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1. Introduction

This paper deals with the solvability of the following abstract two-point boundary value
problem (BVP):

ẋ(t)= A(t)x(t) +F
(
x(t), p(t), t

)
, x(a)= x0,

ṗ(t)=−A∗(t)p(t) +G
(
x(t), p(t), t

)
, p(b)= ξ(x(b)

)
.

(1.1)

Here, both x(t) and p(t) take values in a Hilbert space X for t ∈ [a,b], F, G : X ×X ×
[a,b]→X , and ξ : X→X are nonlinear operators. {A(t) : a ≤ t ≤ b} is a family of linear
closed operators with adjoint operators A∗(t) and generates a unique linear evolution
system {U(t,s) : a≤ s≤ t ≤ b} satisfying the following properties.

(a) For any a ≤ s ≤ t ≤ b, U(t,s) ∈ �(X), the Banach space of all bounded linear
operators in X with uniform operator norm, also the mapping (t,s)→U(t,s)x is
continuous for any x ∈ X ;

(b) U(t,s)U(s,τ)=U(t,τ) for a≤ τ ≤ s≤ t ≤ b;
(c) U(t, t)= I for a≤ t ≤ b.
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Equation (1.1) is motivated from optimal control theory; it is well known that a Hamil-
tonian system in the form

ẋ(t)= ∂H(x, p, t)
∂p

, x(a)= x0,

ṗ(t)= −∂H(x, p, t)
∂x

, p(b)= ξ(x(b)
)

(1.2)

is obtained when the Pontryagin maximum principle is used to get optimal state feedback
control. Here, H(x, p, t) is a Hamiltonian function. Clearly, the solvability of system (1.2)
is crucial for the discussion of optimal control. System (1.2) is also important in many
applications such as mathematical finance, differential games, economics, and so on. The
solvability of system (1.1), a nontrivial generalization of system (1.2), as far as I know,
only a few results have been obtained in the literature; Lions [1, page 133] provided an
existence and uniqueness result for a linear BVP:

ẋ(t)= A(t)x(t) +B(t)p(t) +ϕ(t), x(a)= x0,

ṗ(t)=−A∗(t)p(t) +C(t)x(t) +ψ(t), p(b)= 0,
(1.3)

where ϕ(·),ψ(·)∈ L2(a,b;X), B(t),C(t)∈�[X] are self-adjoint for each t ∈ [a,b]. Using
homotopy approach, Hu and Peng [2] and Peng [3] discussed the existence and unique-
ness of solutions for a class of forward-backward stochastic differential equations in finite
dimensional spaces; that is, in the case dim X <∞. The deterministic version of stochastic
systems discussed in [2, 3] has the form

ẋ(t)= F(x(t), p(t), t), x(a)= x0,

ṗ(t)=G(x(t), p(t), t), p(b)= ξ(x(b)).
(1.4)

Note that systems (1.1) and (1.4) are equivalent in finite dimensional spaces since we
may let A(t)≡ 0 without loss of generality. However, in infinite dimensional spaces, (1.1)
is more general than (1.4) because operators A(t) and A∗(t) are usually unbounded and
hence A(t)x and A∗(t)p are not Lipschitz continuous with respect to x and p in X which
is a typical assumption for F andG; see Section 2. Based on the idea of [2, 3], Wu [4] con-
sidered the solvability of (1.4) in finite spaces. Peng and Wu [5] dealt with the solvability
for a class of forward-backward stochastic differential equations in finite dimensional
spaces under G-monotonic conditions. In particular, x(t) and p(t) could take values in
different spaces. In this paper, solvability of solutions of (1.1) are studied, some existence
and uniqueness results are established. The obtained results extends some results of [2, 4]
to infinite dimensional spaces. The technique used in this paper follows that of developed
in [2, 3, 5].

The paper is organized as follows. In Section 2, main assumptions are imposed. In
Section 3, an existence and uniqueness result of (1.1) with constant functions ξ is estab-
lished. An existence and uniqueness result of (1.1) with general functions ξ is obtained
in Section 4. Finally, some examples are given in Section 5 to illustrate the application of
our results.
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2. Assumptions

The inner product and the norm in the Hilbert space X are denoted by 〈·,·〉 and ‖·‖, re-
spectively. Solutions of system (1.1) are always referred to mild solutions; that is, solution
pairs (x(·), p(·))∈ C([a,b];X)×C([a,b];X).

The following assumptions are imposed throughout the paper.
(A1) F and G are Lipschitz continuous with respect to x and p and uniformly in t ∈

[a,b]; that is, there exists a number L > 0 such that for all x1,p1,x2,p2 ∈ X and
t ∈ [a,b], one has

∥
∥F
(
x1, p1, t

)−F(x2, p2, t
)∥∥≤ L(∥∥x1− x2

∥
∥+

∥
∥p1− p2

∥
∥),

∥
∥G(x1, p1, t)−G(x2, p2, t)

∥
∥≤ L(∥∥x1− x2

∥
∥+

∥
∥p1− p2

∥
∥).

(2.1)

Furthermore, F(0,0,·),G(0,0,·)∈ L2(a,b;X).
(A2) There exist two nonnegative numbers α1 and α2 with α1 +α2 > 0 such that

〈
F(x1, p1, t)−F(x2, p2, t), p1− p2

〉
+
〈
G(x1, p1, t)−G(x2, p2, t),x1− x2

〉

≤−α1
∥
∥x1− x2

∥
∥2−α2

∥
∥p1− p2

∥
∥2

(2.2)

for all x1,p1,x2,p2 ∈ X and t ∈ [a,b].
(A3) There exists a number c > 0 such that

∥
∥ξ
(
x1
)− ξ(x2

)∥∥≤ c
∥
∥x1− x2

∥
∥,

〈
ξ
(
x1
)− ξ(x2

)
,x1− x2

〉≥ 0
(2.3)

for all x1,x2 ∈ X .

