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Using the theory of coincidence degree, we establish existence results of positive solutions for
higher-order multi-point boundary value problems at resonance for ordinary differential equation
u(n)(t) = f(t, u(t), u′(t), . . . , u(n−1)(t)) + e(t), t ∈ (0, 1), with one of the following boundary condi-
tions: u(i)(0) = 0, i = 1, 2, . . . , n − 2, u(n−1)(0) = u(n−1)(ξ), u(n−2)(1) =

∑m−2
j=1 βju

(n−2)(ηj), and u(i)(0) = 0,

i = 1, 2, . . . , n − 1, u(n−2)(1) =
∑m−2

j=1 βju
(n−2)(ηj), where f : [0, 1] × R

n→R = (−∞,+∞) is a continuous
function, e(t) ∈ L1[0, 1] βj ∈ R (1 ≤ j ≤ m − 2, m ≥ 4), 0 < η1 < η2 < · · · < ηm−2 < 1, 0 < ξ < 1, all the
β−s−j have not the same sign. We also give some examples to demonstrate our results.

Copyright q 2008 Y. Gao and M. Pei. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

1. Introduction

In recent years, the multi-point boundary value problem (BVP) for second- or third-order or-
dinary differential equation has been extensively studied, and a series of better results is ob-
tained in [1–10]. But the multi-point boundary value problems for higher order are seldom
seen [11, 12].

In this paper, we consider the following higher-order differential equation:

u(n)(t) = f
(
t, u(t), u′(t), . . . , u(n−1)(t)

)
+ e(t), t ∈ (0, 1), (1.1)

with one of the following boundary conditions:

u(i)(0) = 0, i = 1, 2, . . . , n − 2, u(n−1)(0) = u(n−1)(ξ), u(n−2)(1) =
m−2∑

j=1

βju
(n−2)(ηj

)
, (1.2)

u(i)(0) = 0, i = 1, 2, . . . , n − 1, u(n−2)(1) =
m−2∑

j=1

βju
(n−2)(ηj

)
, (1.3)
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where f : [0, 1] ×R
n → R = (−∞,+∞) is a continuous function, e(t) ∈ L1[0, 1],m ≥ 4, n ≥ 2 are

two integers, βj ∈ R, ηj ∈ (0, 1) (j = 1, 2, . . . , m − 2) are constants satisfying 0 < η1 < η2 < · · · <
ηm−2 < 1.

For certain boundary condition case such that the linear operator Lu = u(n), defined in
a suitable Banach space, is invertible, this is the so-called nonresonance case, otherwise, the
so-called resonance case [2, 9, 10, 12].

The purpose of this paper is to study the existence of solutions for BVP (1.1), (1.2) and
BVP (1.1), (1.3) at resonance case, and establish some existence theorems under nonlinear
growth restriction of f . The boundary value problems (1.1), (1.2) and (1.1), (1.3) with n = 2
have been studied by [8]. Our results generalize the corresponding result in [8]. Our method
is based upon the coincidence degree theory of Mawhin [13, 14]. Finally, we also give some
examples to demonstrate our results.

Now, we will briefly recall some notations and an abstract existence result.
Let Y,Z be real Banach spaces, let L : domL ⊂ Y → Z be a Fredholm map of index zero,

and let P : Y → Y, Q : Z → Z be continuous projectors such that ImP = KerL, KerQ = ImL,
and Y = KerL ⊕ KerP, Z = ImL ⊕ ImQ. It follows that L|domL∩KerP : domL ∩ KerP → ImL is
invertible. We denote the inverse of that map byKP . IfΩ is an open-bounded subset of Y such
that domL ∩Ω /= ∅, the map N : Y → Z will be called L-compact on Ω if QN(Ω) is bounded
and KP (I −Q)N : Ω → Y is compact.

The theorem we use is of [13, Theorem 2.4] or of [14, Theorem IV.13].

Theorem 1.1 (see[13, 14]). Let L be a Fredholm operator of index zero and let N be L-compact on Ω.
Assume that the following conditions are satisfied:

(i) Lx /= λNx for every (x, λ) ∈ (domL \ KerL) ∩ ∂Ω × (0, 1);

(ii) Nx/∈ImL for every x ∈ KerL ∩ ∂Ω;

(iii) deg(QN|KerL,Ω ∩ KerL, 0) /= 0, where Q : Z → Z is a projection as above with ImL =
KerQ.

Then the equation Lx = Nx has at least one solution in domL ∩Ω.

