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1. Introduction

Magnetohydrodynamics (MHD) concerns the motion of a conducting fluid in an electromag-
netic field with a very wide range of applications. The dynamic motion of the fluids and the
magnetic field strongly interact each other, and thus, both the hydrodynamic and electrody-
namic effects have to be considered. The governing equations of the plane magnetohydrody-
namic compressible flows have the following form (see, e.g., [1–5]):

ρt + (ρu)x = 0,

(ρu)t +
(
ρu2 + p +

1
2
|b|2

)
x

=
(
λux

)
x,

(ρw)t + (ρuw − b)x =
(
μwx

)
x,

bt + (ub −w)x =
(
υbx

)
x,

(ρe)t + (ρeu)x −
(
κθx

)
x = λu2x + μ

∣∣wx

∣∣2 + υ∣∣bx∣∣2 − pux,

(1.1)

where ρ denotes the density of the fluid, u ∈ R the longitudinal velocity, w = (w1, w2) ∈ R
2

the transverse velocity, b = (b1, b2) ∈ R
2 the transverse magnetic field, θ the temperature,
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2 Boundary Value Problems

p = p(ρ, θ) the pressure, and e = e(ρ, θ) the internal energy; λ and μ are the bulk and shear
viscosity coefficients, υ is the magnetic viscosity, κ is the heat conductivity. Notice that the
longitudinal magnetic field is a constant which is taken to be identically one in (1.1).

The equations in (1.1) describe the macroscopic behavior of the magnetohydrodynamic
flow. This is a three-dimensional magnetohydrodynamic flow which is uniform in the trans-
verse directions. There is a lot of literature on the studies of MHD by many physicists and
mathematicians because of its physical importance, complexity, rich phenomena, and mathe-
matical challenges, see [1–14] and the references cited therein. We mention that, when b = 0,
the system (1.1) reduces to the one-dimensional compressible Navier-Stokes equations for the
flows between two parallel horizontal plates (see, e.g., [15]).

In this paper, we focus on a simpler case of (1.1), namely, we consider the magneto-
hydrodynamic equations for isentropic compressible fluids. Thus, instead of the equations in
(1.1), we will study the following equations:

ρt + (ρu)x = 0, (1.2)

(ρu)t +
(
ρu2 + p +

1
2
|b|2

)
x

=
(
λux

)
x, (1.3)

(ρw)t + (ρuw − b)x =
(
μwx

)
x, (1.4)

bt + (ub −w)x =
(
υbx

)
x, (1.5)

where p = Rργ with γ ≥ 1 being the adiabatic exponent and R > 0 being the gas constant.
We will study the initial boundary value problem of (1.2)–(1.5) in a bounded spatial domain
Ω = (0, 1) (without loss of generality) with the initial-boundary data:

(ρ, ρu, ρw,b) (x, 0) =
(
ρ0, m0,n0,b0

)
(x), x ∈ Ω, (1.6)

(u,w,b)|x=0,1 = 0, (1.7)

where the initial data ρ0 ≥ 0, m0, n0, b0 satisfy certain compatibility conditions as usual and
some additional assumptions below, and m0 = n0 = 0 whenever ρ0 = 0. Here the boundary
conditions in (1.7)mean that the boundary is nonslip and impermeable.

The purpose of the present paper is to study the global existence and uniqueness of
strong solutions of problem (1.2)–(1.7). The important point here is that initial vacuum is
allowed; that is, the initial density ρ0 may vanish in an open subset of the space-domain
Ω = (0, 1), which evidently makes the existence and regularity questions more difficult than
the usual case that the initial density ρ0 has a positive lower bound. For the latter case, one
can show the global existence of unique strong solution of this initial boundary value problem
in a similar way as that in [3, 9, 14]. The strong solutions of the Navier-Stokes equations for
isentropic compressible fluids in the case that initial vacuum is allowed have been studied in
[16, 17]. In this paper, we will use some ideas developed in [16, 17] and extend their results to
the problems (1.2)–(1.7). However, because of the additional nonlinear equations and the non-
linear terms induced by the magnetic field b, our problem becomes a bit more complicated.

Our main result in this paper is given by the following theorem (the notations will be
defined at the end of this section).
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Theorem 1.1. Assume that ρ0, m0 = ρ0u0,n0 = ρ0w0, and b0 satisfy the regularity conditions:

ρ0 ∈ H1, ρ0 ≥ 0,
(
u0,w0

) ∈ H1
0 ∩H2, b0 ∈ H1

0. (1.8)

Assume also that the following compatibility conditions hold for the initial data:

λu0xx −
(
Rρ

γ

0 +
1
2
∣∣b0

∣∣2)
x

= ρ1/20 f for some f ∈ L2(Ω), (1.9)

μw0xx + b0x = ρ1/20 g for some g ∈ L2(Ω). (1.10)

Then there exists a unique global strong solution (ρ, u,w,b) to the initial boundary value problem
(1.2)–(1.7) such that for all T ∈ (0,∞),