3. Existence and uniqueness: constant function ξ

In this section, we consider system (1.1) with a constant function ξ(x)= ξ; that is,

ẋ(t)= A(t)x(t) +F
(
x(t), p(t), t

)
, x(a)= x0,

ṗ(t)=−A∗(t)p(t) +G
(
x(t), p(t), t

)
, p(b)= ξ.

(3.1)

Two lemmas are proved first in this section and the solvability result follows.

Lemma 3.1. Consider the following BVP:

ẋ(t)= A(t)x(t) +Fβ
(
x(t), p(t), t

)
+ϕ(t), x(a)= x0,

ṗ(t)=−A∗(t)p(t) +Gβ
(
x(t), p(t), t

)
+ψ(t), p(b)= ξ,

(3.2)

where ϕ(·), ψ(·)∈ L2(a,b;X), ξ,x0 ∈ X , and

Fβ(x, p, t)=−(1−β)α2p+βF(x, p, t),

Gβ(x, p, t)=−(1−β)α1x+βG(x, p, t).
(3.3)
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Assume that for some number β = β0 ∈ [0,1), (3.2) has a solution in the space L2(a,b;X)×
L2(a,b;X) for any ϕ and ψ. In addition, (A1) and (A2) hold. Then there exists δ > 0 inde-
pendent of β0 such that problem (3.2) has a solution for any ϕ,ψ,β ∈ [β0,β0 + δ], and ξ, x0.

Proof. Given ϕ(·),ψ(·),x(·),p(·)∈ L2(a,b;X), and δ > 0. Consider the following BVP:

Ẋ(t)= A(t)X(t) +Fβ0

(
X(t),P(t), t

)
+α2δp(t) + δF

(
x(t), p(t), t

)
+ϕ(t),

X(a)= x0,

Ṗ(t)=−A∗(t)P(t) +Gβ0

(
X(t),P(t), t

)
+α1δx(t) + δG

(
x(t), p(t), t

)
+ψ(t),

P(b)= ξ.

(3.4)

It follows from (A1) that α2δp(·) + δF(x(·), p(·),·) + ϕ(·) ∈ L2(a,b;X) and α1δx(·) +
δG(x(·), p(·),·) +ψ(·)∈ L2(a,b;X). By the assumptions of Lemma 3.1, system (3.4) has
a solution (X(·),P(·)) in L2(a,b;X)×L2(a,b;X). Therefore, the mapping J : L2(a,b;X)×
L2(a,b;X)→L2(a,b;X)×L2(a,b;X) defined by J(x(·), p(·)) := (X(·),P(·)) is well defined.

We will show that J is a contraction mapping for sufficiently small δ > 0. Indeed, let
J(x1(t), p1(t))= (X1(t),P1(t)) and J(x2(t), p2(t))= (X2(t),P2(t)). Note that

〈
Fβ0

(
X1(t),P1(t), t

)−Fβ0

(
X2(t),P2(t), t

)
+α2δ

(
p1(t)− p2(t)

)

+ δ
(
F(x1(t), p1(t), t

)−F(x2(t), p2(t), t
))

, P1(t)−P2(t)
〉

=−α2(1−β0)
∥
∥P1(t)−P2(t)

∥
∥2

+β0
〈
F
(
X1(t),P1(t), t

)−F(X2(t),P2(t), t
)
, P1(t)−P2(t)

〉

+α2δ
〈
p1(t)− p2(t),P1(t)−P2(t)

〉

+ δ
〈
F
(
x1(t), p1(t), t

)−F(x2(t), p2(t), t
)
, P1(t)−P2(t)

〉

(3.5)

and that

〈
Gβ0

(
X1(t),P1(t), t

)−Gβ0

(
X2(t),P2(t), t

)
+α1δ

(
x1(t)− x2(t)

)

+ δ
(
G
(
x1(t), p1(t), t

)−G(x2(t), p2(t), t
))

, X1(t)−X2(t)
〉

=−α1
(
1−β0

)∥∥X1(t)−X2(t)
∥
∥2

+β0
〈
G
(
X1(t),P1(t), t

)−G(X2(t),P2(t), t
)
,X1(t)−X2(t)

〉

+α1δ
〈
x1(t)− x2(t),X1(t)−X2(t)

〉

+ δ
〈
G
(
x1(t), p1(t), t

)−G(x2(t), p2(t), t
)
,X1(t)−X2(t)

〉
.

(3.6)
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We have from assumption (A2) that

d

dt

〈
X1(t)−X2(t),P1(t)−P2(t)

〉

= 〈Fβ0

(
X1(t),P1(t), t

)−Fβ0

(
X2(t),P2(t), t) +α2δ

(
p1(t)− p2(t))

+ δ
(
F(x1(t), p1(t), t

)−F(x2(t), p2(t), t
))

, P1(t)−P2(t)
〉

+
〈
Gβ0

(
X1(t),P1(t), t

)−Gβ0

(
X2(t),P2(t), t

)
+α1δ

(
x1(t)− x2(t)

)

+ δ
(
G
(
x1(t), p1(t), t

)−G(x2(t), p2(t), t)
)
, X1(t)−X2(t)

〉

≤−α1
∥
∥X1(t)−X2(t)

∥
∥2−α2

∥
∥P1(t)−P2(t)

∥
∥2

+ δC1
(∥∥x1(t)− x2(t)

∥
∥2

+
∥
∥X1(t)−X2(t)

∥
∥2)

+ δC1
(∥∥p1(t)− p2(t)

∥
∥2

+
∥
∥P1(t)−P2(t)

∥
∥2)

,

(3.7)

where C1 > 0 is a constant dependent of L, α1, and α2.
Integrating between a and b yields

〈
X1(b)−X2(b), P1(b)−P2(b)

〉− 〈X1(a)−X2(a), P1(a)−P2(a)
〉

≤ (−α1 + δC1
)
∫ b

a

∥
∥X1(t)−X2(t)

∥
∥2
dt+

(−α2 + δC1
)
∫ b

a

∥
∥P1(t)−P2(t)

∥
∥2
dt

+ δC1

∫ b

a

(∥∥x1(t)− x2(t)
∥
∥2

+
∥
∥p1(t)− p2(t)

∥
∥2)

dt.