We use the classical space Cn−1[0, 1], for x ∈ Cn−1[0, 1], we use the norm ‖x‖ =
max{‖x‖∞, ‖x′‖∞, . . . , ‖x(n−1)‖∞}, the norm ‖x(i)‖∞ = maxt∈[0,1]|x(i)(t)|, i = 0, 1, . . . , n − 1, and
denote the norm in Z = L1[0, 1] by ‖ · ‖1. We also use the Sobolev space

Wn,1(0, 1) =
{
x : [0, 1] −→ R | x, x′, . . . , x(n−1) that are absolutely

continuous on [0, 1] with x(n) ∈ L1[0, 1]
}
.

(1.4)

Throughout this paper, we assume that the βj ’s have not the same sign, or there exist
j1, j2 ∈ {1, 2, . . . , m − 2} such that sign(βj1 · βj2) = −1.

2. Main results

In this section, we will firstly prove existence results for BVP (1.1), (1.2). To do this, we let
Y = Cn−1[0, 1], Z = L1[0, 1] and let L be the linear operator L : domL ⊂ Y → Z with
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domL =

{

u ∈ Wn,1(0, 1) : u(i)(0) = 0, i = 1, 2, . . . , n − 2,

u(n−1)(0) = u(n−1)(ξ), u(n−2)(1) =
m−2∑

j=1

βju
(n−2)(ηj

)
}

,

(2.1)

and Lu = u(n), u ∈ domL. We also define N : Y → Z by setting

Nu = f
(
t, u(t), . . . , u(n−1)(t)

)
+ e(t), t ∈ (0, 1). (2.2)

Then BVP (1.1), (1.2) can be written by Lu = Nu.

Lemma 2.1. If
∑m−2

j=1 βj = 1,
∑m−2

j=1 βjηj /= 1, then L : domL ⊂ Y → Z is a Fredholm operator of index
zero. Furthermore, the linear continuous projector operator Q : Z → Z can be defined by

Qv =
1
ξ

∫ ξ

0
v
(
s1
)
ds1, (2.3)

and linear operator KP : ImL → domL ∩ KerP can be written by

KPv =
tn−1

(n − 1)!
(∑m−2

j=1 βjηj − 1
)

m−2∑

j=1

βj

∫1

ηj

∫s1

0
v
(
s1
)
ds1ds2 +

∫ t

0

∫sn

0
· · ·

∫s2

0
v
(
s1
)
ds1 · · ·dsn, (2.4)

with

‖KPv‖ ≤ Δ1‖v‖1, ∀v ∈ ImL, (2.5)

where

Δ1 = 1 +
1

∣
∣∑m−2

j=1 βjηj − 1
∣
∣

m−2∑

j=1

∣
∣βj

∣
∣
(
1 − ηj

)
. (2.6)

Proof. It is clear that KerL = {u ∈ domL : u = d, d ∈ R}. We now show that

ImL =
{

v ∈ Z :
∫ ξ

0
v
(
s1
)
ds1 = 0

}

. (2.7)

Since the equation

u(n) = v (2.8)
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has solution u(t) which satisfies

u(i)(0) = 0, i = 1, 2, . . . , n − 2,

u(n−1)(0) = u(n−1)(ξ),

u(n−2)(1) =
m−2∑

j=1

βju
(n−2)(ηj

)
,

(2.9)

if and only if

∫ ξ

0
v
(
s1
)
ds1 = 0. (2.10)

In fact, if (2.8) has solution u(t) satisfying (2.9), then

∫ ξ

0
v
(
s1
)
ds1 =

∫ ξ

0
u(n)(s1

)
ds1 = u(n−1)(ξ) − u(n−1)(0) = 0. (2.11)

On the other hand, if (2.10) holds, setting

u(t) = c0 + ctn−1 +
∫ t

0

∫ sn

0
· · ·

∫s2

0
v
(
s1
)
ds1 · · ·dsn, (2.12)

where c0 is an arbitrary constant, c =
∑m−2

j=1 βj
∫1
ηj

∫s2
0 v(s1)ds1ds2/(n− 1)!(

∑m−2
j=1 βjηj − 1), then u(t)

is a solution of (2.8), and satisfies (2.9). Hence (2.7) holds.
For v ∈ Z, taking the projector

Qv =
1
ξ

∫ ξ

0
v
(
s1
)
ds1. (2.13)

Let v1 = v −Qv. By
∫ ξ
0 v1(s1)ds1 = 0, then v1 ∈ ImL, hence Z = ImL + R. Since ImL ∩ R = {0},

we have Z = ImL ⊕ R, thus

dimKerL = dimR = co dim ImL = 1. (2.14)