ρ ∈ L∞(0, T ;H1), (u,w) ∈ L∞(0, T ;H1
0 ∩H2), b ∈ L∞(0, T ;H1

0),(
ρt,

√
ρut,

√
ρwt

)
∈ L∞(0, T ;L2), (ut,wt) ∈ L2(0, T ;H1), (bt,bxx) ∈ L2(0, T ;L2). (1.11)

Remark 1.2. The compatibility conditions given by (1.9), (1.10) play an important role in the
proof of uniqueness of strong solutions. Similar conditions were proposed in [16–18]when the
authors studied the global existence and uniqueness of solutions of the Navier-Stokes equa-
tions for isentropic compressible fluids. In fact, one also can show the global existence of weak
solutions without uniqueness if the compatibility conditions (1.9), (1.10) are not valid.

We will prove the global existence and uniqueness of strong solutions in Sections 3 and
4, respectively, while Section 2 is devoted to the derivation of some a priori estimates.

We end this section by introducing some notations which will be used throughout the
paper. Let Wm,p(Ω) denote the usual Sobolev space, and Wm,2(Ω) = Hm(Ω), W0,p(Ω) = Lp(Ω).
For simplicity, we denote by C the various generic positive constants depending only on the
data and T , and use the following abbreviation:

Lq(0, T ;Wm,p) ≡ Lq(0, T ;Wm,p(Ω)
)
, Lp ≡ Lp(Ω), ‖·‖p ≡ ‖·‖Lp(Ω). (1.12)

2. A priori estimates

This section is devoted to the derivation of a priori estimates of (ρ, u,w,b). We begin with the
observation that the total mass is conserved. Moreover, if we multiply (1.3), (1.4), and (1.5) by
u, w, and b, respectively, and sum up the resulting equations, we have by using (1.2) that

(
1
2
ρ
(
u2 +

∣∣w∣∣2) + 1
2
∣∣b∣∣2

)
t

+
(
1
2
ρu

(
u2 +

∣∣w∣∣2) + u∣∣b∣∣2 −w·b
)
x

+ upx

=
(
λuux + μw·wx + υb·bx

)
x −

(
λu2x + μ

∣∣wx

∣∣2 + υ∣∣bx∣∣2).
(2.1)

Integrating (1.2) and (2.1) over (0, t) ×Ω, we arrive at our first lemma.
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Lemma 2.1. For any t ∈ (0, T), one has
∫
Ω
ρ(x, t)dx =

∫
Ω
ρ0(x)dx ≤ C,

∫
Ω

(
G(ρ) +

1
2
ρ
(
u2 +

∣∣w∣∣2) + 1
2
∣∣b∣∣2

)
(x, t)dx +

∫ t

0

∫
Ω

(
λu2x + μ

∣∣wx

∣∣2 + υ∣∣bx∣∣2)(x, s)dx ds ≤ C,
(2.2)

where G(ρ) is the nonnegative function defined by

G(ρ) =

⎧⎪⎨
⎪⎩

Rργ

γ − 1
if γ > 1

R(ρ ln ρ − ρ + 1) if γ = 1.
(2.3)

The next lemma gives us an upper bound of the density ρ(x, t), which is crucial for the
proof of Theorem 1.1.

Lemma 2.2. For any (x, t) ∈ QT := Ω × (0, T), ρ(x, t) ≤ C holds.

Proof. Notice that (1.3) can be rewritten as

(ρu)t =
(
λux − ρu2 − p −

∣∣b∣∣2
2

)
x

. (2.4)

Set

ψ(x, t) :=
∫ t

0

(
λux − ρu2 − p − 1

2
∣∣b∣∣2

)
(x, s)ds +

∫x

0
m0(ζ)dζ, (2.5)

from which and (2.4), we find that ψ satisfies

ψx = ρu, ψt = λux − ρu2 − p −
1
2
∣∣b∣∣2, ψ|t=0 =

∫x

0
m0(ζ)dζ. (2.6)

In view of Lemma 2.1 and (2.6), we have by using Cauchy-Schwarz’s inequality that

∥∥ψx∥∥L∞(0,T ;L1) ≤ C,
∣∣∣∣
∫
Ω
ψ(x, t)dx

∣∣∣∣ ≤ C, (2.7)

which imply

‖ψ‖L∞((0,T)×Ω) ≤
∥∥ψx∥∥L∞(0,T ;L1) +

∣∣∣∣
∫
Ω
ψ(x, t)dx

∣∣∣∣ ≤ C. (2.8)

Letting Dt := ∂t + u∂x denote the material derivative and choosing F = exp (ψ/λ), we
obtain after a straightforward calculation that

Dt(ρF) := ∂t(ρF) + u∂x(ρF) = −1
λ

(
p +

∣∣b∣∣2
2

)
ρF ≤ 0, (2.9)

which, together with (2.8), yields Lemma 2.2 immediately.
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To be continued, we need the following lemma because of the effect of magnetic field b.

