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1. Introduction

The purpose of this work is to study regularity theory related to partial differential equa-
tions with nonstandard growth conditions. The principal prototype that we have in mind
is the equation

div
(
p(x)

∣∣∇u(x)
∣∣p(x)−2∇u(x)

)
= 0, (1.1)

which is the Euler-Lagrange equation of the variational integral

∫ ∣∣∇u(x)
∣∣p(x)

dx. (1.2)

Here p(·) is a measurable function satisfying

1 < inf
x∈Rn

p(x)≤ p(x)≤ sup
x∈Rn

p(x) <∞. (1.3)

If p(·) is a constant function, then we have the standard p-Laplace equation and p-
Dirichlet integral. This kind of variable exponent p-Laplace equation has first been con-
sidered by Zhikov [1] in connection with the Lavrentiev phenomenon for a Thermistor
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problem. By now there is an extensive literature on partial differential equations with
nonstandard growth conditions; for example, see [2–6].

It has turned out that regularity results for weak solutions of (1.1) do not hold without
additional assumptions on the variable exponent. In [1] Zhikov introduced a logarith-
mic condition on modulus of continuity. Variants of this condition have been expedient
tools in the study of maximal functions, singular integral operators, and partial differen-
tial equations with nonstandard growth conditions on variable exponent spaces. Under
this assumption Harnack’s inequality and local Hölder continuity follow from Moser or
DeGiorgi-type procedure; see [7, 8]. See also [9]. An interesting feature of this theory is
that estimates are intrinsic in the sense that they depend on the solution itself. For exam-
ple, supersolutions are assumed to be locally bounded and Harnack-type estimates in [7]
depend on this bound.

In this work we are interested in possibly unbounded supersolutions of (1.1) and hence
the previously obtained estimates are not immediately available for us. The main nov-
elty of our approach is that instead of the boundedness we apply summability estimates
for supersolutions. Roughly speaking we are able to replace L∞-estimates with certain
Lp-estimates for small values of p. The argument is a modification of Moser’s iteration
scheme presented in [7]. However, the modification is not completely straightforward
and we have chosen to present all details here. As a by-product, we obtain refinements of
results in [7, 9].

After these technical adjustments we are ready for our main results. Solutions are
known to be continuous and hence it is natural to ask whether supersolutions are semi-
continuous. Indeed, using Harnack-type estimates we show that every supersolution has
a lower semicontinuous representative. Thus it is possible to study pointwise behavior of
supersolutions. Our main result states that the singular set of a supersolution is of zero
capacity. For the capacity theory in variable exponent spaces we refer to [10]. In fact we
study a slightly more general class of functions than supersolutions which corresponds to
the class of superharmonic functions in the case when p(·) is constant; see [11, 12].

2. Preliminaries

A measurable function p : Rn→ (1,∞) is called a variable exponent. We denote

p+
A = sup

x∈A
p(x), p−A = inf

x∈A
p(x), p+ = sup

x∈Rn
p(x), p− = inf

x∈Rn
p(x) (2.1)

and assume that 1 < p− ≤ p+ <∞.
Let Ω be an open subset of Rn with n ≥ 2. The variable exponent Lebesgue space

Lp(·)(Ω) consists of all measurable functions u defined on Ω for which
∫

Ω

∣∣u(x)
∣∣p(x)

dx <∞. (2.2)

The Luxemburg norm on this space is defined as

‖u‖p(·) = inf

{
λ > 0 :

∫

Ω

∣∣∣∣
u(x)
λ

∣∣∣∣
p(x)

dx ≤ 1

}
. (2.3)
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Equipped with this norm Lp(·)(Ω) is a Banach space. The variable exponent Lebesgue
space is a special case of a more general Orlicz-Musielak space studied in [13]. For a
constant function p(·) the variable exponent Lebesgue space coincides with the standard
Lebesgue space.

The variable exponent Sobolev space W1,p(·)(Ω) consists of functions u ∈ Lp(·)(Ω)
whose distributional gradient ∇u exists almost everywhere and belongs to Lp(·)(Ω). The
variable exponent Sobolev space W1,p(·)(Ω) is a Banach space with the norm

‖u‖1,p(·) = ‖u‖p(·) +‖∇u‖p(·). (2.4)

For basic results on variable exponent spaces we refer to [14]. See also [15].
A somewhat unexpected feature of the variable exponent Sobolev spaces is that smooth

functions need not be dense without additional assumptions on the variable exponent.
This was observed by Zhikov in connection with the so-called Lavrentiev phenomenon.
In [1] he introduced a logarithmic condition on modulus of continuity of the variable
exponent. Next we briefly recall a version of this condition. The variable exponent p is
said to satisfy a logarithmic Hölder continuity property, or briefly log-Hölder, if there is
a constant C > 0 such that

∣∣p(x)− p(y)
∣∣≤ C

− log
(|x− y|) (2.5)

for all x, y ∈Ω such that |x− y| ≤ 1/2. Under this condition smooth functions are dense
in variable exponent Sobolev spaces and there is no confusion to define the Sobolev space

with zero boundary values W
1,p(·)
0 (Ω) as the completion of C∞0 (Ω) with respect to the

norm ‖u‖1,p(·). We refer to [16, 17] for the details.
In this work we do not need any deep properties of variable exponent spaces. For

our purposes, one of the most important facts about the variable exponent Lebesgue
spaces is the following. If E is a measurable set with a finite measure, and p and q are
variable exponents satisfying q(x) ≤ p(x) for almost every x ∈ E, then Lp(·)(E) embeds
continuously into Lq(·)(E). In particular this implies that every function u ∈W1,p(·)(Ω)

also belongs to W
1,p−Ω
loc (Ω) and to W1,p−B (B), where B ⊂Ω is a ball. For all these facts we

refer to [15, 14].
We say that a function u∈W1,p(·)

loc (Ω) is a weak solution (supersolution) of (1.1), if

∫

Ω
p(x)

