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1. Introduction

Inverse heat conduction problems (IHCP) have become an interesting subject recently, and
many regularization methods have been developed for the analysis of IHCP [1–13]. These
methods include Tikhonov method [1, 2], mollification method [3, 4], optimal filtering
method [5], lines method [6], wavelet and wavelet-Galerkin method [7–11], modified
Tikhonov method [12] and “optimal approximations” [13], and so forth. However, most
analytical and numerical methods were only used to dealing with IHCP in semiunbounded
region. Some works of numerical methods were presented for IHCP in bounded domain [14–
19].

Chen et al. [14] applied the hybrid numerical algorithm of Laplace transform
technique to the IHCP in a rectangular plate. Busby and Trujillo [15] used the dynamic
programming method to investigate the IHCP in a slab. Alifanov and Kerov [16] and
Louahlia-Gualous et al. [17] researched IHCP in a cylinder. However to the authors’
knowledge, most of them did not give any stability theory and convergence proofs.

In this paper, we will treat with a special IHCP whose physical model consists of
an infinitely long cylinder of radius R. It is considered axisymmetric and a thermocouple
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(measurement equipment of temperature) is installed inside the cylinder (at the radius r1,
0 < r1 < R). The correspondingly mathematical model of our problem can be described by
the following axisymmetric heat conduction problem:

∂u

∂t
= Δu =

∂2u

∂r2
+
1
r

∂u

∂r
, 0 < r ≤ R, t > 0,

u(r, 0) = 0, 0 ≤ r ≤ R,
u(r1, t) = g(t), t ≥ 0,

u(r, t) bounded in r = 0, t > 0,

(1.1)

where the functions u(r, ·) and g(·) belong to L2(0,∞) for every fixed r ∈ (0, R), r is the
radial coordinate, g(t) denotes the temperature history at one fixed radius r1 (0 < r1 < R)
of cylinder. We want to recover u(r, ·) for r1 < r ≤ R. This problem is ill-posed problem; a
small perturbation in the data may cause dramatically large errors in the solution u(r, ·) (The
details can be seen in Section 2).

To the authors’ knowledge, up to now, there is no regularization theory with error
estimate for problem (1.1) in the interval r1 < r ≤ R. The major objective of this paper is to do
the theoretic stability and convergence estimates for problem (1.1).

Xiong and Fu [11] and Regińska [20] solved the sideways heat equation in semi-
unbounded region by applying the wavelet dual least squares method, which is based
on the family of Meyer wavelet. In this paper, we will apply a wavelet dual least
squares method generated by the family of Shannon wavelet to problem (1.1) in bounded
domain for determining surface temperature. According to the optimality results of general
regularization theory, we conclude that our error estimate on surface temperature is order
optimal.

2. Formulation of Solution of Problem (1.1)

As we consider problem (1.1) in L2(R) with respect to variable t, we extend u(r , ·), g(·) :=
u(r1 , ·), f(·) := u(R , ·), and other functions of variable t appearing in the paper to be zero for
t < 0. Throughout the paper, we assume that for the exact g the solution u exists and satisfies
an apriori bound

∥
∥f(·)∥∥p :=

∥
∥u(R, ·)∥∥p ≤ E, p ≥ 0, (2.1)

where ‖f(·)‖p is defined by

∥
∥f(·)∥∥p :=

(∫∞

−∞

(

1 + ξ2
)p∣
∣f̂(ξ)

∣
∣
2
dξ

)1/2

. (2.2)

Since g is measured by the thermocouple, there will be measurement errors, and we would
actually have as data some function gδ ∈ L2(R), for which

∥
∥gδ(·) − g(·)

∥
∥ ≤ δ, (2.3)
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where the constant δ > 0 represents a bound on the measurement error, and ‖ · ‖ denotes the
L2(R) norm and

ĥ(ξ) =
1√
2π

∫∞

−∞
e−iξth(t)dt (2.4)

is the Fourier transform of function h(t). The problem (1.1) can be formulated, in frequency
space, as follows:

iξû(r, ξ) =
∂2û(r, ξ)
∂r2

+
1
r

∂û(r, ξ)
∂r

, r ∈ (0, R], ξ ∈ R, (2.5)

û(r1, ξ) = ĝ(ξ), ξ ∈ R, (2.6)
∣
∣û(0, ξ)

∣
∣ <∞, ξ ∈ R. (2.7)

Then we have the following lemma.