Lemma 2.3. The magnetic field b satisfies the following estimates:

sup
0≤t≤T

(∥∥b(t)∥∥L∞ +
∥∥bx(t)∥∥L2

)
+
∥∥bt∥∥L2(0,T ;L2) ≤ C,

∥∥bxx∥∥L2(0,T ;L2) ≤ C. (2.10)

Proof. Multiplying (1.5) by bt and integrating over (0, t) ×Ω, we have

1
4

∫ t

0

∫
Ω

∣∣bt∣∣2(x, s)dx ds + υ

2

∫
Ω

∣∣bx∣∣2(x, t)dx

≤ υ

2

∫
Ω

∣∣b0x
∣∣2(x)dx +

∫ t

0

∫
Ω

(
u2
∣∣bx∣∣2 + u2x∣∣b∣∣2 + ∣∣wx

∣∣2)(x, s)dx ds

≤ C + 2
∫ t

0

(∫
Ω
u2x(x, s)dx

)(∫
Ω

∣∣bx∣∣2(x, s)dx
)
ds,

(2.11)

where we have used Cauchy-Schwarz’s inequality, Lemma 2.1, and the following inequalities:

max
x∈Ω

u2(·, s) ≤ ∥∥ux(s)∥∥2
L2 , max

x∈Ω

∣∣b(·, s)∣∣2 ≤ ∥∥bx(s)∥∥2
L2 . (2.12)

Since ‖ux‖L2(0,T ;L2) ≤ C because of Lemma 2.1, we thus obtain the first inequality indi-
cated in this lemma from (2.11) by applying Gronwall’s lemma and then Sobolev’s inequality.

To prove the second part, we multiply (1.5) by bxx and integrate the resulting equation
over (0, T) ×Ω to deduce that

∫T

0

∫
Ω

∣∣bxx∣∣2(x, t)dx dt

≤ C
∫T

0

∫
Ω

(∣∣bt∣∣2 + ∣∣wx

∣∣2 + u2x∣∣b∣∣2 + u2∣∣bx∣∣2)(x, t)dx dt

≤ C + C sup
t∈(0,T)

∥∥b(t)∥∥2
L∞

∫T

0

∥∥ux(t)∥∥2
L2dt + C

∫T

0

∥∥ux(t)∥∥2
L2

∥∥bx(t)∥∥2
L2dt

≤ C + C sup
t∈(0,T)

(∥∥b(t)∥∥2
L∞ +

∥∥bx(t)∥∥2
L2

) ∫T

0

∥∥ux(t)∥∥2
L2dt ≤ C,

(2.13)

where we have used Cauchy-Schwarz’s inequality, Sobolev’s inequality (2.12), Lemma 2.1, and
the first part of the lemma. This completes the proof of Lemma 2.3.

Lemma 2.4. The following estimates hold for the velocity (u,w):

sup
0≤t≤T

(∥∥u(t)∥∥L∞ +
∥∥ux(t)∥∥L2

)
+
∥∥√ρut∥∥L2(0,T ;L2) ≤ C,

sup
0≤t≤T

(∥∥w(t)
∥∥
L∞ +

∥∥wx(t)
∥∥
L2

)
+
∥∥√ρwt

∥∥
L2(0,T ;L2) ≤ C.

(2.14)
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Proof. Multiplying (1.3) by ut and then integrating over Ω, by Young’s inequality we obtain

λ

2
d

dt

∫
Ω
u2x dx +

1
2

∫
Ω
ρu2t dx ≤ 1

2

∫
Ω
ρu2u2x dx +

∫
Ω
putx dx dt +

1
2

∫
Ω
|b|2uxt dx. (2.15)

It follows from (1.2) and (1.3) that
∫
Ω
putx dx =

d

dt

∫
Ω
pux dx − R

2λ
d

dt

∫
Ω
ργ+1u2 dx − R(γ − 2)

2λ

∫
Ω
ργ+1u2ux dx

+
1
2λ

∫
Ω
p2ux dx − 1

λ

∫
Ω
pu

(
ρuux + b·bx

)
dx + (γ − 1)

∫
Ω
pu2x dx,

1
2

∫
Ω
|b|2uxt dx =

1
2
d

dt

∫
Ω
|b|2ux dx −

∫
Ω
b·btux dx.

(2.16)

Thus, inserting (2.16) into (2.15), and integrating over (0, t), we see that

∫
Ω
u2x(x, t)dx +

∫ t

0

∫
Ω
ρu2t dx ds

≤ C + C
∫
Ω

(
p
∣∣ux∣∣ + ργ+1u2 + |b|2∣∣ux∣∣)(x, t)dx

+ C
∫ t

0

∫
Ω

(
ρu2u2x + ρ

γ+1u2
∣∣ux∣∣ + p2∣∣ux∣∣ + ∣∣pub·bx∣∣ + pu2x + ∣∣b·btux∣∣)dx ds,

(2.17)

where the terms on the right-hand side can be bounded by using Lemmas 2.1–2.3 as follows:
∫
Ω

