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Using the theory of coincidence degree, we establish existence results of positive solutions for
higher-order multi-point boundary value problems at resonance for ordinary differential equation
u™(t) = f(t,u®), ' ®),...,u" V() +e(t), t € (0,1), with one of the following boundary condi-
tions: u(0) =0,i=1,2,...,n =2, u™V(0) = u®™ V), u"2(1) =3 j"i_lzﬁ].u("‘2> (11].), and u®(0) =0,
i=12...,n-1,u"21) =3 ;":Ezﬂju("‘z)(nj), where f : [0,1] x R"—=R = (-oo, +00) is a continuous
function, e(t) € L'[0,1] ﬁj ER(A<j<m-2,m>24),0<n, <n,<--- <1, ,<1,0<¢<1,allthe
[5:]5. have not the same sign. We also give some examples to demonstrate our results.

Copyright © 2008 Y. Gao and M. Pei. This is an open access article distributed under the Creative
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1. Introduction

In recent years, the multi-point boundary value problem (BVP) for second- or third-order or-
dinary differential equation has been extensively studied, and a series of better results is ob-
tained in [1-10]. But the multi-point boundary value problems for higher order are seldom
seen [11, 12].

In this paper, we consider the following higher-order differential equation:

u™ () = f(tult),d't),...,u" D) +e(t), te(0,1), (1.1)

with one of the following boundary conditions:

m—2
u®0)=0, i=12...,n-2, u" VO =u"VE), u"PW) =3 pu"P (), (12)
j=1

m-2
u®0)=0, i=12,...,n-1,  u"I1)= D pu"? (), (1.3)
j=1
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where f : [0,1] x R” — R = (-o0, +00) is a continuous function, e(t) € L'[0,1], m >4, n > 2 are
two integers, f; € R, n7; € (0,1) (j = 1,2,...,m - 2) are constants satisfying 0 <7y <7, <--- <
Hm-2 < 1.

For certain boundary condition case such that the linear operator Lu = u(™, defined in
a suitable Banach space, is invertible, this is the so-called nonresonance case, otherwise, the
so-called resonance case 2,9, 10, 12].

The purpose of this paper is to study the existence of solutions for BVP (1.1), (1.2) and
BVP (1.1), (1.3) at resonance case, and establish some existence theorems under nonlinear
growth restriction of f. The boundary value problems (1.1), (1.2) and (1.1), (1.3) with n = 2
have been studied by [8]. Our results generalize the corresponding result in [8]. Our method
is based upon the coincidence degree theory of Mawhin [13, 14]. Finally, we also give some
examples to demonstrate our results.

Now, we will briefly recall some notations and an abstract existence result.

Let Y, Z be real Banach spaces, let L : dom L C Y — Z be a Fredholm map of index zero,
andlet P: Y — Y, Q : Z — Z be continuous projectors such that ImP = Ker L, Ker Q = ImL,
andY =KerLoKer P, Z=ImL&ImQ. It follows that L| gom rnkerp : dom LN Ker P — Im L is
invertible. We denote the inverse of that map by Kp. If Q is an open-bounded subset of Y such
that dom LN Q # &, the map N : Y — Z will be called L-compact on Qif QN (Q) is bounded
and Kp(I-Q)N: Q - Yis compact.

The theorem we use is of [13, Theorem 2.4] or of [14, Theorem IV.13].

Theorem 1.1 (see[13, 14]). Let L be a Fredholm operator of index zero and let N be L-compact on Q.
Assume that the following conditions are satisfied:
(i) Lx # ANx for every (x, 1) € (dom L \ Ker L) N 0Q x (0, 1);
(ii) Nx¢Im L for every x € Ker L N 0Q;
(iii) deg(QN|xerr, 2 NKerL,0) # 0, where Q : Z — Z is a projection as above with ImL =
Ker Q.

Then the equation Lx = Nx has at least one solution in dom LN Q.

We use the classical space C"1[0,1], for x € C"'[0,1], we use the norm |x| =
max{ || x|, ||x’||°o,...,||x("’1)||oo}, the norm ||x(’A)||OO = maxte[o’1]|x(i)(t)|, i=01,...,n-1,and
denote the norm in Z = L![0,1] by || - ||;. We also use the Sobolev space

w*0,1) = {x :[0,1] — R | x,x,...,x"V that are absolutely
(1.4)
continuous on [0,1] with x™ e L'[0,1]}.