∣∣∇u∣∣p(x)−2∇u ·∇ϕdx = (≥)0 (2.6)

for every test function ϕ ∈ C∞0 (Ω) (ϕ ≥ 0). When 1 < p− ≤ p+ <∞ the dual of Lp(·)(Ω)
is the space Lp

′(·)(Ω) obtained by conjugating the exponent pointwise, see [14]. This to-

gether with our definition W
1,p(·)
0 (Ω) as the completion of C∞0 (Ω) implies that we can

also test with functions ϕ∈W1,p(·)
0 (Ω).

Our notation is rather standard. Various constants are denoted by C and the value
of the constant may differ even on the same line. The quantities on which the constants
depend are given in the statements of the theorems and lemmas. A dependence on p
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includes dependence on the log-Hölder-constant of p. Note also that due to the local
nature of the estimates, the constants depend only on the values of p in some ball.

3. Harnack estimates

In this section we prove a weak Harnack inequality for supersolutions. Throughout this
section we write

vα = u+Rα, (3.1)

where u is a nonnegative supersolution.
We derive a suitable Caccioppoli-type estimate with variable exponents. Our aim is

to combine this estimate with the standard Sobolev inequality. Thus we need a suitable
passage between constant and variable exponents. This is accomplished in the following
lemma.

Lemma 3.1. Let E be a measurable subset of Rn. For all nonnegative measurable functions
f and g defined on E,

∫

E
f g p

−
E dx ≤

∫

E
f dx+

∫

E
f g p(x) dx. (3.2)

Proof. The claim follows from an integration of the pointwise inequality

f (x)g(x)p
−
E ≤ f (x) + f (x)g(x)p(x). (3.3)

If p(x)= p−E this is immediate. Otherwise we apply Young’s inequality with the exponent
p(x)/p−E > 1. �

Lemma 3.2 (Caccioppoli estimate). Suppose that u is a nonnegative supersolution in B4R.
Let E be a measurable subset of B4R and η ∈ C∞0 (B4R) such that 0 ≤ η ≤ 1. Then for every
γ0 < 0 there is a constant C depending on p and γ0 such that the inequality

∫

E
v
γ−1
α |∇u|p−E ηp+

B4R dx ≤ C
∫

B4R

(
ηp

+
B4R v

γ−1
α + v

γ+p(x)−1
α |∇η|p(x)

)
dx (3.4)

holds for every γ < γ0 < 0 and α∈R.

Proof. Let s = p+
B4R

. We want to test with the function ψ = v
γ
αηs. To this end we show

that ψ ∈W
1,p(·)
0 (B4R). Since η has a compact support in B4R, it is enough to show that

ψ ∈W1,p(·)(Ω). We observe that ψ ∈ Lp(·)(Ω) since |vγα|ηs ≤ Rαγ. Furthermore, we have

|∇ψ| ≤ ∣∣γvγ−1
α ηs∇u+ v

γ
αsηs−1∇η∣∣≤ |γ|Rα(γ−1)|∇u|+ sRαγ|∇η|, (3.5)

from which we conclude that |∇ψ| ∈ Lp(·)(Ω).
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Using the facts that u is a supersolution and ψ is a nonnegative test function we find
that

0≤
∫

B4R

p(x)
∣∣∇u(x)

∣∣p(x)−2∇u(x) ·∇ψ(x)dx

=
∫

B4R

p(x)γ|∇u|p(x)ηsv
γ−1
α dx+

∫

B4R

p(x)s|∇u|p(x)−2v
γ
αηs−1∇u ·∇ηdx.

(3.6)

Since γ is a negative number, this implies

∣∣γ0
∣∣p−B4R

∫

B4R

|∇u|p(x)ηsv
γ−1
α dx ≤ s

∫

B4R

p(x)|∇u|p(x)−2v
γ
αηs−1∇u ·∇ηdx. (3.7)

We denote the right-hand side of (3.7) by I . Since the left-hand side of (3.7) is nonnega-
tive, so is I . Using the ε-version of Young’s inequality we obtain

I ≤ s
∫

B4R

p(x)|∇u|p(x)−1v
γ
αηs−1|∇η|dx

≤ s
∫

B4R

(
1
ε

)p(x)−1

p(x)

(
v

(γ+p(x)−1)/p(x)
α |∇η|ηs−s/p′(x)−1

)p(x)

p(x)

+ εp(x)

(
|∇u|p(x)−1ηs/p

′(x)v
γ−(γ+p(x)−1)/p(x)
α

)p′(x)

p′(x)
dx

≤ s
(

1
ε

)s−1∫

B4R

v
γ+p(x)−1
α |∇η|p(x)ηs−p(x) dx

+ s(s− 1)ε
∫

B4R

|∇u|p(x)ηsv
γ−1
α dx.