(
p
∣∣ux∣∣ + ργ+1u2 + |b|2∣∣ux∣∣)(t)dx ≤ C(δ) + δ

∫
Ω
u2x(t)dx, δ > 0, (2.18)

∫ t

0

∫
Ω

(
ρu2u2x + ρ

γ+1u2
∣∣ux∣∣ + p2∣∣ux∣∣ + pu2x)dx ds

≤ C + C
∫ t

0
max
x∈Ω

u2(·, s)∥∥ux(s)∥∥2
L2ds ≤ C + C

∫ t

0

∥∥ux(s)∥∥4
L2ds,

(2.19)

∫ t

0

∫
Ω

(∣∣pub·bx∣∣ + ∣∣b·btux∣∣)dx ds ≤ C
∫ t

0

∫
Ω

(
ρu2 +

∣∣bx∣∣2 + ∣∣bt∣∣2 + u2x)dx dt ≤ C. (2.20)

Therefore, taking δ appropriately small, we conclude from (2.17)–(2.20) that

∫
Ω
u2x(t)dx +

∫ t

0

∫
Ω
ρu2t dx ds ≤ C + C

∫ t

0

∥∥ux(s)∥∥4
L2ds, (2.21)

where, combined with the fact that
∥∥ux∥∥L2(0,T ;L2) ≤ C due to Lemma 2.1, we obtain the first

part of Lemma 2.4 by applying Gronwall’s lemma and then Sobolev’s inequality. Similarly,
multiplying (1.4) by wt and integrating the resulting equation over Ω, we get that

μ

2
d

dt

∫
Ω

∣∣wx

∣∣2 dx +
1
2

∫
Ω
ρ
∣∣wt

∣∣2 dx ≤
∫
Ω

(
1
2
ρu2

∣∣wx

∣∣2 + bt·wx

)
dx − d

dt

∫
Ω
b·wx dx, (2.22)
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where we have also used Cauchy-Schwarz’s inequality. Integration of (2.22) over (0, t) gives

∫
Ω

∣∣wx(x, t)
∣∣2 dx +

∫ t

0

∫
Ω
ρ
∣∣wt

∣∣2 dx ds ≤ C +
1
2

∫
Ω

∣∣wx(x, t)
∣∣2 dx

+ C
∫ t

0

∫
Ω

(∣∣bt∣∣2 + ∣∣wx

∣∣2)dx ds ≤ C +
1
2

∫
Ω

∣∣wx(x, t)
∣∣2 dx,

(2.23)

where Lemmas 2.1–2.3 and the first conclusion of this lemma have been used. Therefore, from
the above inequality we obtain the second part, and so Lemma 2.4 is proved.

Notice that (1.3), (1.4) can be written as follows:

ρut + ρuux = Gx, ρwt + ρuwx = Kx, (2.24)

where G := λux − p − |b|2/2 and K := μwx + b. Thus, by Lemmas 2.1–2.4, we see that

∥∥(G,K)
∥∥
L∞(0,T ;L2) +

∥∥(Gx,Kx)
∥∥
L2(0,T ;L2) ≤ C, (2.25)

which immediately implies

∫T

0

∥∥ux(t)∥∥2
L∞dt ≤ C

∫T

0

(‖G‖2L∞ + ‖p‖2L∞ + ‖b‖4L∞
)
(t)dt

≤ C
∫T

0

(‖G‖2L2 +
∥∥Gx

∥∥2
L2 + ‖p‖2L∞ + ‖b‖4L∞

)
(t)dt ≤ C,

∫T

0

∥∥wx(t)
∥∥2
L∞dt ≤ C

∫T

0

(‖K‖2L∞ + ‖b‖2L∞
)
(t)dt

≤ C
∫T

0

(‖K‖2L2 +
∥∥Kx

∥∥2
L2 + ‖b‖2L∞

)
(t)dt ≤ C.

(2.26)

Hence, we have the following lemma.

Lemma 2.5. There exists a positive constant C, such that

∫T

0

(∥∥ux(t)∥∥2
L∞ +

∥∥Gx(t)
∥∥2
L2

)
dt ≤ C,

∫T

0

(∥∥wx(t)
∥∥2
L∞ +

∥∥Kx(t)
∥∥2
L2

)
dt ≤ C, (2.27)

where G := λux − p − |b|2/2 and K := μwx + b.

To prove the uniqueness of strong solutions, we still need the following estimates.

