)

T, b = (b1, b2, . . . , bn)
T , ai, bi ∈ R, (i = 1, 2, . . . , n).

Let u(t) = v(t) + ω(t), ω(t) = (1 − (t/π))a + (t/π)b, t ∈ [0, π] , then (2.11) may be
written in the form

⎧
⎨

⎩

v′′ +Av + g∗(t,v) = h∗(t),

v(0) = v(π) = 0,
(2.12)

where g∗(t,v) = g(t,v +ω), h∗(t) = h(t) −Aω(t). Clearly, g∗(t,v) is a potential Carathéodory
vector-valued function, h∗ : [0, π] → R

n. Clearly, if v0 is a solution of (2.12), u0 = v0 +ω will
be a solution of (2.11).

Assume that there exists a real bounded diagonalization n × n matrix B(t,u) (t ∈
[0, π],u ∈ R

n) such that for a.e. t ∈ [0, π] and ξ,η ∈ L2([0, π],Rn)

g(t,η) − g(t, ξ) = B(t, ξ + τ(η − ξ))(η − ξ), (2.13)

where τ = diag(τ1, τ2, . . . , τn), τi ∈ [0, 1] (i = 1, 2, . . . , n), B(t,u) commutes with A and is
possessed of real eigenvalues λ1(t,u) ≤ λ2(t,u) ≤ · · · ≤ λn(t,u) . In the light of Lemma 2.2,
A+B(t,u) is a diagonalization n×nmatrix with real eigenvalues μ1 +λ1(t,u) ≤ μ2 +λ2(t,u) ≤
· · · ≤ μn + λn(t,u) (each eigenvalue is repeated according to its multiplicity). Assume that
there exist positive integers Ni (i = 1, 2, . . . , n) such that for u ∈ L2([0, π],Rn)

N2
i − μi < λi(t,u) < (Ni + 1)2 − μi (i = 1, 2, . . . , n). (2.14)

Let ξi (i = 1, 2, . . . , n) be n linearly independent eigenvectors associated with the eigenvalues
μi + λi(t,u) (i = 1, 2, . . . , n) and let γ i (i = 1, 2, . . . , n) be the orthonormal vectors obtained by
orthonormalizing to the eigenvectors ξi (i = 1, 2, . . . , n) of μi + λi(t,u) (i = 1, 2, . . . , n). Then
for every u ∈ R

n

(A + B(t,u))γ i =
(
μi + λi(t,u)

)
γ i (i = 1, 2, . . . , n). (2.15)

And let the set {γ1, γ2, . . . , γn} be a basis for the space R
n, then for every u ∈ R

n,

u = u1γ1 + u2γ2 + · · · + unγn. (2.16)
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It is well known that each v ∈ L2([0, π],Rn) can be represented by the absolutely
convergent Fourier series

v =

√
2
π

n∑

i=1

∞∑

k=1

(Cki sin kt)γ i, Cki =

√
2
π

∫π

0
vi(t) sin ktdt (i = 1, 2, . . . , n; k = 1, 2, . . .). (2.17)

Define the linear operator L = −(d2/dt2) : D(L) ⊂ L2([0, π],Rn) → L2([0, π],Rn),

D(L) =

⎧
⎨

⎩
v ∈ L2([0, π],Rn) | v(0) = v(π) = 0, v(t) =

√
2
π

n∑

i=1

∞∑

k=1

(Cki sin kt)γ i,

Cki =

√
2
π

∫π

0
vi(t) sin ktdt, (i = 1, 2, . . . , n),

n∑

i=1

∞∑

k=1

C2
kik

4 < +∞
⎫
⎬

⎭
,

Lv =

√
2
π

n∑

i=1

∞∑

k=1

k2(Cki sin kt)γ i, σ(L) =
{
n2 | n ∈ N

}
.