Lemma 2.1. Problem (2.5)–(2.7) has the solution given by

û(r, ξ) =
I0
(√

iξr
)

I0
(√

iξr1
) ĝ(ξ), r ∈ [0, R], ξ ∈ R, (2.8)

where I0(z) denotes modified spherical Bessel function which given by [21]

I0(z) =
∞∑

k=0

1

(k!)2

(
z

2

)2k

. (2.9)

Proof. Due to [21], we can solve (2.5), in the frequency domain, to obtain

û(r, ξ) = A(ξ)I0
(√

iξr
)

+ B(ξ)K0

(√

iξr
)

ξ ∈ R, (2.10)

where K0(z) denotes also modified spherical Bessel function which is given by

K0(z) = −I0(z)
(

ln
z

2
+ C
)

+
∞∑

k=1

1

(k!)2

(

1 +
1
2
+ · · · + 1

k

)(
z

2

)2k

. (2.11)

Combining limz→ 0K0(z) = ∞with condition(2.7), we obtain B(ξ) = 0, that is,

û(r, ξ) = A(ξ)I0
(√

iξr
)

, r ∈ [0, R], ξ ∈ R. (2.12)

According to [21], there holds

∣
∣
∣I0
(√

iξr
)∣
∣
∣ =
∣
∣
∣ber
(√

|ξ|r
)

+ iσ bei
(√

|ξ|r
)∣
∣
∣ =

[ ∞∑

k=0

(√|ξ|r/2)4k

(k!)2(2k)!

]1/2

, (2.13)
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where σ = sgn(ξ), both ber(x) and bei(x) denote the Kelvin functions. Since 0 ≤ r ≤ R, |ξ| ≥ 0,
we have

∞∑

k=0

(√|ξ|r/2)4k

(k!)2(2k)!
= 1 +

(√|ξ|r/2)8

(2!)2(4)!
+

(√|ξ|r/2)12

(3!)2(6)!
+ · · · ≥ 1. (2.14)

Therefore, for 0 ≤ r ≤ R, ξ ∈ R,

∣
∣
∣I0
(√

iξr
)∣
∣
∣ ==

[ ∞∑

k=0

(√|ξ|r/2)4k

(k!)2(2k)!

]1/2

≥ 1. (2.15)

Solving the systems (2.6) and (2.12) using (2.15) we get

A(ξ) = I−10
(√

iξr1
)

ĝ(ξ). (2.16)

Substitution of A(ξ) in (2.16) into (2.12), we obtain (2.8).

Applying an inverse Fourier transform to (2.8), problem (1.1) has the solution

u(r, t) =
1√
2π

∫∞

−∞
eiξt

I0
(√

iξr
)

I0
(√

iξr1
) ĝ(ξ)dξ, (r, t) ∈ [0, R] × R. (2.17)

In order to obtain ill-posedness of problem (1.1) for (r, t) ∈ (r1, R] × R, we need the
following lemma.

Lemma 2.2. If function |I0(
√

iξr)| satisfies (2.15), then there exist positive constants ck, k =
1, 2, 3, 4, such that, for r ∈ (r1, R]

c1 exp

[

√

|ξ|/2(r − r1
)

]

≤
∣
∣
∣
∣
∣

I0
(√

iξr
)

I0
(√

iξr1
)

∣
∣
∣
∣
∣
≤ c2 exp

[

√

|ξ|/2(r − r1)
]

, ξ ∈ R, (2.18)

c3 exp

[

√

|ξ|/2(r − R)
]

≤
∣
∣
∣
∣
∣

I0
(√

iξr
)

I0
(√

iξR
)

∣
∣
∣
∣
∣
≤ c4 exp

[

√

|ξ|/2(r − R)
]

, ξ ∈ R. (2.19)

