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1. Introduction

We consider the following nonvariational problem:

−Δmu= f (x,u,∇u)− a(x)g(u,∇u) + τ in Ω, u= 0 on ∂Ω, (P)τ

where Ω is a bounded domain with smooth boundary ofRN , N ≥ 3. Δm denotes the usual
m-Laplacian operators, 1 <m < N and τ ≥ 0. We will obtain a priori estimate to positive
solutions of problem (P)τ under certain conditions on the functions f , g, a. This result
implies nonexistence of positive solutions to τ large enough.

Also we are interested in the existence of a positive solutions to problem (P)0, which
does not have a clear variational structure. To avoid this difficulty, we make use of the
blow-up method over the solutions to problem (P)τ , which have been employed very
often to obtain a priori estimates (see, e.g., [1, 2]). This analysis allows us to apply a result
due to [3], which is a variant of a Rabinowitz bifurcation result. Using this result, we
obtain the existence of positive solutions.

Throughout our work, we will assume that the nonlinearities f and g satisfy the fol-
lowing conditions.

(H1) f : Ω×R×RN →R is a nonnegative continuous function.
(H2) g :R×RN →R is a nonnegative continuous function.
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(H3) There exist L > 0 and c0 ≥ 1 such that up − L|η|α ≤ f (x,u,η) ≤ c0up + L|η|α for
all (x,u,η)∈Ω×R×RN , where p ∈ (m−1,m∗−1) and α∈ (m− 1,mp/(p+ 1)).

Here, we denote m∗ =m(N − 1)/(N −m).
(H4) There exist M > 0, c1 ≥ 1, q > p, and β ∈ (m− 1,mp/(p+ 1)) such that |u|q −

M|η|β ≤ g(u,η)≤ c1|u|q +M|η|β for all (u,η)∈R×RN .
We also assume the following hypotheses on the function a.
(A1) a : Ω→R is a nonnegative continuous function.
(A2) There is a subdomain Ω0 with C2-boundary so that Ω0 ⊂ Ω, a ≡ 0 in Ω0, and

a(x) > 0 for x ∈Ω \Ω0.
(A3) We assume that the function a has the following behavior near to ∂Ω0:

a(x)= b(x)d
(
x,∂Ω0

)γ
, (1.1)

x ∈Ω \Ω0, where γ is positive constant and b(x) is a positive continuous func-
tion defined in a small neighborhood of ∂Ω0.

Observe that particular situations on the nonlinearities have been considered by many
authors. For instance, when a≡ 0 and f verifies (H3), Ruiz has proved that the problem
(P)0 has a bounded positive solution (see [2] and reference therein). On the other hand,
when f (x,u,η) = up and g(x,u,η) = uq, q > p and m < p, and a ≡ 1, a multiplicity of
results was obtained by Takeuchi [4] under the restriction m > 2. Later, Dong and Chen
[5] improve the result because they established the result for all m> 1. We notice that the
Laplacian case was studied by Rabinowitz by combining the critical point theory with the
Leray-Schauder degree [6]. Then, when m ≥ p, since ( f (x,u)− g(x,u))/um−1 becomes
monotone decreasing for 0 < u, we know that the solution to (P)0 is unique (as far as it
exists) from the Dı́az and Saá’s uniqueness result (see [7]). For more information about
this type of logistic problems, see [1, 8–13] and references cited therein.

Our main results are the following.

Theorem 1.1. Let u∈ C1(Ω) be a positive solution of problem (P)τ . Suppose that the condi-
tions (H1)–(H4) and the hypotheses (A1)–(A3) are satisfied with γ 
=m(q− p)/(1−m+ p).
Then, there is a positive constant C, depending only on the function a and Ω, such that

0≤ u(x) + τ ≤ C (1.2)

for any x ∈Ω.
Moreover, if γ =m(q− p)/(1−m+ p), then there exists a positive constant c1 = c1(p,α,

β,N ,c0) such that the conclusion of the theorem is true, provided that inf∂Ω0 b(x) > c1.

Observe that this result implies in particular that there is no solution for 0 < τ large
enough. By using a variant of a Rabinowitz bifurcation result, we obtain an existence
result for positive solutions.