(3.8)

Since 〈X1(b)−X2(b), P1(b)− P2(b)〉 = 0 and 〈X1(a)−X2(a), P1(a)− P2(a)〉 = 0, (3.8)
implies

(
α1− δC1

)
∫ b

a

∥
∥X1(t)−X2(t)

∥
∥2
dt+

(
α2− δC1

)
∫ b

a

∥
∥P1(t)−P2(t)

∥
∥2
dt

≤ δC1

∫ b

a

(∥∥x1(t)− x2(t)
∥
∥2

+
∥
∥p1(t)− p2(t)

∥
∥2)

dt.

(3.9)

Now, we consider three cases of the combinations of α1 and α2.

Case 1 (α1 > 0 and α2 > 0). Let α=min{α1,α2}. From (3.9) we have

(
α− δC1

)
∫ b

a

(∥∥X1(t)−X2(t)
∥
∥2

+
∥
∥P1(t)−P2(t)

∥
∥2)

dt

≤ δC1

∫ b

a

(∥∥x1(t)− x2(t)
∥
∥2

+
∥
∥p1(t)− p2(t)

∥
∥2)

dt.
(3.10)

Choose δ such that α− δC1 > 0 and δC1/(α− δC1) < 1/2. Note that such a δ > 0 can be
chosen independently of β0. Then J is a contraction in this case.
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Case 2 (α1 = 0 and α2 > 0). Apply the variation of constants formula to the equation

d

dt

(
X1(t)−X2(t)

)= A(t)
(
X1(t)−X2(t)

)− (1−β0
)
α2
(
P1(t)−P2(t)

)

+β0
(
F
(
X1(t),P1(t), t

)−F(X2(t),P2(t), t
))

+α2δ
(
p1(t)− p2(t)

)
+ δ
(
F(x1(t), p1(t), t

)−F(x2(t), p2(t), t)
)
,

X1(a)−X2(a)= 0,
(3.11)

and recall that β0 ∈ [0,1) and M =max{‖U(t,s)‖ : a≤ s≤ t ≤ b} <∞; then we have

∥
∥X1(t)−X2(t)

∥
∥≤M(α2 +L

)
δ
∫ b

a

(∥∥x1(s)− x2(s)
∥
∥+

∥
∥p1(s)− p2(s)

∥
∥)ds

+M
(
α2 +L

)
∫ b

a

∥
∥P1(s)−P2(s)

∥
∥ds+ML

∫ t

a

∥
∥X1(s)−X2(s)

∥
∥ds.

(3.12)

From Gronwall’s inequality, we have
∥
∥X1(t)−X2(t)

∥
∥

≤ eML(b−a)
(
M
(
α2 +L

)
δ
∫ b

a

(∥∥x1(t)− x2(t)
∥
∥+

∥
∥p1(t)− p2(t)

∥
∥)dt

+M
(
α2 +L

)
∫ b

a

∥
∥P1(t)−P2(t)

∥
∥dt
)
.

(3.13)

Consequently, there exists a constant C2 ≥ 1 dependent of M, L, and α2 such that

∫ b

a

∥
∥X1(t)−X2(t)

∥
∥2
dt

≤ C2

∫ b

a

∥
∥P1(t)−P2(t)

∥
∥2
dt+ δC2

∫ b

a

(∥∥x1(t)− x2(t)
∥
∥2

+
∥
∥p1(t)− p2(t)

∥
∥2)

dt.

(3.14)

Choose a sufficiently small number δ > 0 such that (α2 − δC1)/2 > α2/4C2 and (α2 −
δC1)/2C2− δC1 > α2/4C2. Taking into account (3.14), we have

− δC1

∫ b

a

∥
∥X1(t)−X2(t)

∥
∥2
dt+

(
α2− δC1

)
∫ b

a

∥
∥P1(t)−P2(t)

∥
∥2
dt

≥ α2

4C2

∫ b

a

(∥∥X1(t)−X2(t)
∥
∥2

+
∥
∥P1(t)−P2(t)

∥
∥2)

dt

−α2δ
∫ b

a

(∥∥x1(t)− x2(t)
∥
∥2

+
∥
∥p1(t)− p2(t)

∥
∥2)

dt.

(3.15)
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Combine (3.9) and (3.15), then we have

∫ b

a

(∥∥X1(t)−X2(t)
∥
∥2

+
∥
∥P1(t)−P2(t)

∥
∥2)

dt

≤ 4
(
C1 +α2

)
C2

α2
δ
∫ b

a

(∥∥x1(t)− x2(t)
∥
∥2

+
∥
∥p1(t)− p2(t)

∥
∥2)

dt.

(3.16)

Let δ be small further that 4(C1 +α2)C2δ/α2 < 1/2. Then J is a contraction.