Proof. First, due to [21] and (2.15), we have, for r ∈ [r1, R] and |ξ| → ∞,

∣
∣
∣I0
(√

iξr
)∣
∣
∣ =
[

ber2
(√

|ξ|r
)

+ bei2
(√

|ξ|r
)]1/2

=
exp
[√|ξ|/2r]

√

2πr
√

|ξ|

[

1 +O
(

1
|ξ|
)]

, (2.20)
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then there exist positive constants c̃k, k = 1, 2, 3, 4, such that, for |ξ| large enough, say |ξ| ≥ ξ0

c̃1
exp
[√|ξ|/2r]

√

2πr
√

|ξ|
≤
∣
∣
∣I0
(√

iξr
)∣
∣
∣ ≤ c̃2

exp
[√|ξ|/2r]

√

2πr
√

|ξ|
, r ∈ (r1, R],

c̃3
exp
[√|ξ|/2r1

]

√

2πr1
√

|ξ|
≤
∣
∣
∣I0
(√

iξr1
)∣
∣
∣ ≤ c̃4

exp
[√|ξ|/2r1

]

√

2πr1
√

|ξ|
.

(2.21)

From these we know that there exist positive constants c̃5 and c̃6 such that, for r ∈ (r1, R] and
|ξ| ≥ ξ0,

c̃5 exp

[
√

|ξ|/2(r − r1)
]

≤
∣
∣
∣
∣
∣

I0
(√

iξr
)

I0
(√

iξr1
)

∣
∣
∣
∣
∣
≤ c̃6 exp

[
√

|ξ|/2(r − r1)
]

. (2.22)

Then, since function |I0(
√

iξr)/I0(
√

iξr1)| is continuous in the closed region (r1, R] × [−ξ0, ξ0].
Threrfore, there exist constants c̃7 and c̃8 such that, for r ∈ (r1, R] and |ξ| ≤ ξ0,

c̃7 exp

[
√

|ξ|/2(r − r1
)

]

≤
∣
∣
∣
∣
∣

I0
(√

iξr
)

I0
(√

iξr1
)

∣
∣
∣
∣
∣
≤ c̃8 exp

[
√

|ξ|/2(r − r1
)

]

. (2.23)

Finally, combining inequalities (2.22)with (2.23), we can see that there exist others constants
c1 and c2 such that, for r ∈ (r1, R], inequalities (2.18) are valid. Similarly, we obtain
inequalities (2.19).

In order to formulate problem (1.1) for r1 < r ≤ R in terms of an operator equation in
the space X = L2(R), we define an operator Kr : u(r, ·) 	→ g(·), that is,

∀u(r, ·) ∈ X, Kru(r, t) = g(t), r1 < r ≤ R. (2.24)

From (2.8), we have

̂Kru(r, ξ) =
I0
(√

iξr1
)

I0
(√

iξr
) û(r, ξ) = ĝ(ξ). (2.25)

Denote ̂Kru(r, ξ) := K̂rû(r, ξ), and we can see that K̂r : L2(R) 	→ L2(R) is a multiplication
operator:

K̂rû(r, ξ) =
I0
(√

iξr1
)

I0
(√

iξr
) û(r, ξ). (2.26)

From (2.26), we can prove the following lemma.
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Lemma 2.3. Let K∗
r be the adjoint to Kr , then K∗

r corresponds to the following problem where the
left-hand side ∂u/∂t of problem (1.1) is replaced by −∂U/∂t, says

−∂U
∂t

= ΔU =
∂2U

∂r2
+
1
r

∂U

∂r
, 0 < r ≤ R, t ≥ 0,

U(r, 0) = 0, 0 ≤ r ≤ R,
U(r1, t) = g(t), t ≥ 0,

U(r, t) bounded in r = 0, t > 0,

(2.27)

K̂∗
r =

I0
(√

iξr1
)

I0
(√

iξr
)
. (2.28)