Theorem 1.2. Under the hypotheses of Theorem 1.1, the problem (P)0 has at least one pos-
itive solution.
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2. A priori estimates and proof of Theorem 1.1

We will use the following lemma which is an improvement of Lemma 2.4 by Serrin and
Zou [14] and was proved in Ruiz [2].

Lemma 2.1. Let u be a nonnegative weak solution to the inequality

−Δmu≥ up−M|∇u|α, (2.1)

in a domain Ω⊂RN , where p >m− 1 and m− 1≤ α <mp/(p+ 1). Take λ∈ (0, p) and let
B(·,R0) be a ball of radius R0 such that B(·,2R0) is included in Ω.

Then, there exists a positive constant C = C(N ,m,q,α,λ,R0) such that

∫

B(·,R)
uλ ≤ CR(N−mλ)/(p+1−m), (2.2)

for all R∈ (0,R0].

We will also make use of the following weak Harnack inequality, which was proved by
Trudinger [15].

Lemma 2.2. Let u≥ 0 be a weak solution to the inequality Δmu≤ 0 in Ω. Take λ∈ [1,m∗ −
1) and R > 0 such that B(·,2R) ⊂Ω. Then there exists C = C(N ,m,λ) (independent of R)
such that

inf
B(·,R)

u≥ CR−N/λ
(∫

B(·,2R)
uλ
)1/λ

. (2.3)

The following lemma allows us to control the parameter τ in the Blow-Up analysis.
(See Section 2.1.)

Lemma 2.3. Let u be a solution to the problem (P)τ . Then there is a positive constant k0

which depends only on Ω0 such that

τ ≤ k0

(
max
x∈Ω

u
)m−1

. (2.4)

Proof. Since u is a positive solution, the inequality holds if τ = 0. Now if τ > 0, then from
(H1) and (A2) we get

−Δmu= f (x,u,∇u)− a(x)g(u,∇u) + τ ≥ τ ∀x ∈Ω0. (2.5)

Let v be the positive solution to

−Δmv = 1 in Ω0,

v = 0 on ∂Ω0
(2.6)

and w = (τ/2)1/(m−1)v in Ω0, then it follows that −Δmw = τ/2 < −Δmu in Ω0 and u > w
on ∂Ω0. Thus, using the comparison lemma (see [16]), we obtain u≥w in Ω0. Therefore,
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there is a positive constant k0 such that

τ ≤ k0u
m−1 (2.7)

at the maximum point of v and the conclusion follows. �

2.1. A priori estimates. We suppose that there is a sequence {(un,τn)}n∈N with un being
a C1-solution of (P)τn such that ‖un‖+ τn −−−→

n→∞ ∞. By Lemma 2.3, we can assume that

there exists xn ∈Ω such that un(xn)= ‖un‖ =: Sn −−−→
n→∞ ∞. Let dn := d(xn,∂Ω), we define

wn(y)= S−1
n un(x), where x = S−θn y + xn for some positive θ that will be defined later. The

functions wn are well defined at least B(0,dnSθn), and wn(0) = ‖wn‖ = 1. Easy computa-
tions show that

−Δmwn(y)= S1−(θ+1)m
n

[
f
(
S−θn y + xn,Snwn(y),S1−θ

n ∇wn(y)
)

− a
(
S−θn y + xn

)
g
(
Snwn(y),S1−θ

n ∇wn(y)
)

+ τn
]
.

(2.8)

From our conditions on the functions f and g, the right-hand side of (2.8) reads as

S1−(θ+1)m
n

[
f
(
S−θn y + xn,Snwn(y),S1−θ

n ∇wn(y)
)

− a
(
S−θn y + xn

)
g
(
Snwn(y),S1−θ

n ∇wn(y)
)

+ τn
]

≤ S
1−(θ+1)m+q
n

[
c0S

p−q
n wn(y)p +MS

(1−θ)α−q
n

∣
∣∇wn(y)

∣
∣α

− a
(
S−θn y + xn

)(
wn(y)q− g0S

β(1−θ)−q
n

∣
∣∇wn(y)

∣
∣β
)]

+ S1−(θ+1)m
n τn.