(2.18)

Clearly, L = −(d2/dt2) is a selfadjoint operator and D(L) is a Hilbert space for the inner
product

〈u,v〉 =
∫π

0

[(
u′(t),v′(t)

)
+ (u(t),v(t))

]
dt, (u,v ∈ D(L)), (2.19)

and the norm induced by the inner product is

‖v‖2 =
∫π

0

[(
v′(t),v′(t)

)
+ (v(t),v(t))

]
dt, (v ∈ D(L)). (2.20)

Define

X =

⎧
⎨

⎩
x ∈ L2([0, π],Rn) | x(t) =

√
2
π

n∑

i=1

Ni∑

k=1

(Cki sin kt)γ i, t ∈ [0, π],

Cki =

√
2
π

∫π

0
xi(t) sin ktdt

⎫
⎬

⎭
,

(2.21)

Y =

⎧
⎨

⎩
y ∈ L2([0, π],Rn) | y(t) =

√
2
π

n∑

i=1

∞∑

k=Ni+1

(Cki sin kt)γ i, t ∈ [0, π],

Cki =

√
2
π

∫π

0
yi(t) sin ktdt,

n∑

i=1

∞∑

k=Ni+1

C2
kik

4 < +∞
⎫
⎬

⎭
.

(2.22)

Clearly, X and Y are orthogonal closed subspaces of D(L) and D(L) = X ⊕ Y .
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Define two projective mappings P : D(L) → X and Q : D(L) → Y by Pv = x ∈ X and
Qv = y ∈ Y , v = x + y ∈ D(L), then S = P −Q is a selfadjoint operator.

Using the Riesz representation theorem , we can define amapping T : L2([0, π],Rn) →
L2([0, π],Rn) by

〈T(u),v〉 =
∫π

0

[(
u′,v′

) − (Au,v) − (g(t,u),v) + (h(t),v)
]
dt, ∀v ∈ L2([0, π],Rn). (2.23)

We observe that T in (2.23) is defined implicity. Let T(u) = ∇F(u) in (2.23), we have

〈∇F(u),v〉 =
∫π

0

[(
u′,v′

) − (Au,v) − (g(t,u),v) + (h(t),v)
]
dt, ∀v ∈ D(L) ⊂ L2([0, π],Rn).

(2.24)

Clearly, ∇F and hence F is defined implicity by (2.24). It can be proved that u is a solution of
(2.11) if and only if u satisfies the operator equation

∇F(u) = 0. (2.25)

3. The Main Theorems

Now, we state and prove the following theorem concerning the solution of problem (2.11).

Theorem 3.1. Assume that there exists a real diagonalization n × n matrix B(t,u) (u ∈
L2([0, π],Rn) with real eigenvalues λ1(t,u) ≤ λ2(t,u) ≤ · · · ≤ λn(t,u) satisfying (2.14) and
commuting with A. Denote

α(‖u‖) = min
‖ũ‖≤‖u‖

min
1≤i≤n

min
0≤t≤π

{
λi(t, ũ) + μi −N2

i > 0
}
, (3.1)

β(‖u‖) = min
‖ũ‖≤‖u‖

min
1≤i≤n

min
0≤t≤π

{
(Ni + 1)2 − μi − λi(t, ũ) > 0

}
. (3.2)

If

α : [0,+∞) −→ (0,+∞), β : [0,+∞) −→ (0,+∞),

s · α(s) −→ +∞, s · β(s) −→ +∞, as s −→ +∞,
(3.3)

problem (2.11) has a unique solution u0, and u0 satisfies ∇F(u0) = 0, and

F(u0) = max
x∈X

min
y∈Y

F(x + y +ω) = min
y∈Y

max
x∈X

F(x + y +ω), (3.4)

where F is a functional defined in (2.24) and ω = (1 − (t/π))a + (t/π)b, t ∈ [0, π].
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Proof. First, by virtue of (2.21) and (2.22), we have

∫π

0

(
x′, x′

)
dt =

∫π

0

(−x′′, x)dt

≤
∫π

0

⎛

⎝

√
2
π

n∑

i=1

N2
i

Ni∑

k=1

(Cki sin kt)γ i,

√
2
π

n∑

i=1

Ni∑

k=1

(Cki sin kt)γ i

⎞

⎠dt

≤
(
max
1≤i≤n

Ni

)2∫π

0
(x, x)dt,

(3.5)

∫π

0

(
y′,y′

)
dt =

∫π

0

(−y′′,y)dt

=
∫π

0

⎛

⎝

√
2
π

n∑

i=1

∞∑

k=Ni+1

k2(Cki sin kt)γ i,

√
2
π

n∑

i=1

∞∑

k=Ni+1

(Cki sin kt)γ i

⎞

⎠dt,

(3.6)

1

max1≤i≤n (Ni + 1)2

∫π

0

(
y′,y′

)
dt

=
∫π

0

⎛

⎝

√
2
π

n∑

i=1

∞∑

k=Ni+1

k2

max1≤i≤n (Ni + 1)2
(Cki sin kt)γ i,y

⎞

⎠dt

≥
∫π

0
(y,y)dt.