(3.8)

By combining this with (3.7) we arrive at

∣∣γ0
∣∣p−B4R

∫

B4R

|∇u|p(x)ηsv
γ−1
α dx

≤ s
(

1
ε

)s−1∫

B4R

v
γ+p(x)−1
α |∇η|p(x)ηs−p(x) dx+ s(s− 1)ε

∫

B4R

|∇u|p(x)ηsv
γ−1
α dx.

(3.9)
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By choosing

ε =min

{
1,

∣∣γ0
∣∣p−B4R

2s(s− 1)

}
(3.10)

we can absorb the last term in (3.9) to the left-hand side and obtain

∫

B4R

|∇u|p(x)ηsv
γ−1
α dx ≤ s

(
2s(s− 1)∣∣γ0

∣∣p−B4R

+ 1

)s−1
2

|γ0|p−B4R

∫

B4R

v
γ+p(x)−1
α |∇η|p(x) dx. (3.11)

Taking f = v
γ−1
α ηs and g = |∇u| in Lemma 3.1 and using inequality (3.11) we have the

desired estimate. �

In the proof of the Caccioppoli estimate we did not use any other assumption on the
variable exponent p except that 1 < p− ≤ p+ <∞. From now on we assume the logarith-
mic Hölder continuity. This is equivalent to the following estimate:

∣∣B
∣∣−(p+

B−p−B ) ≤ C, (3.12)

where B�Ω is any ball; see for example [18].
The next two lemmas will be used to handle the right-hand side of the Caccioppoli

estimate.

Lemma 3.3. If the exponent p(·) is log-Hölder continuous,

r−p(x) ≤ Cr−p−E (3.13)

provided x ∈ E ⊂ Br .
Proof. For r ≥ 1 we have r−p(x) ≤ r−p−E . Suppose then that 0 < r < 1. Since E ⊂ Br implies
oscE p ≤ oscBr p, we obtain

r−p(x) ≤ r−p+
E ≤ r−(oscE p)r−p

−
E ≤ r−(oscBr p)r−p

−
E ≤ Cr−p−E , (3.14)

where we used logarithmic Hölder continuity in the last inequality. �

In the following lemma the barred integral sign denotes the integral average.

Lemma 3.4. Let f be a positive measurable function and assume that the exponent p(·) is
log-Hölder continuous. Then

−
∫

Br
f p

+
Br−p−Br dx ≤ C‖ f ‖p

+
Br−p−Br
Ls(Br ) (3.15)

for any s > p+
Br − p−Br .
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Proof. Let q = p+
Br − p−Br . Hölder’s inequality implies

−
∫

Br
f p

+
Br−p−Br dx ≤ C

rn

(∫

Br
1dx

)1−q/s(∫

Br
f sdx

)q/s

≤ C

rn
rn(1−q/s)‖ f ‖qLs(Br ) ≤ C‖ f ‖

q
Ls(Br ).

(3.16)

Again we used the logarithmic Hölder continuity in the last inequality. �

Later we apply Lemma 3.4 with f = uq′ . In this case the upper bound written in terms
of u is

C‖u‖q
′(p+

Br−p−Br )

Lq′s(Br )
. (3.17)

Now we have everything ready for the iteration. We write

Φ( f ,q,Br)=
(
−
∫

Br
f q dx

)1/q

(3.18)

for a nonnegative measurable function f .

Lemma 3.5. Assume that u is a nonnegative supersolution in B4R and let R ≤ ρ < r ≤ 3R.
Then the inequality

Φ
(
v1,qβ,Br

)≤ C1/|β|(1 + |β|)p+
B4R

/|β|
(

r

r− ρ
)p+

B4R
/|β|

Φ
(
v1,

βn

n− 1
,Bρ

)
(3.19)

holds for every β < 0 and 1 < q < n/(n− 1). The constant C depends on n, p, and the
Lq

′s(B4R)-norm of u with s > p+
B4R
− p−B4R

.

Proof. In Lemma 3.2 we take E = B4R and γ = β− p−B4R
+ 1. Then γ < 1− p−B4R

and thus

∫

B4R

v
β−p−B4R
1 |∇u|p−B4R ηp

+
B4R dx ≤ C

∫

B4R

(
ηp

+
4Rv

β−p−B4R
1 + v

β−p−B4R
+p(x)

1 |∇η|p(x)
)

dx. (3.20)

Next we take a cutoff function η ∈ C∞0 (Br) with 0≤ η ≤ 1, η = 1 in Bρ, and

∣∣∇η∣∣≤ Cr

R(r− ρ)
. (3.21)

By Lemma 3.3 we have

∣∣∇η∣∣−p(x) ≤ CR−p(x)
(

r

r− ρ
)p+

B4R ≤ CR−p−B4R

(
r

r− ρ
)p+

B4R

. (3.22)
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Using inequality (3.20) with this choice of η we have

−
∫

Br

∣∣∣∣∇
(
v
β/p−B4R
1 ηp

+
B4R

/p−B4R

)∣∣∣∣
p−B4R

dx

≤ C−
∫

Br
|β|p−B4R v

β−p−B4R
1 |∇u|p−B4R ηp

+
B4R dx+C−

∫

Br
v
β
1η

p+
B4R
−p−B4R |∇η|p−B4R dx

≤ C|β|p−B4R−
∫

Br

(
ηp

+
B4R v

β−p−B4R
1 + v

β−p−B4R
+p(x)

1 |∇η|p(x)
)

dx+C−
∫

Br
v
β
1η

p+
B4R
−p−B4R |∇η|p−B4R dx

≤ C(1 + |β|)p+
B4R

(
−
∫

Br
ηp

+
B4R v

β−p−B4R
1 dx+−

∫

Br
v
β−p−B4R

+p(x)
1 |∇η|p(x) dx+−

∫

Br
v
β
1 |∇η|p

−
B4R dx

)
.