Lemma 2.6. The pressure p(ρ) = Rργ satisfies sup 0≤t≤T‖px(·, t)‖L2 ≤ C. Furthermore, if the compati-
bility conditions (1.9), (1.10) hold, then

sup
0≤t≤T

∫
Ω
ρ
(
u2t +

∣∣wt

∣∣2)(x, t)dx +
∫T

0

∫
Ω

(
u2tx +

∣∣wtx

∣∣2)dx dt ≤ C. (2.28)
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Proof. It follows from the continuity equation (1.2) that p satisfies

pt + pxu + γpux = 0, (2.29)

which, differentiated with respect to x, leads to

pxt + pxxu + (γ + 1)pxux + γpuxx = 0. (2.30)

Multiplying the above equation by px and integrating over Ω, we deduce that

d

dt

∥∥px(t)∥∥2
L2 ≤ C

∫
Ω

(∣∣px∣∣2∣∣ux∣∣ + p∣∣px∣∣∣∣uxx∣∣)(x, t)dx
≤ C(∥∥ux(t)∥∥L∞

∥∥px(t)∥∥2
L2 +

∥∥px(t)∥∥2
L2 +

∥∥bx(t)∥∥2
L2 +

∥∥Gx(t)
∥∥2
L2

)
,

(2.31)

where we have used the inequality

∥∥uxx∥∥2
L2 ≤ C

(∥∥Gx

∥∥2
L2 +

∥∥px∥∥2
L2 +

∥∥bx∥∥2
L2

)
, (2.32)

which follows from the definition of G. Therefore, applying the previous Lemmas 2.1–2.5 and
Gronwall’s lemma, one has

sup
0≤t≤T

∥∥px(t)∥∥L2 ≤ C, (2.33)

which proves the first part of the lemma.
We are now in a position to prove the second part. We first derive the estimate for the

longitudinal velocity u. To this end, we firstly rewrite (1.3) as

ρut + ρuux − λuxx +
(
p +

∣∣b∣∣2
2

)
x

= 0. (2.34)

Differentiation of (2.34) with respect to t gives

ρutt + ρuuxt − λuxxt +
(
p +

1
2
∣∣b∣∣2

)
xt

= −ρt
(
ut + uux

) − ρutux, (2.35)

which, multiplied by ut and integrated by parts over Ω, yields

1
2
d

dt

∫
Ω
ρu2t dx + λ

∫
Ω
u2xt dx −

∫
Ω

(
p +

1
2
∣∣b∣∣2

)
t

uxt dx = −
∫
Ω

(
ρu

(
u2t + uuxut

)
x + ρu

2
t ux

)
dx.

(2.36)

On the other hand, by virtue of (1.2) we have

−
∫
Ω
ptutx dx =

∫
Ω
pxuutx dx +

γ

2
d

dt

∫
Ω
pu2x dx − γ

2

∫
Ω
ptu

2
x dx

=
γ

2
d

dt

∫
Ω
pu2x dx +

∫
Ω
pxuutx dx +

γ

2

∫
Ω

( − pu(u2x)x + (γ − 1)pu3x
)
dx,

(2.37)
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from which and (2.36) we see that

d

dt

∫
Ω

(
1
2
ρu2t +

γ

2
pu2x

)
dx + λ

∫
Ω
u2tx dx

≤
∫
Ω

(
2ρ|u|∣∣ut∣∣∣∣utx∣∣ + ρ|u|∣∣ut∣∣∣∣ux∣∣2 + ρ|u|2∣∣ut∣∣∣∣uxx∣∣ + ρ|u|2∣∣ux∣∣∣∣utx∣∣

+ ρ
∣∣ut∣∣2∣∣ux∣∣ + ∣∣px∣∣|u|∣∣utx∣∣ + γp|u|∣∣ux∣∣∣∣uxx∣∣ + γ(γ − 1)

2
p
∣∣ux∣∣3 + |b|∣∣bt∣∣∣∣utx∣∣

)
dx

≡
9∑
j=1

Ij .

(2.38)

Using the previous lemmas and Young’s inequality, we can estimate each term on the
right-hand side of (2.38) as follows with a small positive constant ε:

I1 ≤ 2‖ρ‖1/2L∞ ‖u‖L∞
∥∥√ρut

∥∥
L2

∥∥utx∥∥L2 ≤ ε
∥∥utx∥∥2

L2 + Cε−1
∥∥√ρut

∥∥2
L2 ,

I2 ≤ ‖ρ‖1/2L∞ ‖u‖L∞
∥∥√ρut

∥∥L2

∥∥ux∥∥L2

∥∥ux∥∥L∞ ≤ C∥∥ux∥∥2
L∞ + C

∥∥√ρut
∥∥2
L2 ,

I3 ≤ ‖ρ‖1/2L∞ ‖u‖2L∞
∥∥√ρut

∥∥
L2

∥∥uxx∥∥L2 ≤ C
∥∥uxx∥∥2

L2 + C
∥∥√ρut

∥∥2
L2 ,

I4 ≤ ‖ρ‖L∞‖u‖2L∞
∥∥ux∥∥L2

∥∥utx∥∥L2 ≤ ε
∥∥utx∥∥2

L2 + Cε−1,

I5 ≤ ‖ux‖L∞
∥∥√ρut

∥∥2
L2 ,

I6 ≤ ‖u‖L∞
∥∥px∥∥L2

∥∥utx∥∥L2 ≤ ε
∥∥utx∥∥2

L2 + Cε−1,

I7 ≤ γ‖p‖L∞‖u‖L∞
∥∥ux∥∥L2

∥∥uxx∥∥L2 ≤ C + C
∥∥uxx∥∥2

L2 ,

I8 ≤ C‖p‖L∞
∥∥ux∥∥L∞

∥∥ux∥∥2
L2 ≤ C + C

∥∥ux∥∥2
L∞ ,

I9 ≤ ‖b‖L∞
∥∥bt∥∥L2

∥∥utx∥∥L2 ≤ ε
∥∥utx∥∥2

L2 + Cε−1
∥∥bt∥∥2

L2 .