(3.7)

Denote ∇F(u) = ∇F(v +ω) = ∇F∗(v).
By (2.24), (2.13), (3.5), (3.6), (3.7), (3.1), and (3.2), for all x1, x2 ∈ X, y ∈ Y , let v1 =

x1 + y ∈ D(L), v2 = x2 + y ∈ D(L), v = v1 − v2 = x1 − x2 = x ∈ X, x1 = Pv1 ∈ X, x2 = Pv2 ∈ X,
y = Qv1 = Qv2 ∈ Y , we have

〈∇F∗(v1) − ∇F∗(v2), x1 − x2〉 = 〈∇F(u1) − ∇F(u2), x1 − x2〉 = 〈∇F(u1), x〉 − 〈∇F(u2), x〉

=
∫π

0

[(
u

′
1, x

′
)
− (Au1, x) − (g(t,u1), x) + (h(t), x)

]
dt

−
∫π

0

[(
u

′
2, x

′
)
− (Au2, x) − (g(t,u2), x) + (h(t), x)

]
dt

=
∫π

0

[(
(u1 − u2)′, x′

) − (A(u1 − u2), x) − (g(t,u1) − g(t,u2), x)
]
dt

=
∫π

0

[(−v′′, x) − (Av, x) − (B(t,v2 +ω + τv)v, x)
]
dt

=
∫π

0

[(−x′′, x) − (Ax, x) − (B(t,v2 +ω + τv)x, x)
]
dt
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≤
∫π

0

⎡

⎣

⎛

⎝
n∑

i=1

N2
i ·

√
2
π

Ni∑

k=1

(Cki sin kt)γ i, x

⎞

⎠

−
⎛

⎝
n∑

i=1

√
2
π

Ni∑

k=1

(Cki sin kt)(A + B(t, ṽ))γ i, x

⎞

⎠

⎤

⎦dt

≤
∫π

0

⎛

⎝
n∑

i=1

(
N2

i − μi − λi(t, ṽ)
)
√

2
π

Ni∑

k=1

(Cki sin kt)γ i, x

⎞

⎠dt

≤ −α(‖v‖)
∫π

0
(x, x)dt

= −α(‖v1 − v2‖) 1

(max1≤i≤n Ni)
2 + 1

×
∫π

0

[(
(max1≤i≤n Ni)2

)
(x, x) + (x, x)

]
dt

≤ −α∗(‖v1 − v2‖)‖x1 − x2‖2,
(

α∗(‖v1 − v2‖) = α(‖v1 − v2‖)
(max1≤i≤n Ni)2 + 1

)

,

(3.8)

for all x ∈ X,y1,y2 ∈ Y , let v1 = x+ y1 ∈ D(L), v2 = x+ y2 ∈ D(L), v = v1 − v2 = y1 − y2 = y ∈ Y ,
y1 = Qv1 ∈ Y , y2 = Qv2 ∈ Y , x = Pv1 = Pv2 ∈ X, we have

〈∇F∗(v1) − ∇F∗(v2),y1 − y2〉

= 〈∇F(u1) − ∇F(u2),y1 − y2〉

=
∫π

0

[(
(u1 − u2)′,y′

) − (A(u1 − u2),y) − (g(t,u1) − g(t,u2),y)
]
dt

=
∫π

0

[(
v′,y′

) − (Av,y) − (B(t, ṽ)v,y)
]
dt

=
∫π

0

[(
y′,y′

) − ((A + B(t, ṽ))y,y)
]
dt

≥
∫π

0

⎡

⎣
(
y′,y′

) −
⎛

⎝

√
2
π

n∑

i=1

∞∑

k=Ni+1

k2

max1≤i≤n (Ni + 1)2
(Cki sin kt)

(
μi + λi(t, ṽ)

)
γ i,y

⎞

⎠

⎤

⎦dt

=
∫π

0

⎡

⎢
⎣
(−y′′,y) −

⎛

⎜
⎝

1

max
1≤i≤n

(Ni + 1)2

√
2
π

n∑

i=1

∞∑

k=Ni+1

k2(Cki sin kt)
(
μi + λi(t, ṽ)