(2.9)

We note that from Lemma 2.3 we have S1−(θ+1)m
n τn ≤ c0S

1−(θ+1)m
n Sm−1

n −−−→
n→∞ 0.

We split this section into the following three steps according to location of the limit
point x0 of the sequence {xn}n.

(1) x0 ∈Ω \Ω0. Here, up to subsequence, we may assume that {xn}n ⊂Ω \Ω0. We de-
fine δ′n =min{dist(xn,∂Ω),dist(xn,∂Ω0)} and B = B(0,δ′nSθn) if dist(x0,∂Ω) > 0, or δ′n =
dist(xn,∂Ω0) and B = B(0,δ′nSθn)∩Ω if dist(x0,∂Ω)= 0. Then, wn is well defined in B and
satisfies

sup
y∈B

wn(y)=wn(0)= 1. (2.10)

Now, taking θ = (q + 1−m)/m in (2.9) and applying regularity theorems for the m-
Laplacian operator, we can obtain estimates for wn such that for a subsequence wn → w,
locally uniformly, with w be a C1-function defined in RN or in a halfspace, if dist(x0,∂Ω)
is positive or zero, satisfying

−Δmw ≤−a
(
x0
)
wq, w ≥ 0, w(0)=maxw = 1, (2.11)

which is a contradiction with the strong maximum principle (see [17]).
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(2) x0 ∈Ω0. In this case, up to subsequence we may assume that {xn}n ⊂Ω0. Let dn =
dist(xn,∂Ω0) and θ = (1 + p−m)/m. Then, wn is well defined in B(0,dnSθn) and satisfies

sup
y∈B(0,dnSθn)

wn(y)=wn(0)= 1. (2.12)

On the other hand, for any n∈N, we have a(S−θn y + xn)= 0 and

−Δmwn(y)= S1−(θ+1)m
n

[
f
(
S−θn y + xn,Snwn(y),S1−θ

n ∇wn(y)
)

+ τn
]
. (2.13)

From the hypothesis (H4),

−Δmwn(y)= S1−(θ+1)m
n

[
f
(
S−θn y + xn,Snwn(y),S1−θ

n ∇wn(y)
)

+ τn
]

≥wn(y)p−MSα(1−θ)+1−(θ+1)m
n

∣
∣∇wn(y)

∣
∣α + τnS

1−(θ+1)m
n .

(2.14)

From our choice of the constants α and θ, we have α(1− θ) + 1− (θ + 1)m= α(2m− (1 +
p))/m− p < 0, that is, Sα(1−θ)+1−(θ+1)m

n |∇wn(y)|α and τnS
1−(θ+1)m
n tend to 0 as n goes to

∞. This implies that for a subsequence wn converges to a solution of −Δmv ≥ vp, v ≥ 0 in
RN , v(0)=maxv = 1. This is a contradiction with [14, Theorem III].

(3) x0 ∈ ∂Ω0. Let δn = d(xn,zn), where zn ∈ ∂Ω0. Denote by νn the unit normal of ∂Ω0

at zn pointing to Ω \Ω0.
Up to subsequences, We may distinguish two cases: xn ∈ ∂Ω0 for all n or xn ∈Ω\∂Ω0

for all n.
Case 1 (xn ∈ ∂Ω0 for all n). In this case, xn = zn. For ε sufficiently small but fixed take
x̃n = zn− ενn. Then we have the following.
Claim 1. For any large n we have

un
(
x̃n
)
<
Sn
4
. (2.15)

Proof of Claim 1. In other cases, define for all n sufficiently large, passing to a subsequence
if necessary, the following functions

w̃n(y)= S−1
n un

(
x̃n + S

−(p+1−m)/m
n y

)
, (2.16)

which are well defined at least in B(0,εS
(p+1−m)/m
n ), wn(0)≥1/4 and sup

B(0,εS
(p+1−m)/m
n ) w̃n≤1.