Hence L is a Fredholm operator of index zero.
Taking P : Y → Y as follows:

Pu = u(0), (2.15)

then the generalized inverse KP : ImL → domL ∩ KerP of L can be written by

KPv =
tn−1

(n − 1)!
(∑m−2

j=1 βjηj − 1
)

m−2∑

j=1

βj

∫1

ηj

∫s2

0
v
(
s1
)
ds1ds2 +

∫ t

0

∫sn

0
· · ·

∫s2

0
v
(
s1
)
ds1 · · ·dsn. (2.16)
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In fact, for v ∈ ImL, we have

(LKP )v = (KPv)
(n)(t) = v(t), (2.17)

and for all u ∈ domL ∩ KerP , we have

(
KPL

)
u =

tn−1

(n − 1)!
(∑m−2

j=1 βjηj − 1
)

m−2∑

j=1

βj

∫1

ηj

∫ s2

0
u(n)(s1

)
ds1 ds2 +

∫ t

0

∫ sn

0
· · ·

∫s2

0
u(n)(s1

)
ds1 · · ·dsn

= u(t) − u(0).
(2.18)

In view of u ∈ domL ∩ KerP , Pu = u(0) = 0, thus

(
KPL

)
u(t) = u(t), (2.19)

this shows that KP = (L|domL∩KerP )
−1.

Again since for i = 0, 1, . . . , n − 1,we have

(
KPv

)(i)(t)=
tn−1−i

(n − 1 − i)!
(∑m−2

j=1 βjηj − 1
)

m−2∑

j=1

βj

∫1

ηj

∫ s2

0
v
(
s1
)
ds1ds2+

∫ t

0

∫sn−i

0
· · ·

∫s2

0
v
(
s1
)
ds1 · · ·dsn−i,

(2.20)

consequently, for i = 0, 1, . . . , n − 1, we have

∣
∣
(
KPv

)(i)(t)
∣
∣ ≤

[
1

∣
∣∑m−2

j=1 βjηj − 1
∣
∣

m−2∑

j=1

∣
∣βj

∣
∣
(
1 − ηj

)
+ 1

]

‖v‖1 = Δ1‖v‖1, (2.21)

where Δ1 = (1/|∑m−2
j=1 βjηj − 1|)∑m−2

j=1 |βj |(1 − ηj) + 1. Thus

∥
∥
(
KPv

)(i)∥∥
∞ ≤ Δ1‖v‖1, i = 0, 1, . . . , n − 1, (2.22)

then ‖KPv‖ ≤ Δ1‖v‖1. This completes the proof of Lemma 2.1.

Theorem 2.2. Let f : [0, 1] × R
n → R be a continuous function. Assume that there exists n1 ∈

{1, 2, . . . , m − 3} (m ≥ 4) such that βj > 0 (j = 1, 2, . . . , n1), βj < 0 (j = n1 + 1, n1 + 2, . . . , m − 2).
Furthermore, the following conditions are satisfied:

(A1)
∑m−2

j=1 βj = 1,
∑m−2

j=1 βjηj /= 1;

(A2) there exist functions a0, a1, . . . , an−1, b, r ∈ L1[0, 1], constant σ ∈ [0, 1), and some j ∈
{0, 1, . . . , n − 1} such that for all (u0, u1, . . . , un−1) ∈ R

n, t ∈ [0, 1],

∣
∣f

(
t, u0, . . . , un−1

)∣
∣ ≤

n−1∑

i=0

ai(t)
∣
∣ui

∣
∣ + b(t)

∣
∣uj

∣
∣σ + r(t); (2.23j)
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(A3) there existsM > 0 such that for (u1, u2, . . . , un−1) ∈ R
n−1, if |u| > M, then

∣
∣f

(
t, u, u1, . . . , un−1

)∣
∣ ≥ α|u| −

n−1∑

i=1

αi

∣
∣ui

∣
∣ − γ, t ∈ [0, 1], (2.24)

where α > 0, αi ≥ 0, i = 1, 2, . . . , n − 1, γ ≥ 0;

(A4) there existsM∗ > 0 such that for any d ∈ R, if |d| > M∗, then either

d · f(t, d, 0, . . . , 0) ≤ 0 (2.25)

or

d · f(t, d, 0, . . . , 0) ≥ 0. (2.26)

Then, for every e ∈ L1[0, 1], BVP (1.1), (1.2) has at least one solution in Cn−1[0, 1] provided that
∑n−1

i=0 ‖ai‖1 < 1/Δ2, where Δ2 = Δ1 + 1 + (1/α)
∑n−1

i=1 αi, Δ1 as in Lemma 2.1.