)
γ i,y

⎞

⎟
⎠

⎤

⎥
⎦dt
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≥
∫π

0

⎡

⎣

⎛

⎝

√
2
π

n∑

i=1

∞∑

k=Ni+1

k2(Cki sin kt)γ i,y

⎞

⎠

−
⎛

⎝ 1

max1≤i≤n(Ni + 1)2

√
2
π

n∑

i=1

∞∑

k=Ni+1

k2(Cki sin kt)
(
μi + λi(t, ṽ)

)
γ i,y

⎞

⎠

⎤

⎦dt

≥ 1

max1≤i≤n(Ni + 1)2

∫π

0

⎛

⎝

√
2
π

n∑

i=1

∞∑

k=Ni+1

k2(Cki sin kt)
(
(Ni+1)2−

(
μi+λi(t, ṽ)

))
γ i,y

⎞

⎠dt

≥
min‖ṽ‖≤‖v‖ min1≤i≤n mint∈[0,π]

{
(Ni + 1)2 − μi − λi(t, ṽ) > 0

}

max1≤i≤n(Ni + 1)2 + 1
·

(

1 +
1

max1≤i≤n(Ni + 1)2

)∫π

0

(
y′,y′

)
dt

≥ β(‖v‖)
max1≤i≤n(Ni + 1)2 + 1

∫π

0

[(
y′,y′

)
+ (y,y)

]
dt

= β∗(‖v‖)‖y‖2 = β∗(‖v1 − v2‖)‖y1 − y2‖2,
(

β∗(‖v1 − v2‖) =
β(‖v1 − v2‖)

max1≤i≤n(Ni + 1)2 + 1

)

.

(3.9)

By (3.3), s · α∗(s) → +∞, s · β∗(s) → +∞, as s → +∞. Clearly, α∗ and β∗

are nonincreasing. Now, all the conditions in the Theorem 2.1 are satisfied. By virtue of
Theorem 2.1, there exists a unique v0 ∈ D(L) such that ∇F∗(v0) = ∇F(v0 +ω) = ∇F(u0) = 0
and F∗(v0) = F(v0 +ω) = F(u0) = maxx∈Xminy∈Y F(x + y +ω) = miny∈Y maxx∈X F(x + y +ω),
where F is a functional defined implicity in (2.24) andω(t) = (1− (t/π))a+(t/π)b, t ∈ [0, π].
v0(t) is just a unique solution of (2.12) and u0(t) = v0(t) +ω(t) is exactly a unique solution of
(2.11). The proof of Theorem 3.1 is completed.

Now, we assume that there exists a positive integer N such that

N2 − μi < λi(t,u) < (N + 1)2 − μi (i = 1, 2, . . . , n) (3.10)

for u ∈ L2([0, π],Rn), t ∈ [0, π]. Define

X =

⎧
⎨

⎩
x ∈ L2([0, π],Rn) | x(t) =

√
2
π

n∑

i=1

N∑

k=1

(Cki sin kt)γ i, t ∈ [0, π],

Cki =

√
2
π

∫π

0
xi(t) sin ktdt

⎫
⎬

⎭
,

(3.11)
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Y =

⎧
⎨

⎩
y ∈ L2([0, π],Rn) | y(t) =

√
2
π

n∑

i=1

∞∑

k=N+1

(Cki sin kt)γ i, t ∈ [0, π],

Cki =

√
2
π

∫π

0
yi(t) sin ktdt,

n∑

i=1

∞∑

k=N+1

C2
kik

4 < +∞
⎫
⎬

⎭
,

(3.12)

α(‖u‖) = min
‖ũ‖≤‖u‖

min
1≤i≤n

min
0≤t≤π

{
λi(t, ũ) + μi −N2 > 0

}
, (3.13)

β(‖u‖) = min
‖ũ‖≤‖u‖

min
1≤i≤n

min
0≤t≤π

{
(N + 1)2 − μi − λi(t, ũ) > 0

}
. (3.14)

Replace the condition (2.14) by (3.10) and replace (2.21), (2.22), (3.1), and (3.2) by
(3.11), (3.12), (3.11), and (3.14), respectively. Using the similar proving techniques in the
Theorem 3.1, we can prove the following theorem.