Arguing as in the previous case x0 ∈Ω0, we arrive to a contradiction. �

Now, by continuity, for any large n there exist two points in Ω0x∗n = xn − t∗n νn and
x∗∗n = xn− t∗∗n νn, 0 < t∗n < t∗∗n < ε such that

un
(
x∗n
)= Sn

2
, un

(
x∗∗n

)= Sn
4
. (2.17)

Claim 2. There exists a number δ̃n ∈ (0,min{d(xn,x∗n ),d(x∗n ,x∗∗n )}) such that Sn/4 <

un(x) < Sn for all x ∈ B(x∗n , δ̃n). Moreover, there exists yn satisfying d(x∗n , yn) = δ̃n and
either un(yn)= Sn/4 or else un(yn)= Sn.
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Proof of Claim 2. Define δ̃n = sup{δ > 0 : Sn/4 < un(x) < Sn for all x ∈ B(x∗n ,δ)}. It is easy

to prove that δ̃n is well defined. Thus, the continuity of un ensures the existence of yn.
�

Now we will obtain an estimate from below of δ̃nS
(p+1−m)/m
n .

Claim 3. There exists a positive constant c = c(p,α,β,N ,c0) such that

δ̃nS
(p+1−m)/m
n ≥ c, (2.18)

for any n sufficiently large.

Proof of Claim 3. Assume, passing to a subsequence if necessary, that δ̃nS
(p+1−m)/m
n < 1 for

any n. We have that the functions w̃n(y) = S−1
n un(x∗n + S

−(p+1−m)/m
n y) are well defined in

B(0,1) for n sufficiently large and satisfy

−Δmw̃n ≤ c0w̃
p
n +
∣
∣∇w̃n

∣
∣α +

∣
∣∇w̃n

∣
∣β. (2.19)

Applying Lieberman’s regularity (see [18]), we obtain that there exists a positive con-
stant k = k(p,α,β,N ,c0) such that |∇w̃n| ≤ k in B(0,1). Assume for example that
un(yn)= Sn/4. By the generalized mean value theorem, we have

1
4
= 1

2
− 1

4
= w̃n(0)− w̃n

(
Sθn
(
yn− x∗n

))≤ ∣∣∇w̃n(ξ)
∣
∣δ̃nS

θ
n. (2.20)

�

Claim 4. For any n sufficiently large, we have B(x∗n , δ̃n)⊂ B(x̃n,ε).

Proof of Claim 4. Take x ∈ B(x∗n , δ̃n), by Claim 2 we get

d
(
x, x̃n

)≤ d
(
x,x∗n

)
+d
(
x∗n , x̃n

)
< δ̃n +d

(
x∗n , x̃n

)

≤ d
(
xn,x∗n

)
+d
(
x∗n , x̃n

)= d
(
xn, x̃n

)≤ ε.
(2.21)

So, x ∈ B(x̃n,ε).
Let λ be a number such that N(p + 1−m)/m < λ < p (this is possible because p <

m∗ − 1). By Claims 3 and 4, and by Lemma 2.2, we get

(
inf

B(x̃n,ε/2)
un

)λ
≥ cε−N

∫

B(x̃n,ε)
uλn ≥

∫

B(x∗n ,δ̃n)
uλn

≥ Cδ̃Nn S
λ
n/4≥ C1S

N(m−1−p)/m+λ
n −−−→

n→∞ ∞.

(2.22)

Therefore, the last inequality tells us that

∫

B(x̃n,ε/2)
uλn −−−→n→∞ ∞, (2.23)

which contradicts Lemma 2.1. �

Now, we will analyze the other case.
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Case 2 (xn ∈Ω\∂Ω0 for all n). Define 2d = dist(x0,∂Ω) > 0. Since Ω0 has C2-boundary
as in [19], we have

d
(
xn + S−θn y,∂Ω0

)= ∣∣δn + S−θn νn · y + o
(
S−θn
)∣∣,

a
(
xn + S−θn y

)=
⎧
⎪⎨

⎪⎩

b
(
xn + S−θn y

)
S
−γθ
n
∣
∣δnSθn + νn · y + o(1)

∣
∣γ, if xn + S−θn y ∈Ω \Ω0,

0, if xn + S−θn y ∈Ω0.

(2.24)

We define bn(xn + S−θn y)= S
γθ
n a(xn + S−θn y).