(3.23)

Now the goal is to estimate each integral in the parentheses by

(
−
∫

Br
v
qβ
1 dx

)1/q

. (3.24)

The first integral can be estimated with Hölder’s inequality. Since v
−p−B4R
1 ≤ R−p−B4R , we have

−
∫

Br
ηp

+
B4R v

β−p−B4R
1 dx ≤

(
−
∫

Br
v
q(β−p−B4R

)
1 dx

)1/q

≤ R−p−B4R

(
−
∫

Br
v
qβ
1 dx

)1/q

. (3.25)

By (3.22), Hölder’s inequality, and Lemma 3.4 for the second integral we have

−
∫

Br
v
β−p−B4R

+p(x)
1 |∇η|p(x) dx

≤ CR−p−B4R

(
r

r− ρ
)p+

B4R−
∫

Br
v
β−p−B4R

+p(x)
1 dx

≤ CR−p−B4R

(
r

r− ρ
)p+

B4R
(
−
∫

Br
v
q′(p(x)−p−B4R

)
1 dx

)1/q′(
−
∫

Br
v
qβ
1 dx

)1/q

≤ CR−p−B4R

(
r

r− ρ
)p+

B4R
(

1 +
∥∥v1

∥∥q′(p+
B4R
−p−B4R

)

Lq′s(B4R)

)1/q′(
−
∫

Br
v
qβ
1 dx

)1/q

.

(3.26)

Finally, for the third integral we have by Hölder’s inequality,

−
∫

Br
v
β
1

∣∣∇η∣∣p−B4R dx ≤ CR−p−B4R

(
r

r− ρ
)p−B4R

(
−
∫

Br
v
qβ
1 dx

)1/q

. (3.27)
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Now we have arrived at the inequality

−
∫

Br

∣∣∣∇
(
v
β/p−B4R
1 ηp

+
B4R

/p−B4R

)∣∣∣
p−B4R dx

≤ C(1 +
∣∣β
∣∣)p+

B4R

(
1 +‖v1‖q

′(p+
B4R
−p−B4R

)

Lq′s(B4R)

)1/q′

R−p
−
B4R

(
r

r− ρ
)p+

B4R
(
−
∫

Br
v
qβ
1 dx

)1/q

.

(3.28)

By the Sobolev inequality

(
−
∫

Br
|u|na/(n−1) dx

)(n−1)/na

≤ CR
(
−
∫

Br
|∇u|adx

)1/a

, (3.29)

where u∈W1,a
0 (Br) and a= p−B4R

, and (3.28) we obtain

(
−
∫

Bρ
v
βn/(n−1)
1 dx

)(n−1)/n

≤
(
C−
∫

Br

(
v
β/p−B4R
1 ηp

+
B4R

/p−B4R

)np−B4R
/(n−1)

dx
)(n−1)/n

≤ CRp−B4R−
∫

Br

∣∣∣∇
(
v
β/p−B4R
1 ηp

+
B4R

/p−B4R

)∣∣∣
p−B4R dx

≤ C(1 + |β|)p+
B4R

(
r

r− ρ
)p+

B4R
(
−
∫

Br
v
qβ
1 dx

)1/q

.

(3.30)

The claim follows from this since β is a negative number. �

The next lemma is the crucial passage from positive exponents to negative exponents
in the Moser iteration scheme.

Lemma 3.6. Assume that u is a nonnegative supersolution in B4R and s > p+
B4R
− p−B4R

. Then
there exist constants q0 > 0 and C depending on n, p, and Ls(B4R)-norm of u such that

Φ
(
v1,q0,B3R

)≤ CΦ(v1,−q0,B3R
)
. (3.31)

Proof. Choose a ball B2r ⊂ B4R and a cutoff function η ∈ C∞0 (B2r) such that η = 1 in Br
and |∇η| ≤ C/r. Taking E = Br and γ = 1− p−Br in Lemma 3.2 we have

−
∫

Br

∣∣∇ logv1
∣∣p−Br dx ≤ C

(
−
∫

B2r

v
−p−Br
1 +−

∫

B2r

v
p(x)−p−Br
1 r−p(x) dx

)
. (3.32)
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Using Lemmas 3.3 and 3.4 and the estimate v
−p−Br
1 ≤ R−p−Br ≤ r−p−Br we have

−
∫

Br

∣∣∇ logv1
∣∣p−Br dx ≤ C

(
r−p

−
Br + r−p

−
B2r−
∫

B2r

v
p(x)−p−Br
1 dx

)

≤ C
(
r−p

−
Br + r−p

−
B2r

(
1 +‖v1‖p

+
B4R
−p−B4R

Ls(B4R)

))
.

(3.33)

Let f = logv1. By the Poincaré inequality and the above estimate we obtain

−
∫

Br

∣∣ f − fBr
∣∣dx ≤

(
r p

−
Br−
∫

Br

∣∣∇ f
∣∣dx

)1/p−Br

≤ C
(

1 + r p
−
Br−p−B2r

(
1 +‖v1‖p

+
B4R
−p−B4R

Ls(B4R)

))1/p−Br
.