Proof. Via the the following relations, combining with (2.26),

〈

Kru, υ
〉

=
〈

K̂rû, υ̂
〉

=
〈

û, K̂r
∗
υ̂
〉

=
〈

u, K∗
rυ
〉

=
〈

û, K̂∗
r υ̂
〉

, (2.29)

we can get the adjoint operator K∗
r of Kr in frequency domain

K̂∗
r = K̂r

∗
=
I0
(√

iξr1
)

I0
(√

iξr
)
. (2.30)

On the other hand, the problem (2.27) can be formulated, in frequency space, as
follows:

−iξÛ(r, ξ) =
∂2Û(r, ξ)
∂r2

+
1
r

∂Û(r, ξ)
∂r

, r ∈ (0, R], ξ ∈ R,

Û(r1, ξ) = ĝ(ξ), ξ ∈ R,

∣
∣Û(0, ξ)

∣
∣ <∞, ξ ∈ R.

(2.31)

Taking the conjugate operator for problem (2.5)–(2.7), we realize that Û(r, ξ) = û(r, ξ).
Therefore, by Lemma 2.1, we conclude that

Û(r, ξ) = û(r, ξ) =
I0
(√

iξr
)

I0
(√

iξr1
)
ĝ(ξ), (2.32)
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that is,

ĝ(ξ) =
I0
(√

iξr1
)

I0
(√

iξr
)
Û(r, ξ) = K̂∗

r Û(r, ξ) := K̂∗
rU. (2.33)

Hence the conclusion of Lemma 2.3 is proved.

The Parseval formula for the Fourier transform together with inequality (2.18), there
holds

∥
∥u(r, ·)∥∥2 = ∥∥û(r, ·)∥∥2

=
∫∞

−∞

∣
∣û(r, ·)∣∣2dξ

=
∫∞

−∞

∣
∣
∣ĝ(ξ)e(r−r1)

√
|ξ|/2
∣
∣
∣

2
∣
∣
∣
∣
∣

I0
(√

iξr
)

I0
(√

iξr1
)

∣
∣
∣
∣
∣

2

dξ

≥ c21
∫∞

−∞

∣
∣
∣ĝ(ξ)e(r−r1)

√
|ξ|/2
∣
∣
∣

2
dξ.

(2.34)

This implies that ĝ(ξ), which is Fourier transform of exact data g(t), must decay rapidly at
high frequencies since r1 < r. But such a decay is not likely to occur in the Fourier transform
of the measured noisy data gδ(t) at r = r1. So, small perturbation of g(t) in high frequency
components can blow up and completely destroy the solution u(r, t) given by (2.17) for r ∈
(r1, R].

3. Wavelet Dual Least Squares Method

3.1. Dual Least Squares Method

A general projection method for the operator equationKu = g,K : X = L2(R) 	→ X = L2(R) is
generated by two subspace families {Vj} and {Yj} of X and the approximate solution uj ∈ Vj
is defined to be the solution of the following problem:

〈Kuj, y〉 = 〈g, y〉, ∀y ∈ Yj, (3.1)

where 〈·, ·〉 denotes the inner product inX. If Vj ⊂ R(K∗) and subspaces Yj are chosen in such
a way that

K∗Yj = Vj. (3.2)

Then we have a special case of projection method known as the dual least squares method. If
{ψλ}λ∈Ĩj is an orthogonal basis of Vj and yλ is the solution of the equation

K∗yλ = kλψλ, ‖yλ‖ = 1, (3.3)
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then the approximate solution is explicitly given by the expression

uj =
∑

λ∈Ĩj

〈

g, yλ
〉 1
kλ
ψλ. (3.4)

3.2. Shannon Wavelets

In [22], the Shannon scaling function is φ = (sinπt)/πt and its Fourier transform is

φ̂(ξ) =

{

1, |ξ| ≤ π,
0, otherwise.

(3.5)

The corresponding wavelet function ψ is given by its Fourier transform

ψ̂(ξ) =

{

e−i(ξ/2), π ≤ |ξ| ≤ 2π,
0, otherwise.