Case 3 (α1 > 0 and α2 = 0). Consider the following differential equation derived from
system (3.4):

d

dt
(P1(t)−P2(t))=−A∗(t)(P1(t)−P2(t))− (1−β0)α1(X1(t)−X2(t))

+β0(G(X1(t),P1(t), t)−G(X2(t),P2(t), t))

+α1δ(x1(t)− x2(t)) + δ(G(x1(t), p1(t), t)−G(x2(t), p2(t), t)),

P1(b)−P2(b)= 0.
(3.17)

Apply the variation of constants formula to (3.17), then we have

∫ b

a

∥
∥P1(t)−P2(t)

∥
∥2
dt

≤ C2

∫ b

a

∥
∥X1(t)−X2(t)

∥
∥2
dt+ δC2

∫ b

a

(∥∥x1(t)− x2(t)
∥
∥2

+
∥
∥p1(t)− p2(t)

∥
∥2)

dt

(3.18)

for some constant C2 ≥ 1 dependent of M, L, and α1. Choose δ sufficiently small such
that (α1 − δC1)/2 > α1/4C2 and (α1 − δC1)/2C2 − δC1 > α1/4C2 and taking into account
(3.18), then we have

(
α1− δC1

)
∫ b

a

∥
∥X1(t)−X2(t)

∥
∥2
dt− δC1

∫ b

a

∥
∥P1(t)−P2(t)

∥
∥2
dt

≥ α1

4C2

∫ b

a

(∥∥X1(t)−X2(t)
∥
∥2

+
∥
∥P1(t)−P2(t)

∥
∥2)

dt

−α1δ
∫ b

a

(∥∥x1(t)− x2(t)
∥
∥2

+
∥
∥p1(t)− p2(t)

∥
∥2)

dt.

(3.19)

Similar to Case 2, we can show that J is a contraction.

Since we assume α1 + α2 > 0, we can summarize that there exists δ0 > 0 independent
of β0 such that J is a contraction whenever δ ∈ (0,δ0). Hence, J has a unique fixed point
(x(·), p(·)) that is a solution of (3.2). Therefore, (3.2) has a solution for any β ∈ [β0,β0 +
δ]. The proof of the lemma is complete. �
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Lemma 3.2. Assume α1 ≥ 0, α2 ≥ 0, and α1 +α2 > 0. The following linear BVP:

ẋ(t)=A(t)x(t)−α2p(t) +ϕ(t), x(a)= x0,

ṗ(t)=−A∗(t)p(t)−α1x(t) +ψ(t), p(b)= λx(b) + ν
(3.20)

has a unique solution on [a,b] for any ϕ(·),ψ(·)∈ L2(a,b;X), λ≥ 0, and ν,x0 ∈ X ; that is,
system (3.2) has a unique solution on [a,b] for β = 0.

Proof. We may assume ν= 0 without loss of generality.

Case 1 (α1 > 0 and α2 > 0). Consider the following quadratic linear optimal control sys-
tem:

inf
u(·)∈L2(a,b;X)

{
1
2
λ
〈
x(b),x(b)

〉

+
1
2

∫ b

a

[
α1

〈
x(t)− 1

α1
ψ(t),x(t)− 1

α1
ψ(t)



+α2

〈
u(t),u(t)

〉
]
dt
}

(3.21)

subject to the constraints

ẋ(t)=A(t)x(t) +α2u(t) +ϕ(t), x(a)= x0. (3.22)

The corresponding Hamiltonian function is

H(x, p,u, t) := 1
2

[
α1

〈
x− 1

α1
ψ(t),x− 1

α1
ψ(t)



+α2〈u,u〉

]
+
〈
p,A(t)x+α2u+ϕ(t)

〉
.

(3.23)

Clearly, the related Hamiltonian system is (3.20). By the well-known quadratic linear op-
timal control theory, the above control problem has a unique optimal control. Therefore,
system (3.20) has a unique solution.

Case 2 (α1 > 0 and α2 = 0). Note that

ẋ(t)=A(t)x(t) +ϕ(t), x(a)= x0 (3.24)

has a unique solution x, then the equation

ṗ(t)=−A∗(t)p(t)−α1x(t) +ψ(t), p(b)= λx(b) (3.25)

has a unique solution p. Therefore, (x, p) is the unique solution of system (3.20).

Case 3 (α1 = 0 and α2 > 0). If λ= 0, since

ṗ(t)=−A∗(t)p(t) +ψ(t), p(b)= 0 (3.26)
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has a unique solution p, then

ẋ(t)= A(t)x(t)−α2p(t) +ϕ(t), x(a)= x0 (3.27)

has a unique solution x. Hence, system (3.20) has a unique solution (x, p).
If λ > 0, we may assume 0 < λ < 1/(M2α2(b− a)). Otherwise, choose a sufficient large

numberN such that λ/N < 1/(M2α2(b− a)) and let p̃(t)= p(t)/N . Then we reduce to the
desired case.

For any x(·)∈ C([a,b];X),

ṗ(t)=−A∗(t)p(t) +ψ(t), p(b)= λx(b) (3.28)

has a unique solution p:

p(t)= λU∗(b, t)x(b) +
∫ b

t
U∗(s, t)ψ(s)ds. (3.29)

Note that

ẋ(t)= A(t)x(t)−α2p(t) +ϕ(t), x(a)= x0 (3.30)

has a unique solution x(·) ∈ C([a,b];X). Hence, we can define a mapping C([a,b];X)
→C([a,b];X) by

J : x(t)−→ x(t)=U(t,a)x0 +
∫ t

a
U(t,s)

[
ϕ(s)−α2p(s)

]
ds. (3.31)

We will prove that J is a contraction and hence has a unique fixed point that is the unique
solution of (3.20).