Throughout this paper, we assume that the f;’s have not the same sign, or there exist
ji-j2 € {1,2,...,m =2} such that sign(g;, - p;,) = -1.

2. Main results

In this section, we will firstly prove existence results for BVP (1.1), (1.2). To do this, we let
Y = C*1[0,1], Z = L'[0,1] and let L be the linear operator L : dom L C Y — Z with
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domL = {u ew™(0,1) : uP0)=0,i=1,2,...,n-2,

2.1)
u(n—l)(o) — u(n—l)(g), u(n 2)(1 Zﬂ u(n 2) (71 )}

j=1
and Lu = u™, u € dom L. We also define N : Y — Z by setting
Nu= f(tu(t),...,u" () +e(t), te(01). (2.2)

Then BVP (1.1), (1.2) can be written by Lu = Nu.

Lemma 2.1. If 37 ﬁ] =1, 375 ﬂ]n] #1,then L : dom L C Y — Zis a Fredholm operator of index
zero. Furthermore the linear corztznuous projector operator Q : Z — Z can be defined by

14
= %L v(s1)ds1, (2.3)

and linear operator Kp : Im L — dom L N Ker P can be written by

tn—l

fre= (n-DI(XT5 ﬂ]ﬂ] Zﬂ]j f51 Sl)d51dsz+ff jv(sl)dsl s 24

with
IKpo|| < Aq|lv|l1, VYoelmlL, (2.5)
where
m=2
fmir |Z ﬂ]’l} 1] J=1| 20

Proof. Itis clear that Ker L = {u e dom L : u =d, d € R}. We now show that

ImL = {v €eZ: ij(sl)dsl = O}. (2.7)

Since the equation

u™ =y (2.8)
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has solution u(t) which satisfies
u?0)=0, i=12,...,n-2,

ur D (0) = u D ),

(2.9)
m-2
u(n_z) (1) = Zﬂju(n_z) (rl]),
=1
if and only if
13
I v(s1)ds1 = 0. (2.10)
0
In fact, if (2.8) has solution u(t) satisfying (2.9), then
¢ ¢
f v(s1)ds1 = f u® (s1)dsy = u (@) - ul*D(0) = 0. (2.11)
0 0
On the other hand, if (2.10) holds, setting
t as, S
u(t) = co + ct™! +f I J‘ v(s1)dsy---dsy, (2.12)
0Jo 0

where ¢ is an arbitrary constant, ¢ = Z ﬂ]j f v(s1)dsi1dsy/(n— 1)'(2 [3]11] 1), then u(t)

is a solution of (2.8), and satisfies (2.9). Hence (2.7) holds.
For v € Z, taking the projector

Qu = éfv(sl)dsl. (2.13)

Let v; = v — Qu. By Lgvl(sl)dsl =0,thenv; e ImL, hence Z =ImL +R. SinceInLNR = {0},
we have Z =Im L @ R, thus

dimKerL =dimR = codimImL = 1. (2.14)

Hence L is a Fredholm operator of index zero.
Taking P: Y — Y as follows:

Pu = u(0), (2.15)
then the generalized inverse Kp : Im L — dom L N Ker P of L can be written by

tn—l

( -1) (Z ﬂ]’l]

Zﬂ]j J‘SZU(Sl)dsld52+J;J;) ---J:ZU(sl)dsl---dsn. (2.16)
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In fact, for v € Im L, we have
(LKp)v = (Kpo)™(t) = v(t), (2.17)

and for all u € dom L N Ker P, we have

(KpL)u = " Zﬂ]L J‘S2 )(s1)ds1 ds; + I J:n oo J‘SZu(") (s1)ds; - ds,

(n= DI Bim; - 0
= u(t) — u(0).
(2.18)
In view of u € dom L N Ker P, Pu = u(0) = 0, thus
(KpL)u(t) = u(t), (2.19)

this shows that Kp = (L|qom Lakerp) "
Again since fori=0,1,...,n—1, we have

(2.20)
consequently, fori=0,1,...,n -1, we have
65001 ¢ | e S 1 bl = vk, 22
|Z ﬁﬂl] 155
where A = (1/| 2757 Bjm; - 1) 2752181 (1 - 1)) + 1. Thus
[(Kp2) V|, < Adlloly, i=0,1,...,n-1, (2.22)
then ||Kpv|| < Aq]|9||1. This completes the proof of Lemma 2.1. O