(2.39)

Putting the above estimates into (2.38) and taking ε sufficiently small, we arrive at

d

dt

∫
Ω

(
ρu2t + pu

2
x

)
dx +

∫
Ω
u2tx dx

≤ C
(
1 +

∥∥∥√ρut
∥∥∥2

L2
+
∥∥uxx∥∥2

L2 +
∥∥ux∥∥2

L∞ +
∥∥bt∥∥2

L2 +
∥∥ux∥∥L∞

∥∥∥√ρut
∥∥∥2

L2

)
,

(2.40)

so that, using the relation between Gx and uxx again, one infers from (2.40) that

d

dt

∫
Ω

(
ρu2t + pu

2
x

)
dx +

∫
Ω
u2tx dx

≤ C
(
1 +

∥∥√ρut
∥∥2
L2 +

∥∥Gx

∥∥2
L2 +

∥∥ux∥∥2
L∞ +

∥∥bt∥∥2
L2

)
+ C

∥∥ux∥∥L∞

∥∥∥√ρut
∥∥∥2

L2
,

(2.41)
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where the first term on the right-hand side of (2.41) is integrable on (0, T) due to the previous
lemmas. Thus, integrating (2.41) over (τ, t) ⊂ (0, T), we deduce from (1.3) that

∫
Ω
ρu2t (x, t)dx +

∫ t

τ

∫
Ω
u2tx dx ds

≤
∫
Ω
ρu2t (x, τ)dx + C

(
1 +

∫ t

0

∥∥ux(s)∥∥L∞

∥∥∥√ρut(s)
∥∥∥2

L2
ds

)

=
∫
Ω
ρ−1

(
λuxx −

(
p +

1
2
∣∣b∣∣2

)
x

− ρuux
)2

(x, τ)dx

+ C
(
1 +

∫ t

0

∥∥ux(s)∥∥L∞

∥∥∥√ρut(s)
∥∥∥2

L2
ds

)
.

(2.42)

Letting τ → 0 and using the compatibility condition (1.9), we easily obtain from (2.42) that
∫
Ω
ρu2t (x, t)dx +

∫ t

0

∫
Ω
u2tx dx ds ≤ C

(
1 +

∫ t

0

∥∥ux(s)∥∥L∞

∥∥∥√ρut(s)
∥∥∥2

L2
ds

)
, (2.43)

which, together with ‖ux‖L1
(
0,T ;L∞

) ≤ C and Gronwall’s lemma, immediately yields

sup
0≤t≤T

∥∥∥√ρut(t)
∥∥∥2

L2
+
∥∥utx∥∥2

L2(0,T ;L2) ≤ C. (2.44)

In a same manner as that in the derivation of (2.44), we can show the analogous esti-
mate for the transverse velocityw by using the previous lemmas, (2.44), and the compatibility
condition (1.10) as well. Thus, we complete the proof of Lemma 2.6.

Remark 2.7. From the a priori estimates established above, one sees that the compatibility con-
ditions are used to obtain the second part of Lemma 2.6 only. However, this is crucial in the
proof of the uniqueness of strong solutions.

3. Global existence of strong solutions

In this section, we prove the global existence of strong solutions to the problem (1.2)–(1.7) by
applying the a priori estimates given in the previous section. As usual, we first mollify the
initial data to get the existence of smooth approximate solutions. For this purpose, we choose
the smooth approximate functions ρε0 and bε0 such that

ρε0 ∈ C2(Ω), 0 < ε ≤ ρε0 ≤
∥∥ρ0∥∥L∞ + 1, ρε0 −→ ρ0 in H1,

bε0 ∈ C2(Ω), bε0 ≤
∥∥b0

∥∥
L∞ + 1, bε0 −→ b0 in H1

0.
(3.1)

Let (uε0,w
ε
0) ∈ C1

0(Ω) ∩ C3(Ω), satisfying (uε0,w
ε
0) → (u0,w0) in H1

0 ∩ H2, be the unique
solution to the boundary value problems

λuε0xx =
(
R
(
ρε0
)γ + 1

2
∣∣bε0∣∣2

)
x

+
(
ρε0
)1/2

fε inΩ, uε0|x=0,1 = 0,

μwε
0xx = −bε0x +

(
ρε0
)1/2gε inΩ, wε

0|x=0,1 = 0,

(3.2)
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respectively, where (
fε,gε

) ∈ C2
0(Ω),

(
fε,gε

) −→ (f, g) in L2. (3.3)