For any x1(·), x2(·)∈ C([a,b];X), taking into account that

∥
∥p1(t)− p2(t)

∥
∥≤ λM∥∥x1(b)− x2(b)

∥
∥≤ λM∥∥x1− x2

∥
∥
C, (3.32)

we have

∥
∥(Jx1

)
(t)− (Jx2

)
(t)
∥
∥≤Mα2(b− a)

∥
∥p1− p2

∥
∥
C ≤ λM2α2(b− a)

∥
∥x1− x2

∥
∥
C. (3.33)

Therefore,

∥
∥Jx1− Jx2

∥
∥
C ≤ λM2α2(b− a)

∥
∥x1− x2

∥
∥
C, (3.34)

where ‖·‖C stands for the maximum norm in space C([a,b];X). It follows that J is a
contraction due to λM2α2(b− a) < 1. Now, we are ready to prove the first existence and
uniqueness theorem. �

Theorem 3.3. System (3.1) has a unique solution on [a,b] under assumptions (A1) and
(A2).
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Proof

Existence. By Lemma 3.2, system (3.2) has a solution on [a,b] for β0 = 0. Lemma 3.1
implies that there exists δ > 0 independent of β0 such that (3.2) has a solution on [a,b]
for any β ∈ [0,δ] and ϕ(·),ψ(·) ∈ L2(a,b;X). Now let β0 = δ in Lemma 3.1 and repeat
this process. We can prove that system (3.2) has a solution on [a,b] for any β ∈ [δ,2δ].
Clearly, after finitely many steps, we can prove that system (3.2) has a solution for β = 1.
Therefore, system (3.1) has a solution.

Uniqueness. Let (x1, p1) and (x2, p2) be any two solutions of system (3.1). Then

d

dt

〈
x1(t)− x2(t), p1(t)− p2(t)

〉

= 〈F(x1(t), p1(t), t)−F(x2(t), p2(t), t), p1(t)− p2(t)
〉

+
〈
G(x1(t), p1(t), t)−G(x2(t), p2(t), t),x1(t)− x2(t)

〉

≤−α1
∥
∥x1(t)− x2(t)

∥
∥2−α2

∥
∥p1(t)− p2(t)

∥
∥2
.

(3.35)

Integrating between a and b yields

0= 〈x1(b)− x2(b), p1(b)− p2(b)
〉− 〈x1(a)− x2(a), p1(a)− p2(a)

〉

≤−α1

∫ b

a

∥
∥x1(t)− x2(t)

∥
∥2
dt−α2

∫ b

a

∥
∥p1(t)− p2(t)

∥
∥2
dt.

(3.36)

If α1 > 0 and α2 > 0, obviously, (x1, p1) = (x2, p2) in C([a,b];X)×C([a,b];X). If α1 > 0
and α2 = 0, then x1 = x2. From the differential equation of p(t) in (3.1) we have

d

dt
[p1(t)− p2(t)]=−A∗(t)

(
p1(t)− p2(t)

)
+G

(
x1(t), p1(t), t

)−G(x1(t), p2(t), t
)
,

p1(b)− p2(b)= 0.
(3.37)

It follows that

∥
∥p1(t)− p2(t)

∥
∥≤ML

∫ b

t

∥
∥p1(s)− p2(s)

∥
∥ds, a≤ t ≤ b. (3.38)

Gronwall’s inequality implies that p1 = p2, and hence (x1, p1) = (x2, p2). The discussion
for the case α1 = 0 and α2 > 0 is similar to the previous case. The proof is complete. �

4. Existence and uniqueness: general function ξ

In this section, we consider the solvability of system (1.1) with general functions ξ. Al-
though the proof of the next lemma follows from that of Lemma 3.1, more technical
considerations are needed because p(b) depends on x(b) in this case. In particular, the
apriori estimate for solutions of the family of BVPs is more complicated.
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Lemma 4.1. Consider the following BVP:

ẋ(t)=A(t)x(t) +Fβ(x(t), p(t), t) +ϕ(t), x(a)= x0,

ṗ(t)=−A∗(t)p(t) +Gβ(x(t), p(t), t) +ψ(t), p(b)= βξ(x(b)) + (1−β)x(b) + ν,
(4.1)

where ϕ(·), ψ(·)∈ L2(a,b;X) and x0, ν∈ X . Assume that for a number β = β0 ∈ [0,1), sys-
tem (4.1) has a solution in space L2(a,b;X)×L2(a,b;X) for any ϕ,ψ,x0, and ν. In addition,
assumptions (A1)–(A3) hold. Then there exists δ > 0 independent of β0 such that system
(4.1) has a solution for any ϕ,ψ,ν,x0, and β ∈ [β0,β0 + δ].

Proof. For any ϕ(·), ψ(·), x(·), p(·)∈ L2(a,b;X), ν∈ X , and δ > 0, we consider the fol-
lowing BVP:

Ẋ(t)=A(t)X(t) +Fβ0 (X(t),P(t), t) +α2δp(t) + δF(x(t), p(t), t) +ϕ(t),

X(a)= x0,

Ṗ(t)=−A∗(t)P(t) +Gβ0 (X(t),P(t), t) +α1δx(t) + δG(x(t), p(t), t) +ψ(t),

P(b)= β0ξ(X(b)) + (1−β0)X(b) + δ(ξ(x(b))− x(b)) + ν.

(4.2)

Similar to the proof of Lemma 3.1, we know that system (4.2) has a solution (X(·),P(·),
X(b)) ∈ L2(a,b;X)× L2(a,b;X)× X for each triple (x(·), p(·),x(b)) ∈ L2(a,b;X)× L2

(a,b;X)×X . Therefore, the mapping J : L2(a,b;X)× L2(a,b;X)×X→L2(a,b;X)× L2(a,
b;X)×X defined by J(x(·), p(·),x(b)) := (X(·),P(·),X(b)) is well defined.