(3.6)

Let us list some notation: φj,k(t) := 2j/2φ(2j t− k), ψj,k(t) := 2j/2ψ(2j t− k), j, k ∈ Z, Ψ−1,k := φ0,k

and Ψl,k := ψl,k for l ≥ 0, the index set

Ĩ =
{{j, k} : j, k ∈ Z

} ⊂ Z
2, ĨJ =

{{j, k} : j = −1, 0, . . . , J − 1; k ∈ Z
} ⊂ Z

2. (3.7)

Because VJ = VJ−1 ⊕WJ−1 = VJ−2 ⊕WJ−2 ⊕WJ−1 = · · · = V0 ⊕W1 ⊕ · · · ⊕WJ−1, hence we can
define the subspaces VJ

VJ = span{Ψλ}λ∈ĨJ . (3.8)

Define an orthogonal projection PJ : L2(R) 	→ VJ :

PJϕ =
∑

λ∈ĨJ

〈

ϕ, Ψλ

〉

Ψλ, ∀ϕ ∈ L2(R), (3.9)

then from (3.4) we easily conclude uJ = PJu. From the point of view of an application to
the problem (1.1), the important property of Shannon wavelets is the compactness of their
support in the frequency space. Indeed, since

ψ̂j,k(ξ) = 2−j/2e−i2
−j kξψ̂

(

2−j ξ
)

, φ̂j,k(ξ) = 2−j/2e−i2
−j kξφ̂

(

2−j ξ
)

, (3.10)

it follows that for any k ∈ Z

supp
(

ψ̂j,k
)

=
{

ξ : π2j ≤ |ξ| ≤ π2j+1}, supp
(

φ̂j,k
)

=
{

ξ : |ξ| ≤ π2j}. (3.11)
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From (3.9), PJ can be seen as a low-pass filter. The frequencies with greater than π2J+1 are
filtered away.

Theorem 3.1. If u(r, t) is the solution of problem (1.1) satisfying the condition ‖u(R, ·)‖p ≤ E, then
for any fixed r ∈ (r1, R]

∥
∥u(r, ·) − PJu(r, ·)

∥
∥ ≤ c−13

(

2J+1
)−p

e(r−R)
√

(1/2)π2J E. (3.12)

Proof. From (3.9), we have

u(r, ·) =
∑

λ

〈

u(r, ·), Ψλ

〉

Ψλ,

PJu(r, ·) =
∑

λ∈ĨJ

〈

u(r, ·), Ψλ

〉

Ψλ.
(3.13)

Due to Parseval relation and (2.8), (2.19), and (2.1), there holds

∥
∥u(r, ·) − PJu(r, ·)

∥
∥ =
∥
∥û(r, ·) − P̂Ju(r, ·)

∥
∥

=

∥
∥
∥
∥
∥

∑

λ∈Ĩ

〈

û, Ψ̂λ

〉

Ψ̂λ −
∑

λ∈ĨJ

〈

û, Ψ̂λ

〉

Ψ̂λ

∥
∥
∥
∥
∥

=

∥
∥
∥
∥
∥

∑

λ∈Ĩj≥J+1

〈

û, Ψ̂λ

〉

Ψ̂λ

∥
∥
∥
∥
∥

=

∥
∥
∥
∥
∥

∑

λ∈Ĩj≥J+1

〈(

I0
(√

i(·)r)

I0
(√

i(·)r1
)

)

ĝ(·), Ψ̂λ

〉

Ψ̂λ

∥
∥
∥
∥
∥

=

∥
∥
∥
∥
∥

∑

λ∈Ĩj≥J+1

〈(

I0
(√

i(·)r)

I0
(√

i(·)R)
)

f̂(·), Ψ̂λ

〉

Ψ̂λ

∥
∥
∥
∥
∥

≤ sup
π2J≤|ξ|≤π2J+1

[

|ξ|−p
∣
∣
∣
∣
∣

I0
(√

iξr
)

I0
(√

iξR
)

∣
∣
∣
∣
∣

]∥
∥
∥
∥
∥

∑

λ∈Ĩj≥J+1

〈(

1 + (·)2)p/2f̂(·), Ψ̂λ

〉

Ψ̂λ

∥
∥
∥
∥
∥

≤ sup
π2J≤|ξ|≤π2J+1

c4
∣
∣ξ
∣
∣
−p
e(r−R)

√
|ξ|/2E ≤ c4

(

2J+1
)−p

e(r−R)
√

(1/2)π2J E.