For n large enough, wn is well defined in B(0,dSθn) and we get

sup
y∈B(0,dSθn)

wn(y)=wn(0)= 1. (2.25)

By (2.9), we obtain

−Δmwn(y)≤ S
1−(θ+1)m+q
n

[
c0S

p−q
n wn(y)p +MS

(1−θ)α−q
n

∣
∣∇wn(y)

∣
∣α

− bn
(
xn + S−θn y

)
S
−γθ
n

(
wn(y)q− g0S

β(1−θ)−q
n

∣
∣∇wn(y)

∣
∣β
)]

+ S1−(θ+1)m
n τn.

(2.26)

Now we need to consider the following cases.
If 0 < γ <m(q− p)/(1−m+ p), we choose θ = (1−m+ q)/(γ+m).
We first assume that {δnSθn}n∈N is bounded. Up to subsequence, we may assume that

δnSθn −−−→n→∞ d0 ≥ 0, from (2.26) we get

−Δmwn(y)≤ S
γθ
n

[
c0S

p−q
n wn(y)p +MS

(1−θ)α−q
n

∣
∣∇wn(y)

∣
∣α

− bn
(
xn + S−θn y

)
S
−γθ
n

(
wn(y)q− g0S

β(1−θ)−q
n

∣
∣∇wn(y)

∣
∣β
)]

+ S1−(θ+1)m
n τn

= c0S
p−q+γθ
n wn(y)p +MS

γθ+(1−θ)α−q
n

∣
∣∇wn(y)

∣
∣α

− bn
(
xn + S−θn y

)(
wn(y)q− g0S

β(1−θ)−q
n

∣
∣∇wn(y)

∣
∣β
)

+ S1−(θ+1)m
n τn.

(2.27)

Thus, up to a subsequence, we may assume that wn converges to a C1 function w defined
in RN and satisfying w ≥ 0, w(0)=maxw = 1 in RN , and

−Δmw(y)≤
⎧
⎨

⎩
−b(x0

)∣∣d0 + ν0 · y
∣
∣γwq(y), if ν0 · y > σ ,

0, if ν0 · y < σ ,
(2.28)

where σ =−d0 if xn ∈Ω \Ω0 or σ = d0 if xn ∈Ω0 and ν0 is a unitary vector in RN . This
is impossible by the strong maximum principles.
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Suppose now that {δnSθn} is unbounded, we may assume that βn = (δ−1
n S−θn )γ/m

−−−→
n→∞ 0 for any r > 0. Let us introduce z = y/βn and vn(z) = wn(βnz), using (2.26) we

see that vn satisfies

−Δmvn(z)≤ βmn S
γθ
n

[
c0S

p−q
n vn(z)p +MS

(1−θ)α−q
n β−αn

∣
∣∇vn(z)

∣
∣α

− bn
(
xn + S−θn βnz

)
S
−γθ
n

(
vn(z)q− g0S

β(1−θ)−q
n β

−β
n
∣
∣∇vn(z)

∣
∣β
)]

+ S1−(θ+1)m
n τn

= c0β
m
n S

γθ+p−q
n vn(z)p +MS

γθ+(1−θ)α−q
n βm−αn

∣
∣∇vn(z)

∣
∣α

−βmn bn
(
xn + S−θn βnz

)(
vn(z)q− g0S

β(1−θ)−q
n β

m−β
n

∣
∣∇vn(z)

∣
∣β
)

+ S1−(θ+1)m
n τn.

(2.29)

On the other hand,

βmn bn
(
xn + S−θn βnz

)= b
(
xn + S−θn βnz

)[
1 +β

(m+γ)/γ
n νn · z+ o

(
β
m/γ
n
)]γ −−−→

n→∞ b
(
x0
)
.

(2.30)

Thus, since γ < m(q− p)/(1−m+ p) and our choice of θ and βn, it is easy to see that

S
γθ+p−q
n , S

γθ+(1−θ)α−q
n βm−αn and S

β(1−θ)−q
n β

m−β
n tend to 0 as n goes to +∞. Therefore, we

obtain a limit function v that satisfies −Δmv ≤ −b(x0)vq, v ≥ 0, v(0) =maxv = 1 in RN

which is again impossible.
If γ =m(q− p)/(1−m+ p), in this case, by our assumptions on the function b, we

obtain for θ = (1−m+ p)/m

−Δmwn(y)≤ c0wn(y)p +MS
(1−θ)α−p
n

∣
∣∇wn(y)

∣
∣α

− bn
(
xn + S−θn y

)(
wn(y)q− g0S

β(1−θ)−q
n

∣
∣∇wn(y)

∣
∣β
)

+ S1−(θ+1)m
n τn.