(3.34)

Note that p−Br ≥ p−B2r
since Br ⊂ B2r , so that the right-hand side of (3.34) is bounded.

The rest of the proof is standard. Since (3.34) holds for all balls B2r ⊂ B4R, by the John-
Nirenberg lemma there exist positive constants C1 and C2 depending on the right-hand
side of (3.34) such that

−
∫

B3R

eC1| f− fB3R |dx ≤ C2. (3.35)

Using (3.35) we can conclude that

(−
∫

B3R

eC1 f dx
)(
−
∫

B3R

e−C1 f dx
)
=
(
−
∫

B3R

eC1( f− fB3R ) dx
)(
−
∫

B3R

e−C1( f− fB3R ) dx
)

≤
(
−
∫

B3R

eC1| f− fB3R |dx
)2

≤ C2
2,

(3.36)

which implies that

(
−
∫

B3R

vC1
1 dx

)1/C1

=
(
−
∫

B3R

eC1 f dx
)1/C1

≤ C2/C1
2

(
−
∫

B3R

e−C1 f dx
)−1/C1

= C2/C1
2

(
−
∫

B3R

v−C1
1 dx

)−1/C1

,

(3.37)

so that we can take q0 = C1. �

Note that the exponent q0 in Lemma 3.6 also depends on the Ls(B4R)-norm of u.
More precisely, the constant C1 obtained from the John-Nirenberg lemma is a universal
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constant divided by the right-hand side of (3.34). Thus we have

q0 = C

C′ +‖u‖p
+
B4R
−p−B4R

Ls(B4R)

. (3.38)

The following weak Harnack inequality is the main result of this section. It applies also
for unbounded supersolutions.

Theorem 3.7 (weak Harnack inequality). Assume that u is a nonnegative supersolution in
B4R, 1 < q < n/(n− 1) and s > p+

B4R
− p−B4R

. Then

(
−
∫

B2R

uq0 dx
)1/q0

≤ C
(

ess inf
BR

u(x) +R
)

, (3.39)

where q0 is the exponent from Lemma 3.6 and C depends on n, p, q, and Lq
′s(B4R)-norm

of u.

Remark 3.8. (1) The main difference compared to Alkhutov’s result in [7, 9] is that the
constant and the exponent depend on the Lq

′s(B4R)-norm of u instead of the essential
supremum of u in B4R. This is a crucial advantage for us since we are interested in super-
solutions which may be unbounded.

(2) Since the exponent p(·) is uniformly continuous, we can take for example q′s =
p−Ω by choosing R small enough. Thus the constants in the estimates are finite for all
supersolutions u in a scale that depends only on p(·).

Proof. Let R≤ ρ < r ≤ 3R, r j = ρ+ 2− j(r− ρ), and

ξj =−
(

n

(n− 1)q

) j
q0 (3.40)

for j = 0,1,2, . . .. By Lemma 3.5 we have

Φ
(
v1,ξj ,Brj

)≤ C1/|ξj |(1 +
∣∣ξj
∣∣)p+

B4R
/|ξj |

(
r j

r j − r j+1

)p+
B4R

/|ξj |
Φ
(
v1,ξj+1,Brj+1

)
. (3.41)

An iteration of this inequality yields

Φ
(
v1,−q0,Br

)≤
∞∏

j=0

C1/|ξj |(1 +
∣∣ξj
∣∣)p+

B4R
/|ξj |

(
r j

r j − r j+1

)p+
B4R

/|ξj |
ess inf
x∈Bρ

v1(x)

≤ C
∑∞

j=0 1/|ξj |2
∑∞

j=0 j p
+
B4R

/|ξj |
(

r

r− ρ
)∑∞

j=0 p
+
B4R

/|ξj |

×
∞∏

j=0

(
1 +

∣∣ξj
∣∣)p+

B4R
/|ξj | ess inf

x∈Bρ
v1(x).

(3.42)
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We estimate the remaining product by using the fact that |ξj| > 1 when j > j0 and |ξj| ≤ 1
when j ≤ j0 for some j0. This implies that

∞∏

j=0

(
1 +

∣∣ξj
∣∣)p+

B4R
/|ξj | ≤ 2

∑ j0
j=0 p

+
B4R

/|ξj |2
∑∞

j= j0+1 p
+
B4R

/|ξj |
(

n

(n− 1)q

)p+
B4R

q0
∑∞

j= j0+1 j((n−1)q/n) j

≤ 2
∑∞

j=0 p
+
B4R

/|ξj |
(

n

(n− 1)q

)p+
B4R

q0
∑∞

j=0 j((n−1)q/n) j

.

(3.43)

All the series in the above estimates are convergent by the root test, so we obtain

Φ
(
v1,−q0,Br

)≤ C ess inf
x∈Bρ

v1(x). (3.44)

Next we choose ρ = R and r = 3R and use Lemma 3.6 to get

Φ
(
v1,q0,B3R

)≤ C ess inf
x∈BR

v1(x). (3.45)

Finally we observe that

Φ
(
v1,q0,B2R

)≤ CΦ(v1,q0,B3R
)
. (3.46)

This completes the proof. �

Lemma 3.4 can be used in the proof of the supremum estimate in [7] in the same way
as in the proof of Lemma 3.5. Combining this with the weak Harnack inequality above
one obtains the full Harnack inequality with the constant depending on the Lq

′s(B4R)-
norm of the solution instead of the supremum. This implies the local Hölder continuity
of solutions by the standard technique; see [19]. Summing up, we have the following
theorem.

