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We investigate local and global properties of positive solutions to the fast diffusion equa-
tion ut = Δum in the good exponent range (d− 2)+/d < m < 1, corresponding to general
nonnegative initial data. For the Cauchy problem posed in the whole Euclidean spaceRd,
we prove sharp local positivity estimates (weak Harnack inequalities) and elliptic Har-
nack inequalities; also a slight improvement of the intrinsic Harnack inequality is given.
We use them to derive sharp global positivity estimates and a global Harnack principle.
Consequences of these latter estimates in terms of fine asymptotics are shown. For the
mixed initial and boundary value problem posed in a bounded domain ofRd with homo-
geneous Dirichlet condition, we prove weak, intrinsic, and elliptic Harnack inequalities
for intermediate times. We also prove elliptic Harnack inequalities near the extinction
time, as a consequence of the study of the fine asymptotic behavior near the finite extinc-
tion time.
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1. Introduction

In this paper, we are interested in the questions of boundedness, positivity, and regularity
of the solutions of fast diffusion equations. Though the arguments have a more general
scope, two settings will be considered in order to obtain sharp results: in one of them, the
Cauchy problem is considered in the whole space

ut = Δ
(
um
)

in Q = (0,+∞)×Rd,

u(0,x)= u0(x) in Rd,
(1.1)
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and in the range (d − 2)+/d = mc < m < 1. In the second option, the mixed Cauchy-
Dirichlet problem is considered in bounded domains with smooth boundary

ut = Δ
(
um
)

in Q = (0,+∞)×Ω,

u(0,x)= u0(x) in Ω,

u(t,x)= 0 for t > 0, x ∈ ∂Ω,

(1.2)

and in the range (d− 2)+/(d + 2)=ms < m < 1. In both cases, nonnegative solutions are
considered. The restrictions on the exponent range are not a matter of convenience.

It is well known that the solutions of the heat equation ut = Δu posed in the whole
space with nonnegative data at t = 0 become positive and smooth for all positive times
and all points of space. The same positivity property is true in many other settings, for ex-
ample, for nonnegative solutions posed in a bounded space domain with zero boundary
conditions. Such properties of positivity and smoothness are shared by the fast diffusion
equation

ut = Δum, 0 <m < 1, (1.3)

but this happens under certain conditions on the exponent and data and with quite dif-
ferent quantitative estimates.

The question of boundedness is closely related to existence theory and has been much
investigated in the whole exponent range m∈R. A comprehensive account can be found
in works of one of the authors (see [1–3]). The smoothing effect explained there is usually
expressed in the form

∥
∥u(t)

∥
∥∞ ≤

C
∥
∥u0

∥
∥σ

1

tα
, (1.4)

where t > 0 and all the Lp are taken over the whole domainΩ orRd. The positive constants
C, σ , and α depend only on m, d. The analysis shows that the FDE maps initial data,
possibly unbounded, to bounded solutions if m is larger than a first-critical exponent
mc = (d− 2)+/d. The situation becomes quite involved, and interesting, for subcritical m.

A natural problem that we will address here arises next: starting from nonnegative ini-
tial data, do we obtain strictly positive solutions, at least locally? This positivity property
is strictly related to Harnack inequalities, as we will see. If we express the positivity re-
sult in terms of Lp norms, we are led to the case of negative exponents and of course the
quantities

‖ f ‖−p =
[
∫

Ω
f (x)−pdx

]−1/p

(1.5)
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are no more norms in the usual sense. But there is a nice well-known result, which helps
us to better understand the nature of such lower bounds:

inf
x∈Ω

∣
∣ f (x)

∣
∣= ‖ f ‖−∞ = lim

p→∞‖ f ‖−p. (1.6)

The aim of this paper is to present from a unified point of view some results and
techniques recently discovered by the authors and described in whole detail in [4, 5],
and also to discuss some new ideas to attack some open problems related to Harnack
inequalities. Let us present the lower bounds that we obtain. We take the case of the
Cauchy problem posed in the whole space: in Theorem 2.1, we prove that

inf
x∈BR(x0)

u(t,x)≥MR
(
x0
)
H
(
t

tc

)
> 0. (1.7)

Here, MR(x0) is the average initial mass in the ball BR(x0), H is an explicit function of
time relative to the characteristic time tc, which is loosely speaking, a time that we have to
wait in order to let the regularization to take place, and is calculated in terms of the initial
data. For t ≥ tc, the above lower bound can be rewritten as

∥
∥u(t)

∥
∥
L−∞(BR(x0)) ≥ Km,d

∥
∥u0

∥
∥2ϑ
L1(BR(x0))t

−dϑ, (1.8)

that is, exactly the reverse of the standard smoothing effect above, thought as L1–L∞ reg-
ularization, and expressed as a local L1–L−∞ smoothing effect (over balls); for this reason,
we call it reverse smoothing effect.

Putting together the direct and reverse smoothing effects, we obtain the intrinsic and
elliptic Harnack inequalities and thus as a consequence, we have a quite simple proof of
the Hölder continuity of the solution, which has been first proved by DiBenedetto et al.,
see, for example, [6, 7], by entirely different techniques.

When dealing with elliptic problems, our positivity result, or reverse smoothing effect,
is also known as weak Harnack inequality or half Harnack. Indeed, nothing is more natu-
ral than this terminology since this easily implies intrinsic Harnack inequality as a corol-
lary, compare Theorems 6.2 and 6.4. Moreover, the combination of direct and reverse
smoothing effects implies a Harnack inequality of elliptic type, compare Theorems 6.1
and 6.5, namely, we compare the supremum and infimum of the solution at the same
time.

Another issue that we address is the extension to the whole space (or domain) of local
positivity properties. This leads to the global Harnack principle, GHP, that is, to accu-
rate upper and lower bounds in terms of some special (sub/super) solutions. In the case
of the whole space, the super- and subsolutions are Barenblatt functions. In the case of
bounded domains, the global Harnack principle was first proved in [7], and the super-
and subsolutions were related to the solution obtained by separation of variables.

We also investigate the connection between the global Harnack principle and the fine
asymptotic behavior, first introduced by one of the authors in [1], in terms of uniform
convergence in relative error, shortly CRE. We show that the GHP implies CRE both in
the case of Rd and in the case of bounded domains.
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Finally, we show in the case of bounded domains that the convergence in relative error
implies elliptic Harnack inequalities for times near the extinction time, thus completing
the panorama of the validity of Harnack inequalities in the case of bounded domains.