Theorem 2.2. Let f : [0,1] x R* — R be a continuous function. Assume that there exists ny €
{1,2,...,m=3} (m>4)suchthat p; >0 (j =1,2,...,m), p; <0 (j=m+1,m+2,... m-2).
Furthermore, the following conditions are satisfied:

(A1) 375 ﬁ]—lz B #1;

(Az) there exist functions ag,ay,...,an-1,b,r € L'[0,1], constant ¢ € [0,1), and some j €
{0,1,...,n—1} such that for all (ug,us, ..., u,1) €R", t €[0,1],

n-1
|f(tuo, ... up)| < Zai(t)|ui| +b(t)|u;|” +rt); (2.23))
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(A3) there exists M > 0 such that for (uy,uy, . .., uy—1) € R, if [u| > M, then

n-1
|f<t/u/ul/---/un—1)| > a|u| - Zailui| =Y, te [0/1]/
i=1

wherea >0, a;>20,i=1,2,...,n-1, y 20;
(Ay4) there exists M* > 0 such that for any d € R, if |d| > M*, then either

d-f(t,d,0,...,00<0
or

d-f(t,d,0,...,0)>0.

(2.24)

(2.25)

(2.26)

Then, for every e € L'[0,1], BVP (1.1), (1.2) has at least one solution in C""1[0,1] provided that

Z?:_Ol lailly <1/ Ap, where Ay = A1+ 1+ (1/a)2;’=_11a1~, A1 as in Lemma 2.1.
Proof. Set
Q={uedomL\KerL:Lu=ANu, A€[0,1]}.
Then for u € Qi, Lu=ANu, thus A #0, Nu € Im L = Ker Q. Hence
¢
f [f(tut),...,u" D) +e(t)]dt =
0
Thus, there exists t; € [0, ¢] such that
1 (¢
F(to, (1), 10, D (1)) = -3 J' e(t)dt.
0
This yields
! n— 1
|f (to, u(to), v/ (to), ..., u™ ™V (t))] < g||€||1-
If for some t; € [0, 1], |u(t1)| < M, then we have

|u(0)| = <M+ [[t]|oo.

u(t) - J:lu’(t)dt

Otherwise, if |u(t)| > M for any t € [0,1], from (2.30) and (A3), we obtain

w@] < 2 Zalu )]+ (v el

< Sl o 3(v+ e

(2.27)

(2.28)

(2.29)

(2.30)

(2.31)

(2.32)
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Thus

to
1u(0)] = |u(to) —L u’(t)dt‘

< fu(to) | + 1]l (2.33)

—Zazllu |, + (r + gnenl) [t

Again, since u(i)(O) =0,i=1,2,...,n—2,then forallt € [0,1], we have

1) = [u®(0) +fu<”“<t)dt| <[l (234)
Thus
|u®|, < |u®V|,, i=12...,n-2. (2.35)
Therefore, we have
@ < [lu" .., i=12...,n-2 (2.36)
Hence
IPull = |u(0)] < <1 + iﬁa) ], + i(v * éllem) +M. (2.37)

According to the conditions ; >0 (j =1,2,...,n1), f; <0 (j=n1+1,m +2,...,m-2),and
u™2(1) = Z;’i‘lzﬂju("‘z) (11;), we have

m-2 11
u(n—z) (1) _ Z ﬁju(n_z) (ﬂ]) = Zﬂju(n_z) (7’[]) . (238)
j=m+1 j=1

Again, since there exist tp € [#1n,41, 1], t3 € [1]1, s, ] such that

m-2
u(n—Z)(t2> ;[u(n—Z)(l)_ Z ﬂju(n_2)(71j)]/ (2.39)
] n1+1ﬂ] j=m+1
-2 (4. — N
" (ts) = 1= Zni ﬁj;:ﬁ]u (1), (2.40)

thus, in view of z;?gzpj =1, from (2.38)—(2.40), we get

u" 2 (1) =u"2(t;). (2.41)
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Since 11,, < 7n,+1, then ty # t3, so from (2.41), there exists t* € (ty, t3) such that u™V(¢*) = 0.
Hence, in view of u®(t) = u D (#*) + [{u" (t)dt, we have