Theorem 3.9 (the Harnack inequality). Let u be a nonnegative solution in B4R, 1 < q <
n/(n− 1), and s > p+

B4R
− p−B4R

. Then

esssup
x∈BR

u(x)≤ C
(

ess inf
x∈BR

u(x) +R
)

, (3.47)

where the constant C depends on n, p, and the Lq
′s(B4R)-norm of u.

The main difference compared to earlier results is that the constant depends on the
Lq

′s-norm instead of the essential supremum. The following example shows that the con-
stant in the Harnack inequality cannot be independent of u even if the exponent is Lips-
chitz continuous.
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Example 3.10. Let p : (0,1)→ (1,∞) be defined by

p(x)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

3 for 0 < x ≤ 1
2

,

3− 2
(
x− 1

2

)
for

1
2
< x < 1.

(3.48)

Suppose that ua ∈W1,p(·)(0,1) is the minimizer of the Dirichlet energy integral with the
boundary values 0 and a > 0. Then ua is a solution with the same boundary values by [20,
Theorem 5.7].

Theorem 3.2 of [21] gives

ua(x)=
∫ x

0

(
Ca
p(y)

)1/(p(y)−1)

dy, (3.49)

where Ca is a constant obtained from the equation

∫ 1

0

(
Ca
p(y)

)1/(p(y)−1)

dy = a. (3.50)

Note that if a→∞, then Ca→∞. In (0,1/2) the minimizer is linear, ua(x)= √(Ca/3)x. In
(1/2,3/5) the gradient of ua increases from

√
Ca/3 to (5Ca/14)5/9. In 11/20, the midpoint

of (1/2,3/5), the gradient of ua is (10Ca/29)10/19. Hence we find that

ua

(
3
5

)
≥
√
Ca
3

1
2

+
1

20

(
10Ca

29

)10/19

. (3.51)

Let B = B(1/2,1/10)= (2/5,3/5). Then we obtain

esssupx∈B
∣∣ua(x)

∣∣
ess infx∈B

∣∣ua(x)
∣∣ ≥

√
(Ca/3)(1/2) + (1/20)(10Ca/29)10/19

√
(Ca/3)(2/5)

= 5
4

+
1
8

1√
3

(
10
29

)10/19

C1/38
a −→∞

(3.52)

as a→∞.
This example can be extended to the planar case by studying functions fa(x, y)= ua(x)

in {(x, y) : 0 < x < 1, 0 < y < 1} with the exponent q(x, y)= p(x).

4. The singular set of a supersolution

First we prove that every supersolution has a lower semicontinuous representative if the
exponent p(·) is log-Hölder. For this purpose, we need the fact that supersolutions are
locally bounded from below. This is true because subsolutions are locally bounded above,
which can be seen from the proof of Theorem 1 in [7].

We set

u∗(x)= ess liminf
y→x u(y)= lim

r→0
ess inf
y∈B(x,r)

u(y). (4.1)
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Theorem 4.1. Let u be a function defined on Ω such that
(1) u is finite almost everywhere, and
(2) min{u,λ} is a supersolution for every λ > 0.
Then u∗ is lower semicontinuous and

u∗(x)= u(x) for almost every x ∈Ω. (4.2)

Remark 4.2. Observe that all supersolutions satisfy the assumptions of the previous the-
orem. We present the result in a slightly more general case, since we would like to include
functions which are increasing limits of supersolutions. For bounded supersolutions the
theorem has been studied in [9].

Proof. Let Ω′�Ω and first assume that u is bounded above. Pick a point x ∈Ω′, choose
R such that B(x,2R)⊂Ω′ and let

M = esssup
Ω′

u+ 1. (4.3)

For 0 < r ≤ 2R denote m(r) = ess inf y∈B(x,r)u(y). Since supersolutions are locally
bounded below, we have m(r) >−∞ for 0 < r ≤ 2R.

The function u∗ is lower semicontinuous since u∗r (x) = ess inf y∈B(x,r)u(y) is lower
semicontinuous and u∗ is an increasing limit of the functions u∗r .

We will complete the proof for bounded functions u by showing that

u∗(x)= lim
r→0
−
∫

B(x,r)
u(y)dy. (4.4)

For every 0 < 5r ≤ R the function u−m(5r) is a nonnegative supersolution in B(x,4r).
Thus the weak Harnack inequality implies that

m(r)−m(5r)≥ C
((
−
∫

B2r

(
u−m(5r)

)q0 dx
)1/q0

− r
)

≥ C
((
M−m(5r)

)(q0−1)/q0

(
−
∫

B2r

(
u−m(5r)

)
dx
)1/q0

− r
)

,

(4.5)

where we assumed that q0 < 1. This implies that

0≤−
∫

B(x,2r)
udy−m(5r)

≤ C(M−m(5r)
)1−q0

(
m(r)−m(5r) +Cr

)q0 .

(4.6)

Since m(r)−m(5r) +Cr tends to zero as r → 0, the above estimate implies (4.4).
For the general case, denote ui =min{u, i} for i= 1,2, . . . and observe that

u∗(x)= lim
i→∞

u∗i (x). (4.7)



Petteri Harjulehto et al. 15

To see that u= u∗ almost everywhere, consider the sets

E = {x ∈Ω : u(x) <∞,u∗(x) 
= u(x)
}

,

F = {x ∈Ω : u(x)=∞, u∗(x) 
= u(x)
}
.