Open problems. These ideas lead to further possible interesting generalizations which are
actually under investigation. For example, we can consider the case in which the problem
is posed on a Riemannian manifold, and the operator is the Laplace-Beltrami operator,
or when it is replaced by a more general elliptic operator, possibly with measurable coef-
ficients. The methods we present here may open new directions to solve the problem of
Harnack inequalities for more general nonlinear diffusion equations for a larger range of
exponents m.

Notation. In the sequel, the letters ai, bi, Ci, K , ki, λi, μ are used to denote universal
positive constants that depend only on m and d. The constant ϑ is fixed to the value
ϑ= 1/(2−d(1−m)) > 0.

2. Positivity results for the fast diffusion equation

We start our analysis by considering the problem of estimating the positivity of solutions
of the FDE, both in the case of the Cauchy problem posed in the whole Rd space and in
the case of the mixed Cauchy-Dirichlet problem posed in a domain of Rd. In both cases,
we analyze local and global positivity estimates. In view of the remarks of the introduc-
tion, the local positivity estimates can be considered as a reverse smoothing effect and
are independent of the choice of some explicit (sub-/super-) solutions. Vice versa, when
we deal with global positivity, we make use of some special (sub-/super-) solutions. For a
complete discussion of these results, we refer to our paper [5].

2.1. Local and global positivity estimates inRd. Let us prove quantitative positivity es-
timates for the Cauchy problem posed in the whole Euclidean space Rd:

ut = Δ
(
um
)

in Q = (0,+∞)×Rd,

u(0,x)= u0(x) in Rd,
(2.1)

in the range (d− 2)+/d =mc <m < 1. We then derive elliptic Harnack inequalities. In the
results, we fix a point x0 ∈ Rd and consider different balls BR = BR(x0) with R > 0. We
introduce the following measures of the local mass:

MR
(
x0
)=

∫

BR

u0(x)dx, MR
(
x0
)= MR

Rd
. (2.2)

More precisely, we should write MR(u0,x0), MR(u0,x0), but we will even drop the variable
x0 when no confusion is feared. This is the intrinsic positivity result that shows in a quan-
titative way that solutions are positive for all (x, t)∈Q. This type of results is also called
weak Harnack inequality, and also half Harnack inequality or lower Harnack inequality,
meaning that it is half of the full pointwise comparison that Harnack inequalities imply.
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Figure 2.1. Approximative graphic of the functions u(t,x) (dotted line) and H(t) (solid line).

Theorem 2.1 (local positivity on Rd). There exists a positive function H(t) such that for
any t > 0 and R > 0 the following bound holds true for all continuous nonnegative solutions
u to (2.1) with mc <m < 1:

inf
x∈BR(x0)

u(t,x)≥MR
(
x0
)
H
(
t

tc

)
. (2.3)

Function H(η) is positive and takes the precise form

H(η)=
⎧
⎨

⎩
Kη−dϑ for η ≥ 1,

Kη1/(1−m) for η ≤ 1.
(2.4)

The characteristic time is given by

tc = CM1−m
R R1/ϑ. (2.5)

Constants C,K > 0 depend only on m and d.

Figure 2.1 gives an idea of the positivity result, in particular the change of the behavior
of the general lower profile as a function of time. It shows the importance of the critical
time tc. For the sake of simplicity, we consider tc = 1.

Proof. We skip the proof of this result, given in [5], since it is similar to the proof of
the problem posed in a bounded domain, that we will present in Theorem 2.5; that case
which presents the extra difficulty caused by the phenomenon of extinction in finite time.
Instead, we concentrate on a number of observations. �

(1) Characteristic time. Notice that tc is an increasing function of MR and R. This is in
contrast with the porous medium case m> 1 where it can be shown that tc decreases with
MR (see, e.g., [8] or [3, Chapter 4]).

(2) Minimax problem. Suppose that we want to obtain the best of the lower bounds
when t varies. This happens for t/tc ≈ 1 and the value is

u
(
tc,0

)≥ C3MRR
−d, (2.6)

which is just proportional to the average. At this time also the maximum is controlled by
the average (see the upper estimate).
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(3) The behavior of H is optimal in the limits t	 1 and t ≈ 0 as the Barenblatt so-
lutions show. If we perform the explicit computation for the Barenblatt solution in the
worst case where the mass is placed on the border of the ball BR0 , it gives (see (2.8))

�(0, t)= M2ϑ
R t1/(1−m)

(
b1t2ϑ + b2t2ϑ

c

)1/(1−m) . (2.7)

The consideration of the Barenblatt solutions as an example leads us to examine what
is the form of the positivity estimate when we move far away from a ball in space. Indeed,
we can get a global estimate by carefully inserting a Barenblatt solution with small mass
below our solution. Let us recall that the Barenblatt solution of mass M is given by the
formula

�(t,x;M)= t1/(1−m)

[
b1t2ϑ/M2ϑ(1−m) + b2|x|2

]1/(1−m) , (2.8)

and also that

tc = CM(1−m)
R R1/ϑ. (2.9)

The following theorem can be viewed as a weak global Harnack principle, since it leads
to the global Harnack principle, which will be derived in the next section. Notice that the
parameters of the Barenblatt subsolution have a different form in the two cases t ≥ tc and
0 < t < tc.

Theorem 2.2 (global positivity in Rd). (I) There exist τ1 ∈ (0, tc) and Mc > 0 such that for
all x ∈Rd and t ≥ tc,

u(t,x)≥�
(
t− τ1,x;Mc

)
, (2.10)

where τ1 = λtc and Mc = kMR for some universal constants λ,k > 0 which depend only on m
and d. (II) For any 0 < ε < tc, the global lower bound is valid for t ≥ ε,

u(t,x)≥�
(
t− τ(ε),x;M(ε)

)
, (2.11)

with τ(ε)= λε and

M(ε)=
(
ε

tc

)1/(1−m)

Mc = k1

(
ε

R1/ϑ

)1/(1−m)

. (2.12)

Proof. The proof presented here has been taken from [5]. The main result is the first, the
point of stating (II) is to have an estimate for small times (with a smaller time shift) at the
price of having a subsolution with smaller mass. Let us point out that the last constant
k1 = kC−1/(1−m). We divide the proof in a number of steps; the proof of (I) consists of
steps (i)–(iii). (i) Let us first argue for x ∈ BR(0) at time t = tc. As a consequence of our
local estimate (2.1) at t = tc, one gets

u
(
tc,x

)≥ K
MR

Rd
(2.13)
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for all |x| ≤ R. Hence, (2.10) is implied in this region by the inequality