Theorem 3.2. Assume that there exists a real diagonalization n × n matrix B(t,u) (t ∈ [0, π],u ∈
R

n) with real eigenvalues λ1(t,u) ≤ λ2(t,u) ≤ · · · ≤ λn(t,u) satisfying (2.13) and (3.10) and
commuting with A. If the functions α and β defined in (3.11) and (3.14) satisfy (3.3), problem (2.11)
has a unique solution u0, and u0 satisfies ∇F(u0) = 0 and (3.4).

It is also of interest to the case of A = O.

Corollary 3.3. Let h(t), g(t,u), a and b be as in (2.11). Assume that there exists a real
diagonalization n × n matrix B(t,u) (t ∈ [0, π],u ∈ R

n) with real eigenvalues λ1(t,u) ≤ λ2(t,u) ≤
· · · ≤ λn(t,u) satisfying (2.13) and N2

i < λi(t,u) < (Ni + 1)2 (Ni ∈ Z
+, i = 1, 2, . . . , n). Denote

α(‖u‖) = min
‖ũ‖≤‖u‖

min
1≤i≤n

min
0≤t≤π

{
λi(t, ũ) −N2

i > 0
}
,

β(‖u‖) = min
‖ũ‖≤‖u‖

min
1≤i≤n

min
0≤t≤π

{
(Ni + 1)2 − λi(t, ũ) > 0

}
.

(3.15)

If α and β satisfy (3.3), the problem

⎧
⎨

⎩

u′′ + g(t,u) = h(t), t ∈ (0, π),

u(0) = a, u(π) = b
(3.16)

has a unique solution u0, and u0 satisfies ∇F(u0) = 0 and (3.4), where F is a functional defined in

〈∇F(u),v〉 =
∫π

0

[(
u′,v′

) − (g(t,u),v) + (h(t),v)
]
dt, v ∈ D(L). (3.17)
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Corollary 3.4. Let h(t), g(t,u), a, b, and B(t,u) be as in Corollary 3.3. The eigenvalues of
B(t,u)λ1(t,u) ≤ λ2(t,u) ≤ · · · ≤ λn(t,u) satisfyN2 < λi(t,u) < (N + 1)2(N ∈ Z

+). Denote

α(‖u‖) = min
‖ũ‖≤‖u‖

min
1≤i≤n

min
0≤t≤π

{
λi(t, ũ) −N2 > 0

}
,

β(‖u‖) = min
‖ũ‖≤‖u‖

min
1≤i≤n

min
0≤t≤π

{
(N + 1)2 − λi(t, ũ) > 0

}
.

(3.18)

If α and β satisfy (3.3), problem (3.16) has a unique solution u0, and u0 satisfies ∇F(u0) = 0 and
(3.4), where F is a functional defined in (3.17).

If there exists a C2 functional G : [0, π] × R
n → R such that g(t,u) = ∇G(t,u), then

(2.13) should be

g(t,η) − g(t, ξ) = ∇G(t,η) − ∇G(t, ξ) =
∫1

0
D2G(t, ξ + τ(η − ξ))(η − ξ)dτ, (3.19)

where D2G is just a Hessian of G. In this case, the following corollary follows from
Theorem 3.1.

Corollary 3.5. Let the eigenvalues of
∫1
0D

2G(t, ξ + τ(η − ξ))dτλ1(t,u) ≤ λ2(t,u) ≤ · · · ≤ λn(t,u)
satisfy (2.14). If α and β defined in (3.1) and (3.2) satisfy (3.3), problem (2.11)(where g(t,u) =
∇G(t,u)) has a unique solution u0, and u0 satisfies ∇F(u0) = 0 and (3.4).

Using the similar techniques of the present paper, we can also investigate the two-
point boundary value problem

⎧
⎨

⎩

u′′ +Au + g(t,u) = h(t), t ∈ (0, 2π),

u(0) = a, u(2π) = b,
(3.20)

where u, A, h(t), g(t,u), a and b are as in problem (2.11). The corresponding results are
similar to the results in the present paper.

The special case of A = O and n = 1 in problem (3.20) has been studied by Zhou Ting
and Huang Wenhua [5]. Zhou and Huang adopted the techniques different from this paper
to achieve their research.
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