[l < 1], = Ny < [Nl 242)

Therefore, from (2.37) and (2.42), one has

1 1 1
|Pul| < ( 1+ ;Za,- | Nul; + E(y + g||e||1> + M. (2.43)
i=1

Again, for u € Q;, u € domL \ KerL, then (I - P)u € domL \ KerL, LPu = 0. Thus from
Lemma 2.1, we have

(2 = Pyul| = [|KpL(I - P)uf

< A |LG - Pl

(2.44)
= Aql|Lul)y
< Aql|Nulls.
From (2.43) and (2.44), we get
llull < 1Pull + [|(I - P)ul|
171—1
< (1 + A+ EZ&Q) ||Nu||1 +C (245)
i=1
= A2||Nu||1 +Cq,
where c; = M + (1/a)(y + (1/¢)llellr)-
If (2.23;),,-1 holds, then from (2.45), we get
lull < A, I:Z”al” ||u(l)|| + ||b||1||u(” 1)|| +c] (2.46)
where ¢ = ||r|l1 + |le|l1 + ¢1/Az. In view of (2.46), we obtain
A; (i) (n-1)
”uHoo < ”u” ST 1-A, ” ” Z”al" ”u ” + ||b||1||u ” +C (2.47)
1

Again, ||1'||e < ||u]|, from (2.46) and (2.47), one has

A
I TS 5T ”)[lealll [, + o a2 ] 249)
1
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In general, for k =2,3,...,n -2, we have

A, o ; o
[u®]_ < —[ laill 1@ + 1Bl fle D)2 + ¢, (2.4%)
2T 1= M35 al, iz%ll o ” ”

]| < Ao||blly 0 +

T 1= 030 el

AzC
1- A3 laill

(2.50)

Since o € [0,1), then from (2.50), there exists M,,_; > 0 such that ||u""V||., < M,_;. Thus from
(2.49;), there exist My >0, k=0,1,...,n -2, such that ||[u®||, < My, k=0,1,...,n—2. Hence

u,”oo""’ u(n_l)”oo}

< max{MO,Ml,. . -/Mn—l}-

[[ull = max{fullo,
{ (2.51)

Therefore, Q; is bounded.
If (2.23;),j € {0,1,...,n -2} holds, similar to (2.23;),,-1 argument, we can prove that £
is bounded too.
Set
Q,={ueKerL: NueImlL}. (2.52)

Then foru e Qy, ueKerL = {uedomL:u=d,deR},and QNu =0, one has

14
j [f(t,d,0,...,0) +e(t)]dt = 0. (2.53)
0

Thus, there exists t4 € [0,¢] such that

¢
f(ts,d,0,...,0) = —é e(t)dt. (2.54)
0
This yields
1
|f(t4,d,0,...,0)| < 3”6”1 (255)

Since either |d| < M or |[d| > M, if |d| > M, then in view of (A3) and (2.55), we have |d| <
(1/a)(y + (1/¢&)]|le]l1). Therefore, it follows that

|d| Smax{M,%<y+%||e||1>}. (2.56)

Hence Q, is bounded.
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Now, according to condition (A4), we have the following two cases.

Case 1. Forany d € R, if |[d| > M*, thend - f(t,d4,0,...,0) <0, t € [0,1]. In this case, we set
Qs={ueKerL:—(1-A)Ju+AQNu=0, Ae[0,1]}, (2.57)
where ] : Ker L — Im Q is the linear isomorphism given by J(d) =d, d € R.