K
MR

Rd
≥�

(
tc− τ1,x;Mc

)=
(
tc− τ1

)1/(1−m)

[
b1
(
tc− τ1

)2ϑ
/M2ϑ(1−m)

c + b2|x|2
]1/(1−m) . (2.14)

Now we choose τ1 = λtc with a certain λ∈ (0,1). We put μ= 1− λ∈ (0,1) so that tc− τ1 =
μtc. With this choice, (2.14) is equivalent to

b1
(
μtc
)2ϑ

M2ϑ(1−m)
c

+ b2|x|2 ≥ Rd(1−m)μtc
M1−m

R K1−m (2.15)

putting x = 0 and using the value of tc, it is implied by the condition

Mc = kMR, k ≤ b1/(2ϑ(1−m))
1 K1/2ϑ(μC)d/2. (2.16)

(ii) We now extend the comparison to the region |x| ≥ R, again at time t = tc. We take
as a domain of comparison the exterior space-time domain

S= (τ1, tc
)× {x ∈Rd : |x| > R

}
. (2.17)

Both functions in estimate (2.10) are solutions of the same equation, hence we need only
to compare them on the parabolic boundary. Comparison at the initial time t = τ1 is clear
since B(tc − τ1,x;Mc) vanishes. The comparison on the lateral boundary where |x| = R
and τ1 ≤ t ≤ tc amounts to

K
MR

Rd

(
t

tc

)1/(1−m)

≥
(
t− τ1

)1/(1−m)

[
b1
(
t− τ1

)2ϑ
/M2ϑ(1−m)

c + b2R2
]1/(1−m) . (2.18)

Raising to the power (1−m) and using the value of tc, we get

K1−mt
R2C

≥ t− τ1

b1
(
t− τ1

)2ϑ
/M2ϑ(1−m)

c + b2R2
, (2.19)

or

K1−m b1
(
t− τ1

)2ϑ

M2ϑ(1−m)
c

+K1−mb2R
2 ≥

(
1− τ1

t

)
R2C. (2.20)

If we have fixed τ1 as before and if we define Mc = kMR with k = k(m,d) small enough,
this inequality is true for τ1 ≤ t ≤ tc. (iii) Using now the maximum principle in S, the
proof of (2.10) is thus complete for t = tc in the exterior region. Since the comparison
holds in the interior region by step (i), we get a global estimate at t = tc. (iv) We now
prove part (II) of the theorem. We only need to prove it at t = ε. We recall that λ and Mc

are as defined in part (I). We know that

tc− τ1 = μtc, with μ∈ (0,1). (2.21)
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Using the Bénilan-Crandall estimate, we have for 0 < t < tc

u(t,x)≥ u
(
tc,x

) t1/(1−m)

t1/(1−m)
c

, (2.22)

together with the above estimate (2.10), we can see that

u(t,x)≥ u
(
tc,x

) t1/(1−m)

t1/(1−m)
c

≥ t1/(1−m)

t1/(1−m)
c

�
(
tc− τ1,x;Mc

)

= t1/(1−m)

t1/(1−m)
c

(
μtc
)1/(1−m)

[
b1
(
μtc
)2ϑ

/M2ϑ(1−m)
c + b2|x|2

]1/(1−m)

= (μt)1/(1−m)

[
b1(μt)2ϑ/M2ϑ(1−m)

c t2ϑt−2ϑ
c + b2|x|2

]1/(1−m)

=�
(
μt,x;

Mct1/(1−m)

t1/(1−m)
c

)
=�

(
t− τ,x;Mc(t)

)

(2.23)

once one lets t− τ = μt and Mc as above. The proof of (2.11) is thus complete. �

A consequence of this result is the following lower asymptotic behavior that is peculiar
of the FDE evolution.

Corollary 2.3. Under the same hypothesis of Theorem 2.2,

liminf
|x|→∞

u(t,x)|x|2/(1−m) ≥ c(m,d)t1/(1−m). (2.24)

The constant c(m,d)= (2m/ϑ(1−m))1/(1−m) of the Barenblatt solution is sharp.

This result has been proved by Herrero and Pierre (see [9, Theorem 2.4]) by similar
methods. Here, it easily follows from the estimates of Theorem 2.2 which provides an
exact lower bound for all times, not only for large times.

Remarks 2.4. (1) In order to complement the previous lower estimates, let us review what
is known about estimates from above. These depend on the behavior of the initial data
as |x| → ∞. Recall only that constant data produce the constant solution that does not
decay. Under the decay assumption on the initial datum u0 ∈ L1

loc(Rd)

∫

|y−x|≤|x|/2

∣
∣u0(y)

∣
∣dy =O

(|x|d−2/(1−m)) as |x| −→∞, (2.25)

it has been proved by entirely different methods in [1] that

lim
|x|→∞

u(t,x)|x|2/(1−m) ≤ c(m,d)(t+ S)1/(1−m), (2.26)

where S > 0 depends on the constant in the bound (2.25) as |x| →∞. The time shift S is
needed in the asymptotic behavior of u as |x| →∞. Actually, when the initial datum has
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an exact decay at infinity, u0 ∼ a|x|−2/(1−m), we have more

lim
|x|→∞

u(t,x)|x|2/(1−m) = C(t+ S)1/(1−m), (2.27)

with C = 2m/ϑ(1−m) and S = a1−m/C, and this cannot be improved as the delayed
Barenblatt solutions show. Moreover, there exists a t0 such that u1−m is convex as a func-
tion of x for t > t0, compare [10].

(2) In comparison with the upper bounds, we have shown that global lower estimates
need a time shift τ (in the other direction, explicitly calculated), but in the limit we can
put τ = 0, as one can see above. Moreover, the behavior at infinity is independent of
the mass (a fact that is false for the heat equation), hence all Barenblatt solutions with
different free constant b1 behave in the same way in the limit as |x| →∞, compare [1].

(3) We can also get better results if we consider radially symmetric initial data (always
in our range of parameters mc <m < 1), compare [11].