Take into account (A3), we have from (4.2) that

〈
X1(b)−X2(b), P1(b)−P2(b)

〉

≥ (1−β0)
∥
∥X1(b)−X2(b)

∥
∥2

+ δ
〈
ξ
(
x1(b)

)− ξ(x2(b)),X1(b)−X2(b)
〉

− 〈X1(b)−X2(b),x1(b)− x2(b)
〉

≥ 2− 2β0− δ− δc
2

∥
∥X1(b)−X2(b)

∥
∥2− (c+ 1)δ

2

∥
∥x1(b)− x2(b)

∥
∥2

≥ γ∥∥X1(b)−X2(b)
∥
∥2− δc1

∥
∥x1(b)− x2(b)

∥
∥2
.

(4.3)

Here, γ > 0 is a constant for small δ and the constant c1 = (c+ 1)/2.
Combine (3.8) and the above discussion, then we have

(
α1−δC1

)
∫ b

a

∥
∥X1(t)−X2(t)

∥
∥2
dt+

(
α2− δC1

)
∫ b

a

∥
∥P1(t)−P2(t)

∥
∥2
dt+ γ

∥
∥X1(b)−X2(b)

∥
∥2

≤ δC1

∫ b

a

(∥∥x1(t)− x2(t)
∥
∥2

+
∥
∥p1(t)− p2(t)

∥
∥2)

dt+ δc1
∥
∥x1(b)− x2(b)

∥
∥2
.

(4.4)
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Case 1 (α1 > 0 and α2 > 0). Let α=min{α1,α2,γ}. Inequality (4.4) implies

∫ b

a

(∥∥X1(t)−X2(t)
∥
∥2

+
∥
∥P1(t)−P2(t)

∥
∥2

)dt+
∥
∥X1(b)−X2(b)

∥
∥2

≤ δC1

α− δC1

∫ b

a

(∥∥x1(t)− x2(t)
∥
∥2

+
∥
∥p1(t)− p2(t)

∥
∥2

)dt+
δc1

α− δC1

∥
∥x1(b)− x2(b)

∥
∥2
.

(4.5)

Choose δ further small that δC1/(α− δC1) < 1/2 and δc1/(α− δC1) < 1/2, J is a contrac-
tion.

Case 2 (α1 = 0 and α2 > 0). Similar to the proof in case 1 of Lemma 3.1, there exists a
C2 ≥ 1 dependent of M, L, and α2 such that

∫ b

a

∥
∥X1(t)−X2(t)

∥
∥2
dt

≤ C2

∫ b

a

∥
∥P1(t)−P2(t)

∥
∥2
dt+C2δ

∫ b

a

(∥∥x1(t)− x2(t)
∥
∥2

+
∥
∥p1(t)− p2(t)

∥
∥2)

dt.

(4.6)

Choose a sufficiently small number δ > 0 such that (α2 − δC1)/2 > α2/4C2 and (α2 −
δC1)/2C2− δC1 > α2/4C2. From (4.6), we have

− δC1

∫ b

a

∥
∥X1(t)−X2(t)

∥
∥2
dt+

(
α2− δC1

)
∫ b

a

∥
∥P1(t)−P2(t)

∥
∥2
dt+ γ

∥
∥X1(b)−X2(b)

∥
∥2

≥ α2

4C2

∫ b

a

(∥∥X1(t)−X2(t)
∥
∥2

+
∥
∥P1(t)−P2(t)

∥
∥2

)dt

−α2δ
∫ b

a

(∥∥x1(t)− x2(t)
∥
∥2

+
∥
∥p1(t)− p2(t)

∥
∥2

)dt+ γ
∥
∥X1(b)−X2(b)

∥
∥2
.

(4.7)

By (4.4) and (4.7), we have

α2

4C2

∫ b

a

(∥∥X1(t)−X2(t)
∥
∥2

+
∥
∥P1(t)−P2(t)

∥
∥2

)dt+ γ
∥
∥X1(b)−X2(b)

∥
∥2

≤ δ(C1 +α2)
∫ b

a

(∥∥x1(t)− x2(t)
∥
∥2

+
∥
∥p1(t)− p2(t)

∥
∥2

)dt+ δc1
∥
∥x1(b)− x2(b)

∥
∥2
.

(4.8)
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Let ρ =min{α2/4C2,γ}. Then we have from (4.8) that

∫ b

a

(∥∥X1(t)−X2(t)
∥
∥2

+
∥
∥P1(t)−P2(t)

∥
∥2

)dt+
∥
∥X1(b)−X2(b)

∥
∥2

≤ C1 +α2

ρ
δ
∫ b

a

(∥∥x1(t)− x2(t)
∥
∥2

+
∥
∥p1(t)− p2(t)

∥
∥2

)dt+
c1

ρ
δ
∥
∥x1(b)− x2(b)

∥
∥2
.

(4.9)

Let δ be small further that (C1 +α2)δ/ρ < 1/2 and c1δ/ρ < 1/2. Then J is a contraction.