Thus, with the regularized initial data
(
ρε0, u

ε
0,w

ε
0,b

ε
0

)
satisfying the compatibility condi-

tions as above, we can follow the similar arguments as in [3, 9, 14] (because of ρε0 ≥ ε) to show
that the problems (1.2)–(1.7) admit a global strong solution

(
ρε, uε,wε,bε

)
, which satisfies

0 < C(ε) ≤ ρε ≤ C with C(ε) depending on ε. (3.4)

Applying the a priori estimates obtained in the previous section, we conclude that the
approximate solution (ρε, uε,wε,bε) satisfies

sup
0≤t≤T

(∥∥pε(t)∥∥H1 +
∥∥(uεx,wε

x,b
ε
x

)
(t)

∥∥
L2 +

∥∥(√ρεuεt ,
√
ρεwε

t

)
(t)

∥∥
L2

)

+
∫T

0

(∥∥(uεx,wε
x

)
(t)

∥∥2
L∞ +

∥∥(uεxx,wε
xx, u

ε
tx,w

ε
tx,bt,b

ε
xx

)
(t)

∥∥2
L2

)
dt ≤ C,

(3.5)

where C depends on the norms of initial data given in Theorem 1.1, but not on ε. With the help
of (1.2)–(1.5) and (3.5), it is easy to see that∥∥ρεx∥∥L∞(0,T ;L2) ≤ C,

∥∥ρεt∥∥L∞(0,T ;L2) ≤ C, (3.6)

∥∥uεxx∥∥L∞(0,T ;L2) ≤ C
∥∥∥(√ρεuεt , u

ε
x, p

ε
x,b

ε
x

)∥∥∥
L∞(0,T ;L2)

≤ C, (3.7)

∥∥wε
xx

∥∥
L∞(0,T ;L2) ≤ C

∥∥∥(√ρεwε
t ,w

ε
x,b

ε
x

)∥∥∥
L∞(0,T ;L2)

≤ C. (3.8)

By the uniform in ε bounds given in (3.5)–(3.8) we conclude that there exists a sub-
sequence of

(
ρε, uε,wε,bε

)
which converges to a strong solution (ρ, u,w,b) to the original

problem and satisfies (3.5)–(3.8) as well. This completes the proof of Theorem 1.1 except the
uniqueness assertion (because of the presence of vacuum), which will be proved in the next
section.

4. Uniqueness and stability of strong solutions

In this section, we will prove the following stability theorem, which consequently implies the
uniqueness of strong solutions. Our proof is inspired by the uniqueness results due to Choe-
Kim [16, 17] and Desjardins [19] for the isentropic compressible Navier-Stokes equations.

Theorem 4.1. Let (ρ, u,w,b) and (ρ, u,w,b) be global solutions to problems (1.2)–(1.7) with ini-
tial data (ρ0, u0,w0,b0) and (ρ0, u0,w0,b0), respectively. If (ρ, u,w,b) and (ρ, u,w,b) satisfy the
regularity given in Theorem 1.1, then for any t ∈ (0, T),∥∥∥(ρ − ρ, p − p,√ρ(u − u),√ρ(w −w),b − b

)
(t)

∥∥∥2

L2

+
∫ t

0
exp

(∫ t

S

F(τ)dτ
)∥∥(u − u,w −w,b − b

)
x(s)

∥∥2
L2ds

≤ exp
(∫ t

0
F(s)ds

)∥∥∥(ρ0 − ρ0, p0 − p0,√ρ0
(
u0 − u0

)
,
√
ρ0
(
w0 −w0

)
,b0 − b0

)∥∥∥2

L2

(4.1)

for some F(t) ∈ L1(0, T). Here p = p(ρ), p = p(ρ), and p0 = p(ρ0), p0 = p(ρ0).
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Proof. From the continuity equation it follows that

(ρ − ρ)t + (ρ − ρ)xu + ρx(u − u) + (ρ − ρ)ux + ρ(u − u)x = 0. (4.2)

Multiplying this by 2(ρ − ρ) and then integrating over Ω, we have

d

dt

∫
Ω
|ρ − ρ|2 dx

≤
∫
Ω
|ρ − ρ|2∣∣ux∣∣ + 2

∣∣ρx∣∣|ρ − ρ||u − u| + 2|ρ − ρ|2∣∣ux∣∣ + 2ρ|ρ − ρ|∣∣(u − u)x
∣∣dx

≤ (∥∥ux∥∥L∞ + 2
∥∥ux∥∥L∞

)∥∥ρ − ρ∥∥2
L2 + 2

(∥∥ρx∥∥L2 +
∥∥ρ∥∥L∞

)∥∥ρ − ρ∥∥L2

∥∥(u − u)x
∥∥
L2 ,

(4.3)

where we have used the inequality
∥∥(u−u)∥∥L∞ ≤ ∥∥(u−u)x∥∥L2 . Thus, by Cauchy-Schwarz’s

inequality, one has

d

dt
‖ρ − ρ‖2L2 ≤ ε

∥∥(u − u)x
∥∥2
L2 + Cε−1A(t)‖ρ − ρ‖2L2 , (4.4)

where A(t) :=
(‖ux‖L∞ + ‖ux‖L∞ + ‖ρx‖2L2 + ‖ρ‖2L∞

) ∈ L1(0, T).
By virtue of the equations satisfied by u and u, we easily deduce that