2.2. Local and global positivity estimates on domains. In this section, we will prove
local positivity estimates (weak Harnack) and elliptic Harnack inequalities for the fast
diffusion equation in the range (d− 2)+/d =mc <m < 1 in a Euclidean domain Ω⊂Rd,

ut = Δ
(
um
)

in Q = (0,+∞)×Ω,

u(0,x)= u0(x) in Ω,

u(t,x)= 0 for t > 0, x ∈ ∂Ω,

(2.28)

where Ω ⊂ Rd is an open-connected domain with sufficiently smooth boundary. Since
we are interested in lower estimates, by comparison, we may assume that Ω is bounded
without loss of generality. In the case of bounded domains, an extra difficulty appears: the
extinction in finite time, for example, there exists a time T > 0 such that u(t,x)≡ 0 for any
t ≥ T and x ∈Ω. In the proof of Theorem 2.5, we prove a lower bound for such extinction
time in terms of the volume of the domain. This will in particular show that in the case
of the whole Rd, solutions do not extinguish in finite time. This is the intrinsic positivity
result that shows in a quantitative way that solutions are positive for all (x, t)∈Q. In the
result, we fix a point x0 ∈Ω and consider different balls BR = BR(x0) with R > 0, included
in Ω. It is a version of Theorem 2.1 in the case of the mixed Cauchy-Dirichlet problem on
domains.

Theorem 2.5 (local positivity on domains). Let u be a continuous nonnegative solution to
(2.28), with mc < m < 1. There exist times 0 < t∗c < Tc ≤ T , where T is the finite extinction
time, and a positive function H(t) such that for any t ∈ (0,Tc) and R > 0 such that

R≤Λdist
(
x0,∂Ω

)
, (2.29)

the following bound holds true:

inf
x∈BR

u(t,x)≥MRH
(
t

t∗c

)
, (2.30)
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Figure 2.2. Approximative graphic of the functions u(t,x) (dotted line) and H(t) (solid line).

where MR =MR/Rd, MR =
∫
BR
u0(x)dx. Function H(t) is positive and takes the precise form

H(η)=
⎧
⎪⎨

⎪⎩

Kη−dϑ for 1≤ η ≤ Tc

t∗c
,

Kη1/(1−m) for η ≤ 1.
(2.31)

The times 0 < t∗c ≤ Tc ≤ T are given by

t∗c = τc(2R)1/dϑM1−m
R ,

Tc = τ′c
[

dist
(
x0,∂Ω

)− 2R
]
M1−m

R .
(2.32)

Constants C, K , τc, τ′c , Λ > 0 depend only on d and m.

Figure 2.2 gives an idea of the positivity result, in particular the change of the behavior
of the general lower profile, in function of time, showing the importance of both the lower
critical time tc and the upper critical time Tc. For the sake of simplicity, we consider tc = 1
and Tc = 2.5, while the extinction time is taken as T = 3.

Proof. The proof presented here has been taken from [5]. It is a combination of several
steps. Without loss of generality, we assume that x0 = 0. Different positive constants that
depend on m and d are denoted by Ci. The precise values we get for C, K , τc, τ′c , and Λ
are given at the end of the proof.

Reduction. By comparison, we may assume that supp(u0) ⊂ BR(0). Indeed, a general
u0 ≥ 0 is greater than u0η, η being a suitable cutoff function compactly supported in BR

and less than one. If v is the solution of the fast diffusion equation with initial data u0η
(existence and uniqueness are well known in this case), we obtain

∫

BR

u(0,x)dx ≥
∫

BR

u0(x)η(x)dx =MR (2.33)

and if the statement holds true for v, then

inf
x∈BR

u(t,x)≥ inf
x∈BR

v(t,x)≥H
(
t

tc

)
MR. (2.34)
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Lower bounds on the extinction time. In order to get a lower bound for the extinction
time in terms of local mass information, we use a property which can be labeled as weak
conservation of mass, and has been proved in [9, Lemma 3.1]. It reads: for any R,r > 0
and s, t ≥ 0, one has

∫

B2R

u(s,x)dx ≤ C3

[∫

B2R+r

u(t,x)dx+
|s− t|1/(1−m)

r(2−d(1−m))/(1−m)

]

. (2.35)

Now letting t = T , so that u(T ,x)= 0, and s= 0 so that
∫
B2R

u(0,x)dx =MR, we get

T ≥ M1−m
R r1/ϑ

C1−m
3

≥ M1−m
R

[
dist(0,∂Ω)− 2R

]1/ϑ

C1−m
3

, (2.36)

since r ∈ (0,dist(0,∂Ω)− 2R).
A priori estimates. The second step again is similar to the analogous step in the proof

of Theorem 2.1, so we will omit the details. We rewrite the well-known smoothing effect
(see, e.g., [3]), after an integration over B2bR, in the form

∫

B2bR

u(t,x)dx ≤ C2M
2ϑ
R Rdt−dϑ, (2.37)

since u0 is nonnegative and supported in BR. Here C2 = C12bdωd.
Integral estimate. Again in this step we are going to use the estimate (2.35). We let s= 0

and we rewrite it in a form more useful to our purposes (remember that M2R =MR since
u0 is supported in BR):

∫

B2R+r

u(t,x)dx ≥ MR

C3
− t1/(1−m)

r1/θ(1−m)
, (2.38)

we now remark that r and R are such that B2R+r ⊂Ω.
Aleksandrov principle. The fourth step consists in using the well-known reflection prin-

ciple in a slightly different form (see Proposition A.1 and formula (A.5) in the appendix
for more details). This principle reads

∫

B2R+r\B2bR

u(t,x)dx ≤Adr
du(t,0), (2.39)

where Ad and b = 2− 1/d are chosen as in (A.5) in the appendix, and one has to remem-
ber the condition r ≥ (2(d−1)/d − 1)2R.