Case 3 (α1 > 0 and α2 = 0). To prove this case, we need to carefully deal with the terminal
condition. From system (4.2), we have

d

dt
(P1(t)−P2(t))=−A∗(t)(P1(t)−P2(t))− (1−β0)α1(X1(t)−X2(t))

+β0(G(X1(t),P1(t), t)−G(X2(t),P2(t), t))

+α1δ(x1(t)− x2(t)) + δ(G(x1(t), p1(t), t)−G(x2(t), p2(t), t)),

P1(b)−P2(b)= β0(ξ(X1(b))− ξ(X2(b))) + (1−β0)(X1(b)−X2(b))

+ δ(ξ(x1(b))− ξ(x2(b)))− δ(x1(b)− x2(b)).
(4.10)

Apply the variation of constants formula to (4.10) and use Gronwall’s inequality, then we
have

∥
∥P1(t)−P2(t)

∥
∥

≤ eML(b−a)
(
M(1−β0 +β0c)

∥
∥X1(b)−X2(b)

∥
∥+M(1 + c)δ

∥
∥x1(b)− x2(b)

∥
∥

+M
(
α1δ + δL

)
∫ b

a

(∥∥x1(t)− x2(t)
∥
∥+

∥
∥p1(t)− p2(t)

∥
∥)dt

+M
(
α1 +L

)
∫ b

a

∥
∥X1(t)−X2(t)

∥
∥dt
)
.

(4.11)

Therefore, there exists a number C2 > 1 dependent of M, L, and α1 such that

∫ b

a

∥
∥P1(t)−P2(t)

∥
∥2
dt ≤ C2

∫ b

a

∥
∥X1(t)−X2(t)

∥
∥2
dt+C2

∥
∥X1(b)−X2(b)

∥
∥2

+ δC2

∫ b

a

(∥∥x1(t)− x2(t)
∥
∥2

+
∥
∥p1(t)− p2(t)

∥
∥2

)dt

+ δC2
∥
∥x1(b)− x2(b)

∥
∥2
.

(4.12)
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Choose a natural number N large enough such that γ− α1/N > γ/2 and a small num-
ber δ > 0 such that (α1 − δC1)(N − 1)/N > α1/(2NC2) and (α1 − δC1)/NC2 − δC1 > α1/
(2NC2). It follows from (4.12) that

(
α1− δC1

)
∫ b

a

∥
∥X1(t)−X2(t)

∥
∥2
dt− δC1

∫ b

a

∥
∥P1(t)−P2(t)

∥
∥2
dt

≥ α1

2NC2

∫ b

a

(∥∥X1(t)−X2(t)
∥
∥2

+
∥
∥P1(t)−P2(t)

∥
∥2

)dt

− α1δ

N

∫ b

a

(∥∥x1(t)− x2(t)
∥
∥2

+
∥
∥p1(t)− p2(t)

∥
∥2

)dt

− α1

N

∥
∥X1(b)−X2(b)

∥
∥2− α1δ

N

∥
∥x1(b)− x2(b)

∥
∥2
.

(4.13)

We have by combining (4.4) and (4.13) that

α1

2NC2

∫ b

a

(∥∥X1(t)−X2(t)
∥
∥2

+
∥
∥P1(t)−P2(t)

∥
∥2

)dt+
γ

2

∥
∥X1(b)−X2(b)

∥
∥2

≤ α1 +NC1

N
δ
∫ b

a

(∥∥x1(t)− x2(t)
∥
∥2

+
∥
∥p1(t)− p2(t)

∥
∥2

)dt

+
α1 +Nc1

N
δ
∥
∥x1(b)− x2(b)

∥
∥2
.

(4.14)

Let h=min{α1/(2NC2),γ/2}. Then

∫ b

a

(∥∥X1(t)−X2(t)
∥
∥2

+
∥
∥P1(t)−P2(t)

∥
∥2

)dt+
∥
∥X1(b)−X2(b)

∥
∥2

≤ α1 +NC1

Nh
δ
∫ b

a

(∥∥x1(t)− x2(t)
∥
∥2

+
∥
∥p1(t)− p2(t)

∥
∥2

)dt

+
α1 +Nc1

Nh
δ
∥
∥x1(b)− x2(b)

∥
∥2
.

(4.15)

Let δ be small further that (α1 +NC1)δ/(Nh) < 1/2 and (α1 +Nc1)δ/(Nh) < 1/2. Then J
is a contraction.

Altogether, J is a contraction, and hence it has a unique fixed point (x(·), p(·)) in
L2(a,b;X)× L2(a,b;X). Clearly, the pair is a solution of (4.1) on [a,b]. Therefore, (4.1)
has a solution on [a,b] for any β ∈ [β0,β0 + δ]. The proof of the lemma is complete. �

Theorem 4.2. System (1.1) has a unique solution on [a,b] under assumptions (A1), (A2),
and (A3).

Existence. The same argument as the proof of Theorem 3.3.
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Uniqueness. Assume (x1, p1) and (x2, p2) are any two solutions of system (1.1). Note that
x1(·), x2(·), p1(·), p2(·)∈ C([a,b];X), and

0≤ 〈x1(b)− x2(b), p1(b)− p2(b)〉

≤ −α1

∫ b

a

∥
∥x1(t)− x2(t)

∥
∥2
dt−α2

∫ b

a

∥
∥p1(t)− p2(t)

∥
∥2
dt.

(4.16)

Obviously, (x1, p1) = (x2, p2) in the case α1 > 0 and α2 > 0. If α1 > 0 and α2 = 0, then
x1 = x2. In particular, x1(b) = x2(b). From the differential equation of p(t) in (1.1), we
have

d

dt
[p1(t)− p2(t)]=−A∗(t)(p1(t)− p2(t)) +G(x1(t), p1(t), t)−G(x1(t), p2(t), t),

p1(b)− p2(b)= 0.
(4.17)

Similar to the proof of Theorem 3.3, we conclude that p1 = p2. Therefore, (x1, p1) =
(x2, p2). The proof for the case α1 = 0 and α2 > 0 is similar. The proof of the theorem
is complete. �

Remark 4.3. Theorem 4.2 extends the results of [4] and the results of [2] in the determin-
istic case to infinite dimensional spaces.