(4.8)

Then |F| = 0 since u is assumed to be finite almost everywhere. For the set E we have
E ⊂∪iEi, where

Ei =
{
x ∈Ω : u∗i (x) 
= ui(x)

}
, (4.9)

|Ei| = 0 by the first part of the theorem, and the claim follows. �

Our next goal is to obtain estimates for the singular set of a supersolution. To this end,
we derive two Caccioppoli-type estimates for a supersolution.

Lemma 4.3. Let u be a nonnegative supersolution in B4R, η ∈ C∞0 (B4R) such that 0≤ η ≤ 1
and γ < γ0 < 0. Then there is a constant C depending on p and γ0 such that

∫

B4R

∣∣∇u∣∣p(x)
ηp

+
B4R uγ−1 dx ≤ C

∫

B4R

uγ+p(x)−1
∣∣∇η∣∣p(x)

dx. (4.10)

Proof. Denote uk = u+ 1/k. Testing with ηp
+
B4R u

γ
k gives

∫

B4R

∣∣∇u∣∣p(x)
ηp

+
B4R u

γ−1
k dx ≤ C

∫

B4R

u
γ+p(x)−1
k

∣∣∇η∣∣p(x)
dx (4.11)

as in the proof of inequality (3.11) in Lemma 3.2. u
γ−1
k → uγ−1 monotonically as k→∞,

and similarly u
γ−1+p(x)
k → uγ−1+p(x) monotonically when γ− 1 + p(x) < 0. If γ− 1 + p(x)≥

0, we have

u
γ−1+p(x)
k

∣∣∇η∣∣p(x) ≤ C(1 +uγ−1+p(x))∣∣∇η∣∣p(x)

≤ C(2 +up(x))∣∣∇η∣∣p(x)
.

(4.12)

since γ is negative. Now we can let k→∞ in the above inequality, obtaining the claim by
the monotone converge theorem and the dominated converge theorem. �

In the following two theorems, q is an exponent such that 1 < q < n/(n− 1), s > p+
B4R
−

p−B4R
, and q0 > 0 is an exponent for which the weak Harnack inequality holds for the

function under consideration.

Theorem 4.4. Let u be a nonnegative supersolution in B4R, B2r ⊂ B4R, γ < γ0 < 0, η ∈
C∞0 (B4R) such that 0≤ η ≤ 1 and |∇η| ≤ C/r. Then

∫

Br∩{u≤λ}

∣∣∇u∣∣p(x)
ηp

+
B4R dx ≤ Cλ1−γrn−p

−
B2r

(
ess inf

Br
u+ r

)(γ−1+p−B2r
)
, (4.13)



16 Boundary Value Problems

where γ is chosen so that q0 ≥ q(γ− 1 + p−B2r
) > 0 and the constant C depends on n, p, γ0,

and the Lq
′s(B4R)-norm of u.

Proof. We have u/λ ≤ 1 whenever u ≤ λ. Using this fact, Lemmas 3.3, 3.4, and 4.3, the
Hölder inequality, and the weak Harnack inequality we obtain

∫

Br∩{u≤λ}
|∇u|p(x)ηp

+
B4R dx

≤
∫

Br∩{u≤λ}

(u
λ

)γ−1∣∣∇u∣∣p(x)
ηp

+
B4R dx

≤ Cλ1−γ
∫

B2r

uγ+p(x)−1
∣∣∇η∣∣p(x)

dx

≤ Cλ1−γr−p
−
B2r

∫

B2r

uγ−1+p(x) dx

≤ Cλ1−γrn−p
−
B2r

(
−
∫

B2r

uq
′(p(x)−p−B2r

) dx
)1/q′(

−
∫

B2r

uq(γ−1+p−B2r
) dx

)1/q

≤ Cλ1−γrn−p
−
B2r

(
1 +‖u‖q

′(p+
B4R
−p+

B4R
)

Lq′s(B4R)

)1/q′(
−
∫

B2r

uq(γ−1+p−B2r
) dx

)1/q

≤ Cλ1−γrn−p
−
B2r

(
ess inf

Br
u+ r

)(γ−1+p−B2r
)
.

(4.14)

�

The Sobolev p(·)-capacity of a set E ⊂Rn is defined as

Cp(·)(E)= inf
∫

Rn

(∣∣u(x)
∣∣p(x)

+
∣∣∇u(x)

∣∣p(x)
)

dx, (4.15)

where the infimum is taken over the set of admissible functions

Sp(·)(E)= {u∈W1,p(·)(Rn) : u≥ 1 in an open set containing E
}
. (4.16)

This definition gives a Choquet capacity; for this and other properties of Cp(·), see [10].
The following theorem is our main result.

Theorem 4.5. Let u be a nonnegative function such that
(1) u is lower semicontinuous,
(2) min{u,λ} is a supersolution for each λ > 0, and
(3) u∈ Ltloc(Ω) for some t > 0.

Denote

Eλ =
{
x ∈ B(x0,r

)
: u(x) > λ

}
, (4.17)



Petteri Harjulehto et al. 17

where B(x0,r) is a ball with B4r = B(x0,4r)�Ω. Then

Cp(·)
(
Eλ
)≤ Crn−p−B2r λ−q0/q

(
inf
Br
u+ r

)q0/q
, (4.18)

where the constant C depends on p, n, and the Lt(B4r)-norm of u.