We now put together all the previous calculations:
∫

B2R+r

u(t,x)dx =
∫

B2bR

u(t,x)dx+
∫

B2R+r\B2bR

u(t,x)dx

≤ C2M
2ϑ
R Rdt−dϑ +Adr

du(t,0).
(2.40)

This follows by (2.37) and (2.39). Now we are going to use (2.38) to obtain

MR

C3
− t1/(1−m)

r1/θ(1−m)
≤
∫

B2R+r

u(t,x)dx ≤ C2M
2ϑ
R Rd

tdϑ
+Adr

du(t,0). (2.41)
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And finally we obtain

u(t,0)≥ 1
Ad

[(
MR

C3
− C2M

2ϑ
R Rd

tdϑ

)
1
rd
− t1/(1−m)

r2/(1−m)

]
= 1

Ad

[
A(t)
rd

− B(t)
r2/(1−m)

]
. (2.42)

Now we would like to obtain the claimed estimate for t > t∗c . To this end, we seek
whether A(t) is positive:

A(t)= MR

C3
−C2

M2ϑ
R Rd

tdϑ
> 0⇐⇒ t >

(
C3C2

)1/(dϑ)
M1−m

R R1/ϑ = t∗c . (2.43)

Now we have to check if t∗c ≤ T . By (2.36), one knows that a sufficient condition is that
t∗c ≤ Tc = Cm−1

3 M1−m
R [dist(0,∂Ω)− 2R]1/ϑ ≤ T , that is,

R≤ dist(0,∂Ω)

2 +C1−m+1/dϑ
3 C1/dϑ

2

. (2.44)

Now, assuming that t ∈ (t∗c ,Tc) is temporarily fixed, we optimize the function

f (r)= 1
Ad

[
A(t)
rd

− B(t)
r2/(1−m)

]
(2.45)

with respect to r = r(t)∈ (0,dist(0,∂Ω)− 2R) and we obtain that it attains its maximum
in r = rmax(t):

rmax(t)=
[

2
d(1−m)

]ϑ(1−m)

tϑ
[
MR

C3
− C2M

2ϑ
R Rd

tdϑ

]−ϑ(1−m)

. (2.46)

At this point, it is necessary to check the conditions

(
2(d−1)/d − 1

)
2R < rmax(t) < dist(0,∂Ω)− 2R. (2.47)

To this end, it is useful to get a simpler parametrization of the time interval (t∗c ,Tc),
indeed

tα = αt∗c = α
(
C3C2

)1/(dϑ)
M1−m

R R1/ϑ (2.48)

maps the time interval (t∗c ,Tc) into (1,αc), where

αc = Tc

t∗c
= C1−m+1/dϑ

3 C1/dϑ
2

(
dist(0,∂Ω)

R
− 2

)
,

rmax
(
tα
)=

(
2

d(1−m)

)ϑ(1−m)

C1−m+1/dϑ
3 C1/dϑ

2
αϑ

(
1−α−dϑ

)ϑ(1−m) R.
(2.49)

Now optimizing this function with reflect to α∈ (1,αc) will lead to the value

αmin = 1 + ϑd(1−m) (2.50)
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and in order to guarantee the fact that αmin ≤ αc, we impose the condition

R≤ dist(0,∂Ω)

2 +
((

1 + ϑd(1−m)
)
C1−m+1/dϑ

3 C1/dϑ
2

)ϑ . (2.51)

Moreover, it is tedious but straightforward to verify that

(
2(d−1)/d − 1

)
2R < rmax

(
tαc
)≤ dist

(
x0,∂Ω

)− 2R, (2.52)

the first inequality becomes nothing else but a lower bound on the constants C2 and C3,
but since they are constants used in upper estimates, they can be chosen arbitrarily large.
The second inequality is guaranteed by the hypothesis R≤Λdist(0,∂Ω). Now going back
to the standard time parametrization, we proved that

f
(
rmax(t)

)= Ad

[
d(1−m)

]2ϑ−1

22ϑϑ

[
1
C3
−C2

M2ϑ−1
R Rd

tdϑ

]2ϑM2ϑ
R

tdϑ
> 0 (2.53)

for all t ∈ (tαmin ,Tc)⊂ (t∗c ,T). We thus found the estimate

u(t,0)≥ Ad

[
d(1−m)

]2ϑ−1

22ϑϑ

[
1
C3
−C2

M2ϑ−1
R Rd

tdϑ

]2ϑM2ϑ
R

tdϑ
= K1A(t)

M2ϑ
R

tdϑ
, (2.54)

a straightforward calculation shows that the function

A(t)=
[

1
C3
−C2

M2ϑ−1
R Rd

tdϑ

]2ϑ

(2.55)

is nondecreasing in time, thus if t ≥ tαmin ,

A(t)≥A
(
tαmin

)=
(

1− (1 + ϑd(1−m)
)−dϑ

2C3

)2ϑ

(2.56)

and finally we obtain

u(t,0)≥ K1A(t)
M2ϑ

R

tdϑ
≥ K1A

(
tαmin

)M2ϑ
R

tdϑ
. (2.57)

So we proved that

u(t,0)≥ K
M2ϑ

R

tdϑ
(2.58)

for t ∈ (tαmin ,Tc), with

K = Ad
(
2C3

)2ϑ

[
d(1−m)

]2ϑ−1

22ϑϑ

[
1− (1 + ϑd(1−m)

)−dϑ]2ϑ
. (2.59)

From the center to the infimum. Now we want to obtain a positivity estimate for the
infimum of the solution u in the ball BR = BR(0). Suppose that the infimum is attained
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in some point xm ∈ BR, so that infx∈BR u(t,x)= u(t,xm), then one can apply (2.58) to this
point and obtain

u
(
t,xm

)≥ K
M2ϑ

2R

(
xm
)

tdϑ
(2.60)

for tαmin (xm) < t < Tc(xm) < T . Since the point xm ∈ BR(0), then it is clear that BR(0) ⊂
B2R(xm)⊂ B4R(0) and this leads to the equality

M2R
(
xm
)=MR(0)=M4R(0) (2.61)

since Mρ(y) = ∫Bρ(y)u0(x)dx, supp(u0) ⊂ BR(0) and u0 ≥ 0. These equalities will imply
then that the times

tαmin

(
xm
)= (1 + ϑd(1−m)

)(
C3C2

)1/dϑ
(2R)1/ϑM2R

(
xm
)

= (1 + ϑd(1−m)
)(
C3C2

)1/dϑ
(2R)1/ϑMR(0)= t∗min(0)≥ tαmin (0),

(2.62)

Tc
(
xm
)= Cm−1

3

[
dist(0,∂Ω)− 4R

]1/ϑ
M1−m

2R

(
xm
)

= Cm−1
3

[
dist(0,∂Ω)− 4R

]1/ϑ
M1−m

R (0)≤ Tc(0).
(2.63)