Proof. Set

Ω1 =
{
u ∈ domL \ KerL : Lu = λNu, λ ∈ [0, 1]

}
. (2.27)

Then for u ∈ Ω1, Lu = λNu, thus λ /= 0, Nu ∈ ImL = KerQ. Hence

∫ ξ

0

[
f
(
t, u(t), . . . , u(n−1)(t)

)
+ e(t)

]
dt = 0. (2.28)

Thus, there exists t0 ∈ [0, ξ] such that

f
(
t0, u

(
t0
)
, u′(t0

)
, . . . , u(n−1)(t0

))
= −1

ξ

∫ ξ

0
e(t)dt. (2.29)

This yields

∣
∣f

(
t0, u

(
t0
)
, u′(t0

)
, . . . , u(n−1)(t0

))∣
∣ ≤ 1

ξ
‖e‖1. (2.30)

If for some t1 ∈ [0, 1], |u(t1)| ≤ M, then we have

∣
∣u(0)

∣
∣ =

∣
∣
∣
∣u
(
t1
) −

∫ t1

0
u′(t)dt

∣
∣
∣
∣ ≤ M + ‖u′‖∞. (2.31)

Otherwise, if |u(t)| > M for any t ∈ [0, 1], from (2.30) and (A3), we obtain

∣
∣u
(
t0
)∣
∣ ≤ 1

α

n−1∑

i=1

αi

∣
∣u(i)(t0

)∣
∣ +

1
α

(

γ +
1
ξ
‖e‖1

)

≤ 1
α

n−1∑

i=1

αi

∥
∥u(i)∥∥

∞ +
1
α

(

γ +
1
ξ
‖e‖1

)

.

(2.32)



Y. Gao and M. Pei 7

Thus

∣
∣u(0)

∣
∣ =

∣
∣
∣
∣u
(
t0
) −

∫ t0

0
u′(t)dt

∣
∣
∣
∣

≤ ∣
∣u
(
t0
)∣
∣ + ‖u′‖∞

≤ 1
α

n−1∑

i=1

αi

∥
∥u(i)∥∥

∞ +
1
α

(

γ +
1
ξ
‖e‖1

)

+ ‖u′‖∞.

(2.33)

Again, since u(i)(0) = 0, i = 1, 2, . . . , n − 2, then for all t ∈ [0, 1], we have

∣
∣u(i)(t)

∣
∣ =

∣
∣
∣
∣u

(i)(0) +
∫ t

0
u(i+1)(t)dt

∣
∣
∣
∣ ≤

∥
∥u(i+1)∥∥

∞. (2.34)

Thus

∥
∥u(i)∥∥

∞ ≤ ∥
∥u(i+1)∥∥

∞, i = 1, 2, . . . , n − 2. (2.35)

Therefore, we have

∥
∥u(i)∥∥

∞ ≤ ∥
∥u(n−1)∥∥

∞, i = 1, 2, . . . , n − 2. (2.36)

Hence

‖Pu‖ =
∣
∣u(0)

∣
∣ ≤

(

1 +
1
α

n−1∑

i=1

αi

)
∥
∥u(n−1)∥∥

∞ +
1
α

(

γ +
1
ξ
‖e‖1

)

+M. (2.37)

According to the conditions βj > 0 (j = 1, 2, . . . , n1), βj < 0 (j = n1 + 1, n1 + 2, . . . , m − 2), and
u(n−2)(1) =

∑m−2
j=1 βju

(n−2)(ηj), we have

u(n−2)(1) −
m−2∑

j=n1+1

βju
(n−2)(ηj

)
=

n1∑

j=1

βju
(n−2)(ηj

)
. (2.38)

Again, since there exist t2 ∈ [ηn1+1, 1], t3 ∈ [η1, ηn1] such that

u(n−2)(t2
)
=

1

1 −∑m−2
j=n1+1βj

[

u(n−2)(1) −
m−2∑

j=n1+1

βju
(n−2)(ηj

)
]

, (2.39)

u(n−2)(t3
)
=

1
1 −∑n1

j=1βj

n1∑

j=1

βju
(n−2)(ηj

)
, (2.40)

thus, in view of
∑m−2

j=1 βj = 1, from (2.38)–(2.40), we get

u(n−2)(t2
)
= u(n−2)(t3

)
. (2.41)
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Since ηn1 < ηn1+1, then t2 /= t3, so from (2.41), there exists t∗ ∈ (t2, t3) such that u(n−1)(t∗) = 0.
Hence, in view of u(n−1)(t) = u(n−1)(t∗) +