Remark 4.6. (1) Observe that all supersolutions satisfy the assumptions of the previous
theorem.

(2) For constant p(·), the class of functions which satisfy (1)–(3) is called p-
superharmonic functions. This is a strictly bigger class of functions than supersolutions.
Indeed, the nonlinear counterpart of a fundamental solution is the prime example of such
a function.

Proof. Denote uλ =min{u,λ} and choose ϕ ∈ C∞0 (B(x0,2r)) such that 0 ≤ ϕ ≤ 1, ϕ = 1
in B(x0,r), and |∇ϕ| ≤ C/r. For sufficiently small radii r, we can choose

q0 = C

C+‖u‖p
+
B4R
−p−B4R

Lt(B4R)

(4.19)

since we can take q′s= t with a suitable choice of s > p+
B4r
− p−B4r

. Then the weak Harnack
inequality holds for uλ with an exponent and a constant independent of λ. Further, we
choose the parameter γ in Theorem 4.4 so that q0/q = γ− 1 + p−B2r

. This is always possible,
since we can take a smaller q0 if necessary.

Since u is lower semicontinuous, the set Eλ is open. Further, uλϕ/λ= 1 in Eλ, so we can
test the capacity of Eλ with uλϕ/λ. This gives

Cp(·)(Eλ)≤
∫

B(x0,2r)

(∣∣∣∣
uλϕ

λ

∣∣∣∣
p(x)

+
∣∣∣∣
∇(uλϕ

)

λ

∣∣∣∣
p(x))

dx

≤ λ−p−B2r

∫

B(x0,2r)

(∣∣uλϕ
∣∣p(x)

+
∣∣∇(uλϕ

)∣∣p(x)
)

dx.

(4.20)

For the first term in the integral above we have by the Hölder inequality, Lemma 3.4, and
the weak Harnack inequality that
∫

B(x0,2r)

∣∣uλ
∣∣p(x)

dx = Crn−
∫

B(x0,2r)

∣∣uλ
∣∣p(x)−p−B2r

∣∣uλ
∣∣p−B2r dx

≤ Crn
(
−
∫

B(x0,2r)

∣∣uλ
∣∣q′(p(x)−p−B2r

)
)1/q′(

−
∫

B(x0,2r)

∣∣uλ
∣∣qp−B2r dx

)1/q

≤ Crn
(

1 +‖u‖q
′(p+

B4r
−p−B4r

)

Lq′s(B4r )

)(
−
∫

B(x0,2r)

∣∣uλ
∣∣qp−B2r dx

)1/q

≤ Crnλp−B2r
−q0/q

(
−
∫

B(x0,2r)

∣∣uλ
∣∣q0 dx

)1/q

≤ Crnλp−B2r
−q0/q

(
inf

B(x0,r)
u+ r

)q0/q

.

(4.21)
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For the second term, we get by the product rule

∣∣∇(uλϕ
)∣∣p(x) ≤ C

(∣∣ϕ∇uλ
∣∣p(x)

+
∣∣uλ∇ϕ

∣∣p(x)
)
. (4.22)

Using Lemma 3.3 and estimating the average of |uλ|p(x) as above we have

∫

B(x0,2r)

∣∣uλ∇ϕ
∣∣p(x)

dx ≤ Crn−p−B2r

(
−
∫

B(x0,2r)

∣∣uλ
∣∣p(x)

dx
)

≤ Crn−p−B2r λp
−
B2r
−q0/q

(
inf
B(x0,r)

u+ r
)q0/q

.

(4.23)

We estimate the remaining term by using Theorem 4.4. To this end, choose a function
η ∈ C∞0 (B3r) such that 0≤ η ≤ 1, η = 1 in B(x0,2r), and |∇η| ≤ C/r. Then

∫

B(x0,2r)

∣∣ϕ∇uλ
∣∣p(x)

dx ≤
∫

B(x0,2r)

∣∣∇uλ
∣∣p(x)

dx

=
∫

B(x0,2r)

∣∣∇uλ
∣∣p(x)

ηp
+
B4r dx

≤ Cλ1−γrn−p
−
B2r

(
inf
Br
u+ r

)q(γ−1+p−B2r
)
.

(4.24)

Combining the above estimates we have

Cp(·)(Eλ)≤ Crn−p−B2r
(
λ−q0/q + λ1−γ−p−B2r

)(
inf
Br
u+ r

)q0/q
. (4.25)

Now our choice of γ gives the claim. �

The previous result implies that the singularity set of a supersolution is of zero capac-
ity.

Corollary 4.7. For functions u satisfying the assumptions of Theorem 4.5,

Cp(·)({x ∈Ω : u(x)=∞})= 0. (4.26)

Proof. Fix a ball B(x0,r) as in Theorem 4.5 and let

Ei =
{
x ∈ B(x0,r

)
: u(x) > i

}
, i= 1,2, . . . ,

E = {x ∈ B(x0,r
)

: u(x)=∞}.
(4.27)
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Since E = ∩iEi and E1 ⊃ E2 ⊃ ··· , we get by the monotonicity of the capacity and
Theorem 4.5 that

Cp(·)(E)≤ lim
i→∞

Cp(·)
(
Ei
)= 0. (4.28)

Since Ω can be covered by a countable number of balls for which (4.28) holds, the sub-
additivity of the capacity implies the claim. �
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