Thus, we have found that

inf
x∈BR(0)

u(t,x)= u
(
t,xm

)≥ K
M2ϑ

R

(
xm
)

tdϑ
= K

M2ϑ
R (0)
tdϑ

= K
t∗dϑmin (0)
tdϑ

M2ϑ
R (0)

t∗dϑmin (0)
(2.64)

for t∗c = t∗min(0) < t < Tc(0) < T , which is exactly (2.30).
The last step consists in obtaining a lower estimate when 0≤ t ≤ t∗c .
To this end, we consider the fundamental estimate of Bénilan and Crandall [12]

ut(t,x)≤ u(t,x)
(1−m)t

. (2.65)

This easily implies that the function

u(t,x)t−1/(1−m) (2.66)

is nonincreasing in time, thus, for any t ∈ (0, tc), we have

u(t,x)≥ u
(
t∗c ,x

) t1/(1−m)

t∗1/(1−m)
c

. (2.67)

We can now prove (2.30) for intermediate times, that is, 0 < t < t∗c , simply by applying
the estimate (2.64) with t = t∗c to the right-hand side of the above estimate (2.67). Notice
that (2.64) holds for any t ≥ t∗c . The proof of formula (2.30) is complete in all cases.
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The values of the constants K and C are given by

K = Ad
(
2C3

)2ϑ

[
d(1−m)

]2ϑ−1

22ϑϑ

[
1− (1 + ϑd(1−m)

)−dϑ]2ϑ

2dC3C2
(
1 + ϑd(1−m)

) ,

C = C1−m+1/dϑ
3 C1/dϑ

2 ,

τc =
(
1 + ϑd(1−m)

)(
C3C2

)1/dϑ
,

τ′c =
1

C1−m
3

,

Λ=min

(
1

(2 +C)
,

1

2 +
((

1 + ϑd(1−m)
)
C
)ϑ

)

.

(2.68)

The proof is complete. �

Global positivity on domains. The global positivity in this setup has been proved first by
DiBenedetto et al. [7] in the form of the global Harnack principle that we will discuss in
the following section.

3. Global Harnack principle on the whole space and relative error estimates

Under a further control on the initial data, we can transform the local Harnack princi-
ple into a global version. The global Harnack principle, which is the natural extension of
Harnack inequalities to a global point of view, is indeed nothing else than a global sharp
upper and lower bound in terms of a Barenblatt solution shifted in time and possibly with
different mass. The range of the parameter m is always mc < m < 1. We recall that bi, λ1,
k1, and Ci are constants that depend only on m and d, while the rest of the parameters
depend also on the data as expressed.

Theorem 3.1 (global Harnack principle). Let u0 ∈ L1(Rd), u0 ≥ 0, and

u0(x)|x|2/(1−m) ≤ A (3.1)

for |x| ≥ R0. Then, for any time ε > 0, there exist constants τ1, τ2, M1, and M2, such that for
any (t,x)∈ (ε,∞)×Rd, the following upper and lower bounds hold:

�
(
t− τ1,x;M1

)≤ u(t,x)≤�
(
t+ τ2,x;M2

)
, (3.2)

where τ1 = λ1ε, τ2 = τ(ε,A, ts), M1 =M(ε) as given in Theorem 2.2, and M2 = k2(ε,A,
τ2)M∞, while

tc = CM1−m
R R1/ϑ, ts = C5M

1−m
∞ R1/ϑ

0 . (3.3)

Proof. The detailed proof can be found in [5]. It is based on a quite delicate analysis of
the properties of the solution and the size of the Barenblatt solutions in different parts of
the space-time domain. Convenient parabolic comparisons are then used to arrive at the
result. �
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Asymptotic behavior and relative error estimates in Rd. The second author has proved in
[1] the so-called relative error estimates (REE) for the FDE in the same range of parame-
ters, namely,

lim
t→∞

∥
∥
∥
∥
u(t,·)−�(t,·;M)

�(t,·;M)

∥
∥
∥
∥
∞
= 0, (3.4)

where � is the Barenblatt solution with the same mass (the result is independent of a
possible shift in time or space). This is related to our Theorem 3.1 as follows: for every
ε > 0, we can find a Barenblatt solution with mass M1(ε) < M∞ and another one with
mass M2(ε) >M∞ that serve as lower bound, respectively, upper bound for the solution
for all times t ≥ ε. It is clear from the maximum principle that M1(ε) increases with time
while M2(ε) decreases. The asymptotic result says that

lim
ε→∞M1(ε)= lim

ε→∞M2(ε)=M∞. (3.5)

Theorem 3.1 adds to this asymptotic statement a more precise quantitative information
that is valid not only for large times, but also for arbitrary small times. The solution thus
inherits positivity and boundedness properties directly from the Barenblatt solutions that
serve as upper and lower bounds from the very beginning. Usually, it is said that the
Barenblatt solution of the nonlinear equations is a “poor cousin” of the fundamental
solution of the heat equation since there is no representation formula as in the linear case.
The above results show that in the good fast diffusion range mc < m < 1, it is a stronger
model in some respects. Thus, a consequence of this powerful global Harnack principle,
obviously valid for the Barenblatt solutions, is that the behavior at infinity (i.e., for |x| →
∞ and/or t→∞) of the Barenblatt solution is always the same, independent of the mass.
This uniformity property is not shared by the heat equation nor by the porous medium
equation and it shows how much more effectively the fast diffusion process regularizes
the initial data.

Different behavior in the cases m �∈ (mc,1). In the above considerations, it is essential that
the range of parameters is mc <m < 1, since when m �∈ (mc,1), different phenomena hold.
We refer to [3] for a detailed and exhaustive exposition and as a source for more complete
bibliography. Let us discuss here the question of possible uniform lower bounds. The
following result is proved in [5].

Proposition 3.2. Locally uniform positivity estimates and a posteriori any kind of Harnack
inequalities are false for general initial data.

This quite simple example shows that the range of parameters we consider in this paper
is optimal from below, if we want the initial datum u0 to be as general as possible.

Let us now comment that the results discussed above have been motivated by similar
properties of the heat equation flow. It has to be noted that there are slight differences in
favor of the fast diffusion case. Indeed, if one considers as initial datum u0 = δy , then it is
easy to see that the shifted fundamental solution of the linear heat equation

Ey(t,x)= (4πt)−d/2e−|x−y|
2/t (3.6)
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does not satisfy the condition

c1E0(t,x)≤ Ey(t,x)≤ c2E0(t,x) (3.7)

for some universal constants ci > 0, which is, however, satisfied by the Barenblatt solutions
if mc <m < 1.