∫ t
t∗u

(n)(t)dt, we have

∥
∥u(n−1)∥∥

∞ ≤ ∥
∥u(n)

∥
∥
1 = ‖Lu‖1 ≤ ‖Nu‖1. (2.42)

Therefore, from (2.37) and (2.42), one has

‖Pu‖ ≤
(

1 +
1
α

n−1∑

i=1

αi

)

‖Nu‖1 + 1
α

(

γ +
1
ξ
‖e‖1

)

+M. (2.43)

Again, for u ∈ Ω1, u ∈ domL \ KerL, then (I − P)u ∈ domL \ KerL, LPu = 0. Thus from
Lemma 2.1, we have

∥
∥(I − P)u

∥
∥ =

∥
∥KpL(I − P)u

∥
∥

≤ Δ1
∥
∥L(I − P)u

∥
∥
1

= Δ1‖Lu‖1

≤ Δ1‖Nu‖1.

(2.44)

From (2.43) and (2.44), we get

‖u‖ ≤ ‖Pu‖ + ∥
∥(I − P)u

∥
∥

≤
(

1 + Δ1 +
1
α

n−1∑

i=1

αi

)

‖Nu‖1 + c1

= Δ2‖Nu‖1 + c1,

(2.45)

where c1 = M + (1/α)(γ + (1/ξ)‖e‖1).
If (2.23j)n−1 holds, then from (2.45), we get

‖u‖ ≤ Δ2

[
n−1∑

i=0

∥
∥ai

∥
∥
1

∥
∥u(i)∥∥

∞ + ‖b‖1
∥
∥u(n−1)∥∥σ

∞ + c

]

, (2.46)

where c = ‖r‖1 + ‖e‖1 + c1/Δ2. In view of (2.46), we obtain

‖u‖∞ ≤ ‖u‖ ≤ Δ2

1 −Δ2
∥
∥a0

∥
∥
1

[
n−1∑

i=1

∥
∥ai

∥
∥
1

∥
∥u(i)∥∥

∞ + ‖b‖1
∥
∥u(n−1)∥∥σ

∞ + c

]

. (2.47)

Again, ‖u′‖∞ ≤ ‖u‖, from (2.46) and (2.47), one has

∥
∥u′∥∥

∞ ≤ Δ2

1 −Δ2
(∥
∥a0

∥
∥
1 +

∥
∥a1

∥
∥
1

)

[
n−1∑

i=2

∥
∥ai

∥
∥
1

∥
∥u(i)∥∥

∞ + ‖b‖1
∥
∥u(n−1)∥∥σ

∞ + c

]

. (2.48)
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In general, for k = 2, 3, . . . , n − 2, we have

∥
∥u(k)∥∥

∞ ≤ Δ2

1 −Δ2
∑k

i=0

∥
∥ai

∥
∥
1

[
n−1∑

i=k+1

∥
∥ai

∥
∥
1

∥
∥u(i)∥∥

∞ + ‖b‖1
∥
∥u(n−1)∥∥σ

∞ + c

]

, (2.49k)

∥
∥u(n−1)∥∥

∞ ≤ Δ2‖b‖1
1 −Δ2

∑n−1
i=0

∥
∥ai

∥
∥
1

∥
∥u(n−1)∥∥σ

∞ +
Δ2c

1 −Δ2
∑n−1

i=0

∥
∥ai

∥
∥
1

. (2.50)

Since σ ∈ [0, 1), then from (2.50), there exists Mn−1 > 0 such that ‖u(n−1)‖∞ ≤ Mn−1. Thus from
(2.49k), there exist Mk > 0, k = 0, 1, . . . , n − 2, such that ‖u(k)‖∞ ≤ Mk, k = 0, 1, . . . , n − 2.Hence

‖u‖ = max
{‖u‖∞,

∥
∥u′∥∥

∞, . . . ,
∥
∥u(n−1)∥∥

∞
}

≤ max
{
M0,M1, . . . ,Mn−1

}
.