(2.31)

Arguing as in the proof of Claim 3 in the above case xn ∈ ∂Ω0 for all n, we may assume
that δnSnθ ≥ d0 = d0(p,α,β,N ,c0) > 0. Therefore, the limit w of the sequence wn satisfies

−Δmw(y)≤ c0w(y)p− b
(
x0
)∣∣d0−

∣
∣ν0 · y + o(1)

∣
∣
∣
∣γw(y)q. (2.32)

Now, evaluating in x = 0, the last inequality reads as

−Δmw(0)≤ c0− b
(
x0
)
d
γ
0 < 0, (2.33)

provided that b(x0) > c0/d
γ
0 . This contradicts the strong maximum principle.

If γ > m(q− p)/(1−m+ p), we choose θ = (p−m+ 1)/m, then we get

−Δmwn(y)≥wn(y)p−MS
(1−θ)α−p
n

∣
∣∇wn(y)

∣
∣α

− S
q−p−γθ
n bn

(
xn + S−θn y

)(
g1wn(y)q + g2S

β(1−θ)−q
n

∣
∣∇wn(y)

∣
∣β
)

+ S1−(θ+1)m
n τn.

(2.34)
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Arguing as seen before, that is, {δnS−θn } is whether bounded or unbounded, we obtain
that the limit equation of the last inequality becomes

−Δmv ≥ vp, v ≥ 0 in RN , v(0)=maxv = 1, (2.35)

which is a contradiction with [14, Theorem III].

3. Proof of Theorem 1.2

The following result is due to Azizieh and Clément (see [3]).

Lemma 3.1. Let R+ := [0,+∞) and let (E,‖ · ‖) be a real Banach space. Let G :R+×E→ E
be continuous and map bounded subsets on relatively compact subsets. Suppose moreover
that G satisfies the following:

(a) G(0,0)= 0,
(b) there exists R > 0 such that

(i) u∈ E, ‖u‖ ≤ R, and u=G(0,u) imply that u= 0,
(ii) deg(Id−G(0,·),B(0,R),0)= 1.

Let J denote the set of the solutions to the problem

u=G(t,u) (P)

in R+×E. Let C denote the component (closed connected maximal subset with respect to the
inclusion) of J to which (0,0) belongs. Then if

C∩ ({0}×E
)= {(0,0)

}
, (3.1)

then C is unbounded in R+×E.

Proof of Theorem 1.2. First, we consider the following problem:

−Δmu= f
(
x,u+,∇u+)− a(x)g

(
u+,∇u+)+ τ in Ω,

u= 0 on ∂Ω,
(P)+

τ

and let u be a nontrivial solution to the problem above, then u is nonnegative and so is
solution for the problem (P)τ . In fact, suppose that U = {x ∈Ω : u(x) < 0} is nonempty.
Then u is a weak solution to

−Δmu= τ ≥ 0 in U ,

u= 0 on ∂U.
(3.2)

Using Lemma 2.3, we obtain that u(x) ≥ 0, which is a contradiction with the definition
of U .

Consider T : L∞(Ω)→ C1(Ω) as the unique weak solution T(v) to the problem

−ΔmT(v)= v in Ω,

T(v)= 0 on ∂Ω.
(3.3)

It is well known that the function T is continuous and compact (e.g., see [3, Lemma 1.1]).
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Next, denote byG(τ,u) :=T( f (x,u+,∇u+)− a(x)g(u+,∇u+) + τ), thenG :R+×C1(Ω)
→ C1(Ω) is continuous and compact. Now, we will verify the hypotheses of Lemma 3.1.
It is clear that G(0,0)= 0. On the other hand, consider the compact homotopy H(λ,u) :
[0,1]×C1(Ω)→ C1(Ω) given by H(λ,u)= u− λG(0,u). We will show that

if u is a nontrivial solution to H(λ,u)= 0, then ‖u‖ > R > 0. (3.4)