(3.14)

Hence the conclusion of Theorem3.1 is proved.

4. Error Estimates via Dual Least Squares Method Approximation

Before giving error estimates, we present firstly subspaces Yj . According to K∗Yj = Vj , the
subspaces Yj are spanned by ρλ, λ ∈ ĨJ , where

K∗ρλ = Ψλ, kλ = ‖ρλ‖−1, yλ =
ρλ
‖ρλ‖ = kλρλ. (4.1)



10 Boundary Value Problems

ρλ can be determined by solving the following parabolic equation (see Lemma 2.3):

−∂U
∂t

= ΔU =
∂2U

∂r2
+
1
r

∂U

∂r
, 0 < r ≤ R, t ≥ 0,

U(r, 0) = 0, 0 ≤ r ≤ R,
U(r1, t) = Ψj,k(t), t ≥ 0,

U(r, t) bounded in r = 0, t > 0.

(4.2)

Since supp ψ̂j,k is compact, the solution exists for any t ∈ (0,∞). Similarly the solution of the
adjoint equation is unique. Therefore for a givenΨλ, ρλ can be uniquely determined according
to (4.2), furthermore

ρ̂λ =
I0
(√

iξr
)

I0
(√

iξr1
)
Ψ̂λ(ξ) ⇐⇒ ŷλ =

I0
(√

iξr
)

I0
(√

iξr1
)
kλΨ̂λ(ξ), λ = {j, k}. (4.3)

The approximate solution for noisy data gδ is explicitly given by

PJu
δ(r, t) = uδJ =

∑

λ∈ĨJ

〈

uδ, Ψλ

〉

Ψλ =
∑

λ∈ĨJ

〈

gδ, yλ
〉 1
kλ

Ψλ. (4.4)

Now we will devote to estimating the error ‖PJuδ − PJu‖.

Theorem 4.1. If gδ is noisy data satisfying the condition ‖g(·) − gδ(·)‖ ≤ δ, then for any fixed
r ∈ (r1, R]

‖PJuδ − PJu‖ ≤ c4e(r−r1)
√

(1/2)π2J δ. (4.5)

Proof. From (4.3), we have ŷλ = (I0(
√

iξr)/I0(
√

iξr1))kλΨ̂λ. Note that PJuδ given by (4.4), PJu
given by (3.4) and (2.18), for r1 < r ≤ R, there holds

∥
∥PJu

δ(r, ·) − PJu(r, ·)
∥
∥ =

∥
∥
∥
∥
∥

∑

λ∈ĨJ

〈

gδ − g, yλ
〉 1
kλ

Ψλ

∥
∥
∥
∥
∥

=

∥
∥
∥
∥
∥

∑

λ∈ĨJ

〈

ĝδ − ĝ, ŷλ
〉 1
kλ

Ψ̂λ

∥
∥
∥
∥
∥

=

∥
∥
∥
∥
∥

∑

λ∈ĨJ

〈

ĝδ − ĝ,
I0
(√

i(·)r)

I0
(√

i(·)r1
)
kλΨ̂λ

〉

1
kλ

Ψ̂λ

∥
∥
∥
∥
∥

≤ sup
π2J−1≤|ξ|≤π2J

∣
∣
∣
∣
∣

I0
(√

iξr
)

I0
(√

iξr1
)

∣
∣
∣
∣
∣
·
∥
∥
∥
∥
∥

∑

λ∈ĨJ

〈

ĝδ − ĝ, Ψ̂λ

〉

Ψ̂λ

∥
∥
∥
∥
∥
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≤ sup
π2J−1≤|ξ|≤π2J

∣
∣
∣
∣
∣

I0
(√

iξr
)

I0
(√

iξr1
)

∣
∣
∣
∣
∣
· ∥∥P̂J(ĝδ − ĝ)

∥
∥

≤ sup
π2J−1≤|ξ|≤π2J

∣
∣
∣
∣
∣

I0
(√

iξr
)

I0
(√

iξr1
)

∣
∣
∣
∣
∣
· δ

≤ c2 sup
π2J−1≤|ξ|≤π2J

e(r−r1)
√

|ξ|/2δ

≤ c2e(r−r1)
√

(1/2)π2J δ.