(2.51)

Therefore, Ω1 is bounded.
If (2.23j), j ∈ {0, 1, . . . , n − 2} holds, similar to (2.23j)n−1 argument, we can prove that Ω1

is bounded too.
Set

Ω2 = {u ∈ KerL : Nu ∈ ImL}. (2.52)

Then for u ∈ Ω2, u ∈ KerL = {u ∈ domL : u = d, d ∈ R}, and QNu = 0, one has

∫ ξ

0

[
f(t, d, 0, . . . , 0) + e(t)

]
dt = 0. (2.53)

Thus, there exists t4 ∈ [0, ξ] such that

f
(
t4, d, 0, . . . , 0

)
= −1

ξ

∫ ξ

0
e(t)dt. (2.54)

This yields

∣
∣f

(
t4, d, 0, . . . , 0

)∣
∣ ≤ 1

ξ
‖e‖1. (2.55)

Since either |d| ≤ M or |d| > M, if |d| > M, then in view of (A3) and (2.55), we have |d| ≤
(1/α)(γ + (1/ξ)‖e‖1). Therefore, it follows that

|d| ≤ max
{

M,
1
α

(

γ +
1
ξ
‖e‖1

)}

. (2.56)

Hence Ω2 is bounded.
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Now, according to condition (A4), we have the following two cases.

Case 1. For any d ∈ R, if |d| > M∗, then d · f(t, d, 0, . . . , 0) ≤ 0, t ∈ [0, 1]. In this case, we set

Ω3 =
{
u ∈ KerL : −(1 − λ)Ju + λQNu = 0, λ ∈ [0, 1]

}
, (2.57)

where J : KerL → ImQ is the linear isomorphism given by J(d) = d, d ∈ R.

In the following, we will show that Ω3 is bounded. Suppose un(t) = dn ∈ Ω3 and |dn| →
∞ (n → ∞), then there exists λn ∈ [0, 1], for sufficiently large n, such that

1 − λn = λn ·
QN

(
dn

)

dn
. (2.58)

Since λn ∈ [0, 1], then {λn} has a convergent subsequence, and we write (for simplicity of
notation) λn → λ0 (n → ∞).

If (2.23j)j , j ∈ {1, 2, . . . , n − 1} holds, then
∣
∣
∣
∣
QN

(
dn

)

dn

∣
∣
∣
∣ =

1
∣
∣dn

∣
∣

∣
∣
∣
∣
1
ξ

∫ ξ

0

[
f
(
t, dn, 0, . . . , 0

)
+ e(t)

]
dt

∣
∣
∣
∣

≤ 1
∣
∣dn

∣
∣
1
ξ

(∥
∥a0

∥
∥
1

∣
∣dn

∣
∣ + ‖r‖1 + ‖e‖1

)

=
1
ξ

∥
∥a0

∥
∥
1 +

1
ξ

‖r‖1 + ‖e‖1∣
∣dn

∣
∣

.

(2.59)

If (2.23j)0 holds, then
∣
∣
∣
∣
QN

(
dn

)

dn

∣
∣
∣
∣ =

1
∣
∣dn

∣
∣

∣
∣
∣
∣
1
ξ

∫ ξ

0

[
f
(
t, dn, 0, . . . , 0

)
+ e(t)

]
dt

∣
∣
∣
∣

≤ 1
∣
∣dn

∣
∣
1
ξ

(∥
∥a0

∥
∥
1

∣
∣dn

∣
∣ + ‖b‖1

∣
∣dn

∣
∣σ + ‖r‖1 + ‖e‖1

)

=
1
ξ

∥
∥a0

∥
∥
1 +

1
ξ
· ‖b‖1
∣
∣dn

∣
∣1−σ

+
1
ξ
· ‖r‖1 + ‖e‖1∣

∣dn

∣
∣

.

(2.60)

Since |dn| → ∞, then from (2.59) or (2.60), we know {|QN(dn)/dn|} is bounded. From (2.58),
we have λn → λ0 /= 0. Hence for n sufficiently large, λn /= 0, and we have

1 − λn
λn

=
1
ξ

[∫ ξ

0

f
(
t, dn, 0, . . . , 0

)

dn
dt +

1
dn

∫ ξ

0
e(t)dt

]

. (2.61)

In view of |dn| → ∞, we can assume that |dn| > max{M,M∗}, thus for n sufficiently large, from
(A3), we get

∣
∣
∣
∣
f
(
t, dn, 0, . . . , 0

)

dn

∣
∣
∣
∣ ≥ α − γ

∣
∣dn

∣
∣
≥ α

2
> 0. (2.62)

Again since dn · f(t, dn, 0, . . . , 0) ≤ 0, t ∈ [0, 1], from (2.62), one has

f
(
t, dn, 0, . . . , 0

)

dn
≤ −α

2
< 0. (2.63)
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Hence, according to Fatou lemma, we obtain

lim
n→∞

[∫ ξ

0

f
(
t, dn, 0, . . . , 0

)

dn
dt +

1
dn

∫ ξ

0
e(t)dt

]

≤ lim
n→∞

∫ ξ

0

f
(
t, dn, 0, . . . , 0

)

dn
dt

≤
∫ ξ

0
lim
n→∞

f
(
t, dn, 0, . . . , 0

)

dn
dt

≤ −α
2
ξ < 0,

(2.64)

which contradicts with (1 − λn)/λn ≥ 0. Thus Ω3 is bounded.