4. Global Harnack principle on bounded domains

In this section, we will enlarge a bit the range of the parameterm, namely, we will consider

(d− 2)+

d+ 2
=ms <m < 1, (4.1)

with ms ≤mc (note that ms is the inverse of the usual Sobolev exponent). Passing now
from the local to the global point of view, we should mention that the global Harnack
principle in the case of bounded domains has been proved by DiBenedetto et al. [7]. They
investigate some regularity properties of the FDE problem posed on bounded domains.
We quote hereafter their [7, Theorem 1.1] for convenience of the reader and since it will
be used in the sequel, for its relation with the fine asymptotic behavior, near the extinction
time.

Theorem 4.1 (global Harnack principle on bounded domains) [7]. For any ε ∈ (0,T),
there exist constants λ, Λ depending only upon d, m, ‖u0‖1+m, ‖∇um0 ‖2, diam(Ω), ∂Ω, and
ε, such that for all (t,x)∈ (0,T)×Ω, t > ε

λdist(x,∂Ω)1/m(T − t)1/(1−m) ≤ u(t,x)≤Λdist(x,∂Ω)1/m(T − t)1/(1−m). (4.2)

This global Harnack principle also gives further regularity of the solutions (namely
space analyticity and time Hölder continuity), and holds on bounded domains depending
on some further global regularity of the initial datum. The difference between theRd case
and the bounded domain case is that in the case of whole space Rd the general solution
u(x, t) is estimated from above and from below in terms of the Barenblatt solution, while
in the case of a bounded domain, it is bounded between d(x)1/m(T − t)1/(1−m), which is
essentially the solution obtained by separation of variables.

We conclude this topic section by saying that the global version of the elliptic Harnack
inequality is the global Harnack principle, that is, nothing more than an accurate lower
and upper bound with the same “comparison function,” both in the case of the whole
space and in the case of bounded domains. As far as we know, it is an interesting open
problem to find such global principle in unbounded domains.

5. Convergence in relative error on a domain

Our next interest is the asymptotic behavior of nonnegative solutions of the fast diffu-
sion equation (FDE) near the extinction time. More precisely, we consider the initial and



18 Boundary Value Problems

boundary value problem

ut = Δ
(
um
)

in (0,+∞)×Ω,

u(0,x)= u0(x) in Ω,

u(t,x)= 0 for t > 0, x ∈ ∂Ω

(5.1)

posed in a bounded connected domain Ω⊂Rd with sufficiently smooth boundary; as we
have said, ms < m < 1. We assume that the initial data u0 is bounded and nonnegative.
We recall that the above problem possesses a unique weak solution u≥ 0, that is, defined
and positive for some time interval 0 < t < T and vanishes at a time T = T(m,d,u0) > 0,
which is called the (finite) extinction time, compare [13, 7]. Note that the conditions on
the initial data can be relaxed into u0 ∈ Lp(Ω) for some p > pc where pc =max{1,d(1−
m)/2} in view of the Lp–L∞ smoothing effect

∥
∥u(t)

∥
∥∞ ≤ Cm,d

∥
∥u0

∥
∥γ
pt
−α for any t > 0, (5.2)

valid for p > pc with γ,α > 0 depending only on m, d, p (see [3] for further details on this
issue).

The asymptotic profiles and the associated elliptic problem. We want to investigate the pre-
cise behavior of the solution near the extinction time. For this purpose, it is convenient
to transform the above problem by the known method of rescaling and time transforma-
tion. If we put

u(t,x)= (T − t)1/(1−m)w(τ,x), τ = log
(

T

(T − t)

)
, (5.3)

then, problem (5.1) is mapped into

wτ = Δ
(
wm
)

+
w

1−m
in (0,+∞)×Ω,

w(0,x)= T−1/(1−m)u0(x) in Ω,

w(τ,x)= 0 for τ > 0, x ∈ ∂Ω.

(5.4)

The transformation can also be expressed as

w(τ,x)= u
(
T −Te−τ ,x

)

(
Te−τ

)1/(1−m) , (5.5)

and the time interval 0 < t < T becomes 0 < τ <∞. In a celebrated paper, Berryman and
Holland [13] reduced the study of the behavior near T of the solutions of problem (5.1)
to the study of the possible stabilization of the solutions of the transformed evolution
problem (5.4). In fact, it can be proved (see below) that the solutions of the latter problem
stabilize towards the solutions of the associated stationary problem, which is the elliptic
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problem

−Δ(Sm)= 1
1−m

S in Ω,

S(x)= 0 for x ∈ ∂Ω,
(5.6)

where ms <m < 1 and Ω are as before.
We will prove that the solutions of problem (5.4) have as ω-limits nontrivial solutions

of problem (5.6), and also that the convergence takes place in the weighted uniform sense
that we will explain next. Every solution S to the elliptic problem produces a separable
solution � of the original FDE of the form

�(t,x)= S(x)(T − t)1/(1−m) (5.7)

which corresponds to the initial datum �(0,x)= T1/(1−m)S(x). In this context, we can fix
T at will, and we will write �T for definiteness.

The elliptic problem. The question of existence, regularity, and uniqueness for the Dirich-
let elliptic problem is well understood in its basic features, in the range of parameters
under consideration.

Existence of positive classical solutions. If 0 < m < 1 for d ≤ 2 or if (d− 2)/(d + 2)=ms <
m < 1 for d ≥ 3, then there exist positive classical solutions to equation (5.6) (see, e.g.,
[13] and references quoted therein, and also [7]).

Uniqueness. In the supercritical case m >ms that we consider, the geometry of Ω plays a
role in the uniqueness problem. Indeed, if d = 1 or if d ≥ 2 and Ω is a ball, then the solution
is unique (see [14]). Moreover, if d ≥ 2 and Ω is an annulus, then the solution is unique
in the class of positive radial solutions (see [15]). However, there are cases in which the
solution is not unique, see; for example, [16, 15].

Regularity and boundary behavior. Since the solutions of problem (5.6) are stationary
solutions of problem (5.1), estimates (4.2) give us the following estimates for the behavior
of S:

λd(x)1/m ≤ S(x)≤Λd(x)1/m. (5.8)

Dynamical system approach: ω-limits. For convenience of the reader, we introduce now
some basic ideas from the dynamical system approach. Basically, this approach consists of
viewing the solution as an orbit in a functional space and considering the points to which
it accumulates as time goes to infinity. We suggest to the interested reader the books
[17, 18] for this approach. Note that the approach is applied to the rescaled solutions that
have nontrivial asymptotics.