(4.6)

Hence the conclusion of Theorem 4.1 is proved.

The following is the main result of this paper.

Theorem 4.2. Let u be the exact solution of (1.1) and let PJuδ be given by (4.4). If ‖g − gδ‖ ≤ δ and
J = J(δ) is such that

J = log2

[

2
π

(
1

R − r1 ln
(
E

δ

(

ln
E

δ

)−2p))2]

, (4.7)

then for any fixed r ∈ (r1, R]

∥
∥u(r, ·) − PJuδ(r, ·)

∥
∥

≤ E1−(R−r)/(R−r1)δ(R−r)/(R−r1)
(

ln
E

δ

)−2p(1−(R−r)/(R−r1))(
C + o(1)

)

for δ −→ 0,

(4.8)

where C = (c4(R − r1)2p + c2).

Proof. Combining Theorem 4.1 with Theorem 3.1, and noting the choice rule (4.7) of J , we can
obtain

∥
∥u(r, ·) − PJuδ(r, ·)

∥
∥

≤ c4
(

2J+1
)−p

e(r−R)
√

(1/2)π2J E + c2e(r−r1)
√

(1/2)π2J δ

≤ c4E
(

R − r1
)2p

(

ln
(
E

δ

(

ln
E

δ

)−2p))−2p(
E

δ

(

ln
E

δ

)−2p)(r−R)/(R−r1)

+ c2δ

(

E

δ

(

ln
E

δ

)−2p)(r−r1)/(R−r1)

≤ E1−(R−r)/(R−r1)δ(R−r)/(R−r1)
(

ln
E

δ

)−2p(1−(R−r)/(R−r1)){ c4
(

(R − r1) ln(E/δ)
)2p

(

ln
(

(E/δ)(ln(E/δ))−2p
))2p

+ c2
}

.

(4.9)
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Note that

ln(E/δ)

ln
(

(E/δ)
(

ln(E/δ)
)−2p) =

ln(E/δ)
ln(E/δ) − 2p ln

(

ln(E/δ)
) −→ 1 for δ −→ 0, (4.10)

thus, there holds, for δ → 0

∥
∥u(r, ·) − PJuδ(r, ·)

∥
∥

≤ E1−(R−r)/(R−r1)δ(R−r)/(R−r1)
(

ln
E

δ

)−2p(1−(R−r)/(R−r1))(
c4
(

R − r1
)2p + c2 + o(1)

)

.

(4.11)

Hence the conclusion of Theorem 4.2 is proved.

Remark 4.3. (i) When p = 0 and r1 < r < R, estimate (4.8) is a Hölder stability estimate given
by

∥
∥u(r, ·) − PJuδ(r, ·)

∥
∥ ≤ (c4 + c2)E1−(R−r)/(R−r1)δ(R−r)/(R−r1). (4.12)

(ii) When p > 0, r1 < r < R, estimate (4.8) is a logarithmical Hölder stability estimate.

(iii) When p > 0, r = R, estimate (4.3) becomes

∥
∥u(R, ·) − uδ(R, ·)∥∥ ≤ E

(

ln
E

δ

)−2p
(

c4(R − r1)2p + c2 + o(1)
) −→ 0 for δ −→ 0. (4.13)

This is a logarithmical stability estimate.

Remark 4.4. In general, the a-priori bound E is unknown in practice, in this case, with

J = log2

[

2
π

(
1

R − r1 ln
(
1
δ

(

ln
1
δ

)−2p))2]

, (4.14)

then

∥
∥u(r, ·) − PJuδ(r, ·)

∥
∥ ≤ δ(R−r)/(R−r1)

(

ln
1
δ

)−2p(1−(R−r)/(R−r1))(
C̃ + o(1)

)

for δ −→ 0, (4.15)

where C̃ = c4(R − r1)2pE + c2.
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