Consider a special case of (1.1) which is a linear BVP in the form

ẋ(t)= A(t)x(t) +B(t)p(t) +ϕ(t), x(a)= x0,

ṗ(t)=−A∗(t)p(t) +C(t)x(t) +ψ(t), p(b)=Dx(b).
(4.18)

Here, B(t), C(t) : [a,b]→�[X] are self-adjoint operators for each t ∈ [a,b], D ∈�[X] is
also self-adjoint, X is a Hilbert space. The operator D is nonnegative, B(t) and C(t) are
nonpositive for all t ∈ [a,b], that is, 〈B(t)x,x〉 ≤ 0 and 〈C(t)x,x〉 ≤ 0 for all x ∈ X and
t ∈ [a,b].

Corollary 4.4. System (4.18) has a unique solution on [a,b] if either B(t) or C(t) is neg-
ative uniformly on [a,b], that is, there exists a number σ > 0 such that 〈B(t)x,x〉 ≤ −σ‖x‖2

or 〈C(t)x,x〉 ≤ −σ‖x‖2 for any x ∈ X and t ∈ [a,b].

Proof. Indeed, we have

〈
F
(
x1, p1, t

)−F(x2, p2, t
)
, p1− p2

〉
+
〈
G
(
x1, p1, t

)−G(x2, p2, t
)
,x1− x2

〉

= 〈B(t)
(
p1− p2

)
, p1− p2

〉
+
〈
C(t)

(
x1− x2

)
,x1− x2

〉

≤−σ∥∥x1− x2
∥
∥2

or ≤−σ∥∥p1− p2
∥
∥2

,
〈
ξ(x1)− ξ(x2

)
,x1− x2

〉= 〈D(x1− x2
)
,x1− x2

〉≥ 0.

(4.19)

Therefore, all assumptions (A1)–(A3) hold and the conclusion follows from Theorem 4.2.
�
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Remark 4.5. Corollary 4.4 improves the result [1, page 133] which covers the case D = 0
only.

5. Examples

Example 5.1. Consider the linear control system

ẋ(t)= A(t)x(t) +B(t)u(t), x(0)= x0, (5.1)

with the quadratic cost index

inf
u(·)∈L2(0,b;U)

J[u(·)]= 〈Q1x(b),x(b)
〉

+
∫ b

0

[〈
Q(t)x(t),x(t)

〉
+
〈
R(t)u(t),u(t)

〉]
dt.

(5.2)

Here, B(·) : [0,b]→�[U ,X], Q(·) : [0,b]→�[X], R(·) : [0,b]→�[U], Q1 ∈ �[X], both
U and X are Hilbert spaces. Moreover, Q1 is self-adjoint and nonpositive, Q(t) and R(t)
are self-adjoint for every t ∈ [0,b].

Based on the theory of optimal control, the corresponding Hamiltonian system of this
control system is

ẋ(t)=A(t)x(t)−B(t)R−1(t)B∗(t)p(t), x(0)= x0,

ṗ(t)=−A∗(t)p(t)−Q(t)x(t), p(b)=−Q1x(b).
(5.3)

By Corollary 4.4, (5.3) has a unique solution on [0,b] if either Q(t) or R(t) is positive
uniformly in [0,b], that is, there exists a real number σ > 0 such that 〈Q(t)x,x〉 ≥ σ‖x‖2

for all x ∈ X and t ∈ [0,b] or 〈R(t)u,u〉 ≥ σ‖u‖2 for all u∈U and t ∈ [0,b].
In the following, we provide another example which is a nonlinear system.

Example 5.2. Let X = L2(0;π). Let en(x)=√2/π sin(nx) for n= 1,2, . . . . Then the set {en :
n = 1,2, . . .} is an orthogonal base for X . Define A : X→X by Ax = x′′ with the domain
D(A)= {x ∈H2(0,π) : x(0)= x(π)= 0}. It is well known that operator A is self-adjoint
and generates a compact semigroup on [0,b] with the form

T(t)x =
∞∑

n=1

e−n
2txnen, x =

∞∑

n=1

xnen ∈ X. (5.4)

Define a nonlinear function F : X→X as

F(p)=
∞∑

n=1

(− sin pn− 2pn
)
en, p =

∞∑

n=1

pnen. (5.5)



Lianwen Wang 17

Note that for any p1 =
∑∞

n=1p
1
nen, p2 =

∑∞
n=1p

2
nen ∈ X , we have

∥
∥F(p1)−F(p2)

∥
∥2 =

∞∑

n=1

(
sin p1

n− sin p2
n + 2p1

n− 2p2
n

)2

≤ 2
∞∑

n=1

[(
sin p1

n− sin p2
n

)2
+ 4
(
p1
n− p2

n

)2]≤ 10
∥
∥p1− p2

∥
∥2

,

〈
F
(
p1
)−F(p2

)
, p1− p2

〉=−
∞∑

n=1

(
sin p1

n− sin p2
n + 2p1

n− 2p2
n

)(
p1
n− p2

n

)≤−∥∥p1− p2
∥
∥2
.

(5.6)

Then, F is Lipschitz continuous with L=√10 and satisfies (A2) with α1 = 0 and α2 = 1.
Theorem 4.2 implies that the following homogenous BVP:

ẋ(t)=Ax(t) +F
(
p(t)

)
, x(0)= x0,

ṗ(t)=−A∗p(t) +G
(
x(t)

)
, p(b)= ξ(x(b)

) (5.7)

has a unique solution on [0,b] for any nonincreasing function G and any nondecreasing
function ξ, that is, one has 〈G(x1)−G(x2),x1 − x2〉 ≤ 0 and 〈ξ(x1)− ξ(x2),x1 − x2〉 ≥ 0
for all t ∈ [0,b], x1,x2 ∈ X .
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