In the following, we will show that Q3 is bounded. Suppose u,(t) = d,, € Q3 and |d,| —
oo (1 — o), then there exists A, € [0, 1], for sufficiently large n, such that

QN (dn)
d,
Since A, € [0,1], then {\,} has a convergent subsequence, and we write (for simplicity of

notation) A, — Ay (n — o).
If (2.23;);,j € {1,2,...,n -1} holds, then

T-Ap=Ady- (2.58)

QN (d,) 1 1{5
= - t,d,,0,...,0) +e(t)|dt
dn |dn| é O[f( ) e( )]
11
< E |E(”a0”1|dn| +rll + llellr) (2.59)
1 1irllx + llelly
= —|lao]|, + - ————
é” 0”1 & |dn|
If (2.23;)o holds, then
QN (d, 1|1
‘ d( )| - ] EJ; [f(t,dn,0,...,0) +e(t)]dt
11 o
< E |g(”a0”1|dn| +[[bll1|dn|” + 7l + llell) (2.60)

Lo bl 1 il + el

= a +
é” 0”1 é |dn|]—g § |dn|

Since |d,| — oo, then from (2.59) or (2.60), we know {|QN(d,,)/d,|} is bounded. From (2.58),
we have 1, — Ao # 0. Hence for n sufficiently large, A, # 0, and we have

% _ %[ff(t’d”;l—i’“"o)dt . dinfe(t)dt]. (2.61)

In view of |d,| — oo, we can assume that |d,,| > max{M, M*}, thus for n sufficiently large, from
(A3), we get

t,dy,0,...,0
'%‘ >Z 0. (2.62)

Again since d,, - f(t,d,,0,...,0) <0, t € [0,1], from (2.62), one has

f(t,dn,O,...,O) a
O AL A AR A s . 2.63
a, <-5 <0 ( )
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Hence, according to Fatou lemma, we obtain

Uéf(t ,dn,0,. dt+_,[ t)dt] SEFM‘#

HA)OO n—oo

t,dy,0,...,0
I =/ ) 4t (2.64)
o o d.ﬂ
<-25<0,

which contradicts with (1 - \,)/A, > 0. Thus Q3 is bounded.

Case 2. Forany d € R, if |[d| > M*, thend - f(t,d,0,...,0) >0, t € [0,1]. In this case, we set
Qs={ueKerL: (1-1)Ju+AQNu=0, L€[0,1]}, (2.65)
where | as in above. Similar to the above argument, we can also show that €23 is bounded.

In the following, we will prove that all the conditions of Theorem 1.1 are satisfied. Set Q
to be an open-bounded subset of Y such that |J7_,Q; € Q. By using the Ascoli-Arzela theorem,
we can prove that Kp(I - Q)N : Y — Y is compact, thus N is L-compact on Q. Then by the
above argument, we have the following.

(i) Lu # ANu for every (u,A) € [(dom L \ Ker L) N 0Q] x (0, 1).
(i) Nug¢Im L for u € Ker L N 0Q.

(if) H(u, A) = £AJu+(1-1)QNu. According to the above argument, we know H (u, 1) # 0
for every u € Ker L N 0Q. Thus, by the homotopy property of degree,

deg(QN]|kerr, QNKerL,0) = deg(H(-,0), 2NKerL,0)
=deg(H(,1),QNnKerL,0) (2.66)
=deg(+J,QnKerL,0) #0.

Then by Theorem 1.1, Lu = Nu has at least one solution in dom L N Q, so that BVP (1.1), (1.2)
has solution in C"1[0, 1]. The proof is finished. O

Now, we will consider existence results for BVP (1.1), (1.3). In the following, the map-
ping N and linear operator L are the same as above, and let

m-2
domL = {u e W™ (0,1) : u®(0) =0, i=1,2,...,n =1, u®D(1) = D ;u®? () } (2.67)
j=1

Lemma 2.3. Ifz ﬂ] }7512.[31'71,2' #1,then L :domL CY — Zis a Fredholm operator of index
zero. Furthermore the lzrzear continuous projector Q : Z — Z can be defined by

Qv - ﬁ] ]Zﬂ; j [ o(sasds, (2.68)
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and linear operator Kp = Im L — dom L N Ker P can be written as

Sn So
Kpv = ff j v(s1)dsy -+ dsy, (2.69)
with
|Kpo| <llvlli, Vo eImL. (2.70)

Notice that the KerL = {u € domL : u=d, d e R, t € [0,1]} and ImL = {v € Z :
"i’lzﬁjf;_fgzv(sl)dsl ds, = 0}. Thus, by using the same method as the proof of Lemma 2.1, we
]

can prove Lemma 2.3, and we omit it.