Case 2. For any d ∈ R, if |d| > M∗, then d · f(t, d, 0, . . . , 0) ≥ 0, t ∈ [0, 1]. In this case, we set

Ω3 =
{
u ∈ KerL : (1 − λ)Ju + λQNu = 0, λ ∈ [0, 1]

}
, (2.65)

where J as in above. Similar to the above argument, we can also show that Ω3 is bounded.

In the following, we will prove that all the conditions of Theorem 1.1 are satisfied. Set Ω
to be an open-bounded subset of Y such that

⋃3
i=1Ωi ⊂ Ω. By using the Ascoli-Arzela theorem,

we can prove that KP (I − Q)N : Y → Y is compact, thus N is L-compact on Ω. Then by the
above argument, we have the following.

(i) Lu /= λNu for every (u, λ) ∈ [(domL \ KerL) ∩ ∂Ω] × (0, 1).

(ii) Nu/∈ImL for u ∈ KerL ∩ ∂Ω.

(ii) H(u, λ) = ±λJu+(1−λ)QNu. According to the above argument, we knowH(u, λ) /= 0
for every u ∈ KerL ∩ ∂Ω. Thus, by the homotopy property of degree,

deg
(
QN|KerL,Ω ∩ KerL, 0

)
= deg

(
H(·, 0),Ω ∩ KerL, 0

)

= deg
(
H(·, 1),Ω ∩ KerL, 0

)

= deg
( ± J,Ω ∩ KerL, 0

)
/= 0.

(2.66)

Then by Theorem 1.1, Lu = Nu has at least one solution in domL ∩Ω, so that BVP (1.1), (1.2)
has solution in Cn−1[0, 1]. The proof is finished.

Now, we will consider existence results for BVP (1.1), (1.3). In the following, the map-
pingN and linear operator L are the same as above, and let

domL =

{

u ∈ Wn,1(0, 1) : u(i)(0) = 0, i = 1, 2, . . . , n − 1, u(n−2)(1) =
m−2∑

j=1

βju
(n−2)(ηj

)
}

. (2.67)

Lemma 2.3. If
∑m−2

j=1 βj = 1,
∑m−2

j=1 βjη
2
j /= 1 , then L : domL ⊂ Y → Z is a Fredholm operator of index

zero. Furthermore, the linear continuous projector Q : Z → Z can be defined by

Qv =
2

1 −∑m−2
j=1 βjη

2
j

m−2∑

j=1

βj

∫1

ηj

∫s2

0
v
(
s1
)
ds1ds2, (2.68)
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and linear operator KP = ImL → domL ∩ KerP can be written as

KPv =
∫ t

0

∫ sn

0
· · ·

∫s2

0
v
(
s1
)
ds1 · · ·dsn, (2.69)

with

∥
∥KPv

∥
∥ ≤ ‖v‖1, ∀v ∈ ImL. (2.70)

Notice that the KerL = {u ∈ domL : u = d, d ∈ R, t ∈ [0, 1]} and ImL = {v ∈ Z :
∑m−2

j=1 βj
∫1
ηj

∫s2
0 v(s1)ds1 ds2 = 0}. Thus, by using the same method as the proof of Lemma 2.1, we

can prove Lemma 2.3, and we omit it.

Theorem 2.4. Let f : [0, 1] × R
n → R be a continuous function. Assume that condition (A2) of

Theorem 2.2 and the following conditions are satisfied:

(A5)
∑m−2

j=1 βj = 1,
∑m−2

j=1 βjη
2
j /= 1;

(A6) there existsM > 0, such that for u ∈ domL, if |u(t)| > M for all t ∈ [0, 1], then

m−2∑

j=1

βj

∫1

ηj

∫ s2

0

[
f
(
s1, u

(
s1
)
, . . . , u(n−1)(s1

))
+ e

(
s1
)]
ds1 ds2 /= 0; (2.71)

(A7) there existsM∗ > 0 such that for any d ∈ R, if |d| > M∗, then either

d ·
m−2∑

j=1

βj

∫1

ηj

∫ s2

0

[
f
(
s1, d, 0, . . . , 0

)
+ e

(
s1
)]
ds1 ds2 < 0, (2.72)

or else

d ·
m−2∑

j=1

βj

∫1

ηj

∫ s2

0

[
f
(
s1, d, 0, . . . , 0

)
+ e

(
s1
)]
ds1 ds2 > 0. (2.73)

Then, for every e ∈ L1[0, 1], BVP (1.1), (1.3) has at least one solution in Cn−1[0, 1] provided that
∑n−1

i=0 ‖ai‖1 < 1/2.