This fact implies that condition (i) of (b) holds. Moreover, (3.4) also implies that
deg(H(λ,·)B(0,R),0) is well defined since there is not solution on ∂B(0,R). By the in-
variance property of the degree, we have

deg
(

Id−λG(0,·),B(0,R),0
)= deg

(
Id,B(0,R),0

)= 1, ∀λ∈ (0,1] (3.5)

and (ii) of (b) holds.
In order to prove (3.4), note that H(λ,u)= 0 implies that u is a solution to the problem

−Δmu= λ
(
f
(
x,u+,∇u+)− a(x)g

(
u+,∇u+)) in Ω,

u= 0 on ∂Ω.
(3.6)

Multiplying (3.6) by u, integrating over Ω the equation obtained, and applying Hölder’s
and Poincare’s inequalities, we have that

∫

Ω
|∇u|m ≤ c0

∫

Ω
up+1 +M1

[∫

Ω
|∇u|αu+

∫

Ω
|∇u|βu

]

≤ C
(∫

Ω
|∇u|m

)(p+1)/m

+M1

(∫

Ω
|∇u|m

)α/m(∫

Ω
um/(m−α)

)(m−α)/m

+M1

(∫

Ω
|∇u|m

)β/m(∫

Ω
um/(m−β)

)(m−β)/m

≤ C
(∫

Ω
|∇u|m

)(p+1)/m

+C1

(∫

Ω
|∇u|m

)(α+1)/m

+C1

(∫

Ω
|∇u|m

)(β+1)/m

.

(3.7)

This inequality implies that
∫
Ω |∇u|m > c > 0. Hence, we have ‖u‖ > R > 0.

Now, we note that Theorem 1.1 and C1,ρ estimates imply that the component C which
contains (0,0) is bounded. So, applying Lemma 3.1, we obtain that C∩ ({0}×C1(Ω)) 
=
(0,0). Therefore, we have a positive solution u to the problem (P)0. �
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liptic equations],” Comptes Rendus des Séances de l’Académie des Sciences. Série I. Mathématique,
vol. 305, no. 12, pp. 521–524, 1987.

[8] J. Garcı́a Melián and J. S. de Lis, “Uniqueness to quasilinear problems for the p-Laplacian in
radially symmetric domains,” Nonlinear Analysis. Theory, Methods & Applications, vol. 43, no. 7,
pp. 803–835, 2001.

[9] Z. Guo and H. Zhang, “On the global structure of the set of positive solutions for some quasi-
linear elliptic boundary value problems,” Nonlinear Analysis. Theory, Methods & Applications,
vol. 46, no. 7, pp. 1021–1037, 2001.

[10] S. Takeuchi and Y. Yamada, “Asymptotic properties of a reaction-diffusion equation with degen-
erate p-Laplacian,” Nonlinear Analysis. Theory, Methods & Applications, vol. 42, no. 1, pp. 41–61,
2000.

[11] S. Takeuchi, “Multiplicity result for a degenerate elliptic equation with logistic reaction,” Journal
of Differential Equations, vol. 173, no. 1, pp. 138–144, 2001.

[12] S. Takeuchi, “Stationary profiles of degenerate problems with inhomogeneous saturation val-
ues,” Nonlinear Analysis. Theory, Methods & Applications, vol. 63, no. 5–7, pp. e1009–e1016,
2005.
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Non Linéaire, vol. 15, no. 4, pp. 493–516, 1998.

[17] J. L. Vázquez, “A strong maximum principle for some quasilinear elliptic equations,” Applied
Mathematics and Optimization, vol. 12, no. 3, pp. 191–202, 1984.



12 Boundary Value Problems

[18] G. M. Lieberman, “Boundary regularity for solutions of degenerate elliptic equations,” Nonlinear
Analysis. Theory, Methods & Applications, vol. 12, no. 11, pp. 1203–1219, 1988.
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Arica 1000007, Chile
Email address: slorca@uta.cl

mailto:liturriaga@dim.uchile.cl
mailto:slorca@uta.cl