Theorem 2.4. Let f : [0,1] x R" — R be a continuous function. Assume that condition (A) of
Theorem 2.2 and the followmg conditions are satisfied:

(Ag) there exists M > O such thatfor u e domL,if |u(t)| > M forall t € [0,1], then

m=2 1 psy
Zﬂ]f J;) [f(s1,u(s1),...,u™ ™V (s1)) +e(s1)]ds1 ds, #0; (2.71)
=

(Ay) there exists M* > 0 such that for any d € R, if |d| > M*, then either

m-2 1 psy
d- Zﬁ,f f [f(s1,4,0,...,0) +e(s1)]ds1 dsz <0, (2.72)
j=1 ;70
or else
m-2 1 psy
d- Zﬁ]f f [f(s1,d,0,...,0) +e(s1)]dsi dsy > 0. (2.73)
=1

Then, for every e € L'[0,1], BVP (1.1), (1.3) has at least one solution in C""1[0,1] provided that
St llaill <1/2.

The proof of Theorem 2.4 is similar to the proof of Theorem 2.2, and we omit it.
Next we give two examples to demonstrate the applications of the main results.

Example 2.5. Consider the boundary value problems

u"(t) = f(tu(t),u' ), u"(t) +et), te(0,1),
(2.74)
u"(0) = u"(§), u'(0) =0, u' (1) = 6u’<%> - 3u’<%> - 2u’<%>,

where f(t,u,v,w) = (1/22)u + (1/44)v + (1/44)w + sin(w)">,e € L'[0,1], ¢ € (0,1).
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Since p1 =6, pp=-3, f;=-2,m=1/6,12=1/3, 13 =1/2, then
@) pr+Po+Ps=1, piq+fop + 3z # 1;
(i) |f(t, w,0,w)| < (1/22)|u] + (1/44)|0] + (1/44)|w| + |w|'/>;
(iii) |f(t, w,v,w)| 2 (1/22)|u] - (1/44)|v| - (1/44)|w| - 1;
(iv) forany d € R, d - f(t,d,0,0) = (1/22)d? > 0.
Furthermore
Ap=1+ Zlﬁ] =5,
|Z] 1ﬁ]’1] 1|
Ap=Ay+1+— thl—5+1+1—7 (2.75)

1 1

1 1 1 1 1
laolly + larlly + Nlaally = 5+ z + =17 < 5

Hence from Theorem 2.2, for every e € L[0, 1], BVP (2.74) has at least one solution u € C2[0,1].

Example 2.6. Consider the boundary value problems

u”(t) = f(tu(t),u't),u" ) +e(t), te(0,1),

=0 oo v=-s(l)eae(D)em(d), @

where f(t,u,v,w) = (1/8)u + (1/8)v + (1/8)w + sin’(u)sin(w)'/?, e € L'[0,1], ¢ € (0,1).
Since 1 =4, fp=3,3=2, 1 =1/4, 1 =1/3, 3 = 1/2, then

() 1+ P+ Ps =1, pus + Pty + Pors # 15
(i) |f (t, u,0,)| < (1/8)|ul + (1/8)[0] + (1/8)w] + [w]'/3;
(iii) let M = 8, then for |u(t)| > M, one has

3 1 psy
Zﬁjj [F (51, u(s1), 1 (1), (51)) + e(s1)] s dsz # 0; 2.77)
n

j=1 ;70

(iv) for any d € R, one has

3 1 S2 5
. - 2
d;ﬂ,fnjj; f(S1,d,0,0)dSl ds, 192d > 0. (2.78)
Furthermore
1 1 1 3 1
laoll + lasll + laoll = 5+ 5+ 5 = 5 < 3 @79)

Hence from Theorem 2.4, for every e € L'[0, 1], BVP (2.76) has at least one solution u € C2[0,1].
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