The proof of Theorem 2.4 is similar to the proof of Theorem 2.2, and we omit it.
Next we give two examples to demonstrate the applications of the main results.

Example 2.5. Consider the boundary value problems

u′′′(t) = f
(
t, u(t), u′(t), u′′(t)

)
+ e(t), t ∈ (0, 1),

u′′(0) = u′′(ξ), u′(0) = 0, u′(1) = 6u′
(
1
6

)

− 3u′
(
1
3

)

− 2u′
(
1
2

)

,
(2.74)

where f(t, u, v,w) = (1/22)u + (1/44)v + (1/44)w + sin(w)1/5, e ∈ L1[0, 1], ξ ∈ (0, 1).



Y. Gao and M. Pei 13

Since β1 = 6, β2 = −3, β3 = −2, η1 = 1/6, η2 = 1/3, η3 = 1/2, then

(i) β1 + β2 + β3 = 1, β1η1 + β2η2 + β3η3 /= 1;

(ii) |f(t, u, v,w)| ≤ (1/22)|u| + (1/44)|v| + (1/44)|w| + |w|1/5;
(iii) |f(t, u, v,w)| ≥ (1/22)|u| − (1/44)|v| − (1/44)|w| − 1;

(iv) for any d ∈ R, d · f(t, d, 0, 0) = (1/22)d2 ≥ 0.

Furthermore

Δ1 = 1 +
1

∣
∣∑3

j=1βjηj − 1
∣
∣

3∑

j=1

∣
∣βj

∣
∣
(
1 − ηj

)
= 5,

Δ2 = Δ1 + 1 +
1
α

2∑

i=1

αi = 5 + 1 + 1 = 7,

∥
∥a0

∥
∥
1 +

∥
∥a1

∥
∥
1 +

∥
∥a2

∥
∥
1 =

1
22

+
1
44

+
1
44

=
1
11

<
1
7
.

(2.75)

Hence from Theorem 2.2, for every e ∈ L1[0, 1], BVP (2.74) has at least one solution u ∈ C2[0, 1].

Example 2.6. Consider the boundary value problems

u′′′(t) = f
(
t, u(t), u′(t), u′′(t)

)
+ e(t), t ∈ (0, 1),

u′(0) = 0, u′′(0) = 0, u′(1) = −4u′
(
1
4

)

+ 3u′
(
1
3

)

+ 2u′
(
1
2

)

,
(2.76)

where f(t, u, v,w) = (1/8)u + (1/8)v + (1/8)w + sin2(u)sin(w)1/3, e ∈ L1[0, 1], ξ ∈ (0, 1).
Since β1 = −4, β2 = 3, β3 = 2, η1 = 1/4, η2 = 1/3, η3 = 1/2, then

(i) β1 + β2 + β3 = 1, β1η2
1 + β2η

2
2 + β3η

2
3 /= 1;

(ii) |f(t, u, v,w)| ≤ (1/8)|u| + (1/8)|v| + (1/8)|w| + |w|1/3;
(iii) let M = 8, then for |u(t)| > M, one has

3∑

j=1

βj

∫1

ηj

∫s2

0

[
f
(
s1, u

(
s1
)
, u′(s1

)
, u′′(s1

))
+ e

(
s1
)]
ds1 ds2 /= 0; (2.77)

(iv) for any d ∈ R, one has

d
3∑

j=1

βj

∫1

ηj

∫ s2

0
f
(
s1, d, 0, 0

)
ds1 ds2 =

5
192

d2 > 0. (2.78)

Furthermore

∥
∥a0

∥
∥
1 +

∥
∥a1

∥
∥
1 +

∥
∥a2

∥
∥
1 =

1
8
+
1
8
+
1
8
=
3
8
<
1
2
. (2.79)

Hence from Theorem 2.4, for every e ∈ L1[0, 1], BVP (2.76) has at least one solution u ∈ C2[0, 1].
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