ρ(u − u)t + ρu(u − u)x − λ(u − u)xx

= −(ρ − ρ)(ut + uux) − ρ(u − u)ux − (p − p)x −
1
2
(|b|2 − |b|2)x,

(4.5)

which, multiplied by (u − u) and integrated by parts over Ω, gives

1
2
d

dt

∫
Ω
ρ|u − u|2 dx + λ

∫
Ω

∣∣(u − u)x
∣∣2 dx

≤ (∥∥ut∥∥L2 +
∥∥u∥∥L∞

∥∥ux∥∥L2

)‖ρ − ρ‖L2‖u − u‖L∞ +
∥∥∥√ρ(u − u)

∥∥∥2

L2

∥∥ux∥∥L∞

+ ‖p − p‖L2

∥∥(u − u)x
∥∥
L2 +

1
2
(‖b‖L∞ + ‖b‖L∞

)‖b − b‖L2

∥∥(u − u)x
∥∥
L2 ,

(4.6)

so that we have by using Sobolev’s inequality and Cauchy-Schwarz’s inequality that

d

dt

∥∥∥√ρ(u − u)
∥∥∥2

L2
+
∥∥(u − u)x

∥∥2
L2

≤ B(t)
(
‖ρ − ρ‖2L2 +

∥∥∥√ρ(u − u)
∥∥∥2

L2
+ ‖p − p‖2L2 + ‖b − b‖2L2

)
,

(4.7)

where B(t) := C
(‖ut‖2L2 + ‖u‖2L∞‖ux‖2L2 + ‖ux‖L∞ + ‖b‖2L∞ + ‖b‖2L∞

) ∈ L1(0, T).
Proceeding the similar argument as that in the derivation of (4.7), we also have

d

dt

∥∥∥√ρ(w −w)
∥∥∥2

L2
+
∥∥(w −w)x

∥∥2
L2

≤ C(t)
(
‖ρ − ρ‖2L2 +

∥∥∥√ρ(u − u)
∥∥∥2

L2
+
∥∥∥√ρ(w −w)

∥∥∥2

L2
+ ‖b − b‖2L2

)
,

(4.8)
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where C(t) := C
(∥∥wt

∥∥2
L2 +

∥∥u∥∥2
L∞

∥∥wx

∥∥2
L2 +

∥∥wx

∥∥
L∞

) ∈ L1(0, T).
Furthermore, it follows from the equations for the magnetic fields b and b that

(b − b)t + u(b − b)x + (u − u)bx + (u − u)xb + ux(b − b) − (w −w)x = υ(b − b)xx, (4.9)

which, multiplied by 2(b − b) and integrated by parts over Ω, gives

d

dt
‖b − b‖2L2 + 2υ

∥∥(b − b)x
∥∥2
L2

≤ (∥∥ux∥∥L∞ + 2
∥∥ux∥∥L∞

)‖b − b‖2L2 + 2
∥∥bx∥∥L2‖b − b‖L2‖u − u‖L∞

+ 2‖b‖L∞‖b − b‖L2

∥∥(u − u)x
∥∥
L2 + 2‖b − b‖L2

∥∥(w −w)x
∥∥
L2

≤ ε(∥∥(u − u)x
∥∥2
L2 +

∥∥(w −w)x
∥∥2
L2

)
+ Cε−1D(t)‖b − b‖2L2 ,

(4.10)

where D(t) :=
(
1 + ‖ux‖L∞ + ‖ux‖L∞ + ‖bx‖2L2 + ‖b‖2L∞

) ∈ L1(0, T).
Finally, from the continuity equations for ρ and ρ, it is easy to see that

(p − p)t + (p − p)xu + px(u − u) + γ(p − p)ux + γp(u − u)x = 0, (4.11)

and hence we obtain in a manner similar to the derivation of (4.4) that

d

dt
‖p − p‖2L2 ≤ C

(∥∥ux∥∥L∞ +
∥∥ux∥∥L∞

)∥∥p − p∥∥2
L2

+ C
∥∥px∥∥L2

∥∥p − p∥∥L2‖u − u‖L∞ + C‖p‖L∞‖p − p‖L2

∥∥(u − u)x
∥∥
L2

≤ ε∥∥(u − u)x
∥∥2
L2 + Cε−1E(t)

∥∥p − p∥∥2
L2 ,

(4.12)

where E(t) :=
(‖ux‖L∞ + ‖ux‖L∞ + ‖px‖2L2 + ‖p‖2L∞

) ∈ L1(0, T).
Summing up (4.4)–(4.12) and choosing ε appropriately small, we obtain Theorem 4.1

with F(t):=C(A(t)+B(t)+C(t)+D(t)+E(t))∈L1(0, T) by applying Gronwall’s lemma.
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