Definition 5.1. The positive semiorbit of a solution w(τ,x) starting at time t0 if the family

γ
(
w;τ0

)= {w(τ) : τ ≥ τ0
}

, (5.9)

where w(τ)=w(τ,·) is viewed as an element of a suitable space X of functions in Ω.
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Hopefully, X will be a Banach space or a closed convex subset thereof. With the previ-
ous estimates, the semiorbit is a relatively compact subset of Lp, with 1 ≤ p ≤∞, which
can be taken as X , since the semiorbit is uniformly bounded in L∞. In any case, for every
sequence τj , there is a subsequence along which

w
(
τjk
)−→ f in Lpstrong, with p ∈ [1,∞]. (5.10)

Definition 5.2. The set of all possible limits of a semiorbit along sequences τj →∞ is
called ω-limit of the orbit

�(w)= { f ∈ Lp : ∃τj −→∞, w
(
τj
)−→ f in Lp strong

}
. (5.11)

An alternative way of writing this definition is

�(w)=
⋂

τ>0

⋃

τ≥τ0

γ(w;τ), (5.12)

where the overline denotes the closure.

It is well known that the ω-limit is a closed and connected set in X . We now revisit
the well-known result by Berryman and Holland [13] who proved convergence in W1,2

by similar methods, based on Lyapunov functional techniques. Our first result is a little
improvement in the sense that in [13] the authors do not prove uniform convergence for
dimensions higher than 1.

Theorem 5.3 (uniform convergence to the ω-limit) [4]. The ω-limit set �(u) of a
rescaled solution of the parabolic problem (5.1) is contained in the set � of a solution of
the elliptic problem (5.6) and the convergence takes place uniformly in Ω as t→ T−.

Remark 5.4. In case the solution of the elliptic problem is unique, the ω-limit consists
of a single point �(w) = S given by such unique solution. In this case, the convergence
is unconditioned (i.e., as t→ T), since along any sequence t j → T (i.e., τj →∞), we have
convergence to the same point �(w)= S, in all Lp(Ω) spaces with p ∈ [1,∞].

Relative error convergence. We are now ready to address the main issue of this section,
that is, the relative error convergence estimates (REC) which are nothing else but uniform
estimates as t→ T− of the quotient of the solution to the FDE u divided by a separable
solution �T to the same problem, T being the finite extinction time. The formulation of
the result depends on whether the elliptic problem has multiple solutions so that the ω-
limit set �(w) of Theorem 5.3 may consist of many points, or the solution to this problem
is unique. The general result is as follows.

Theorem 5.5. Let u be the solution to the problem (5.1). Then,

lim
t→T−

inf
S∈�

∥
∥
∥
∥

u(t,·)
S(·)(T − t)1/(1−m)

− 1
∥
∥
∥
∥
L∞(Ω)

= 0, (5.13)

where S is a point of the ω-limit set �, included in the set � of positive classical solution to
the Dirichlet elliptic problem (5.6).
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This type of convergence is what we call uniform relative-error convergence (REC for
short), and it is our main contribution to the subject of fine asymptotics. To understand
better the meaning of this terminology, it will be convenient to introduce the weighted
distance to the set �

d∞( f ,�)= inf
S∈�

∥
∥
∥
∥
f (·)
S(·) − 1

∥
∥
∥
∥
L∞(Ω)

. (5.14)

This peculiar distance (which gives a topology strictly finer than the standard L∞ norm)
is zero if and only if f is a point of �. Theorem 5.5 says that the relative distance between
the trajectory f (t)= u(t)(T − t)−1/(1−m) and the ω-limit set �,

d∞
(

u(t)
(T − t)1/(1−m)

,�
)
−→ 0, as t −→ T , (5.15)

is going to zero uniformly in space variables as t→ T . Loosely speaking, taking into ac-
count the behavior of both u and S near the boundary, what we say is that, if d(x) denotes
distance to the boundary, then

u(t,x)− S(x)(T − t)1/(1−m)

d(x)(T − t)1/(1−m)
−→ 0 (5.16)

converges to zero uniformly in x ∈Ω as t→ T . We also state a particular case of the above
theorem, the case where the Dirichlet elliptic problem (5.6) has a unique positive classical
solution S(x). In that case, the result takes the simpler form.

Theorem 5.6. Let u be the solution to problem (5.1). Then,

lim
t→T−

∥
∥
∥
∥
u(t,·)
�(t,·) − 1

∥
∥
∥
∥
L∞(Ω)

= 0, (5.17)

where � is the separable solution (5.7) of the form

�(t,x)= S(x)(T − t)1/(1−m). (5.18)

Let us now choose a parametrization of the set � of solutions to the elliptic problem
(5.6), � = {Sα}α∈A. Then, �(u)⊂� and both sets are possibly not equal. � inherits the
parametrization of �, thus, for any u solution to the problem (5.1), there exists an A′ =
A′(u)⊂ A such that

�(u)= {Sα
}
α∈A′ . (5.19)

It is worth noting that when the ω-limit consists of one point, that is, when the elliptic
problem (5.6) possesses a unique solution, things are simpler and the parametrization
below is trivial, that is, the set A = A′ = {α1}, thus we will omit the subindexes α when
no confusion is feared.

We now state a different version of the REC theorem in the general case in which the
elliptic problem has multiple solutions, so that the ω-limit set �(w) of Theorem 5.3 may
consist of many points.
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Corollary 5.7. With the same hypothesis as in Theorem 5.5, for any ε > 0 there exist tε > 0
and a function α(t)∈ A′, defined for any tε < t < T such that

∥
∥
∥
∥
u(t)
Sα(t)

− 1
∥
∥
∥
∥
∞
≤ ε, for any tε < t < T. (5.20)

This corollary is important since it allows to prove elliptic Harnack inequality near
the extinction time, also in the case when the ω-limit set consists of many points, as
we will see in a subsequent section. This will show also that the regularity properties of
the solution are somehow independent of the exact profile of the solution close to the
extinction time.

Comments. The above results improve on the celebrated result of Berryman and Holland
[13], where it was shown that the asymptotic profile for the solution to (5.1) is given
by the separable solution �, but convergence was proved only for some special classes
of initial data and in some Sobolev spaces; that convergence in general does not imply
uniform convergence up to the boundary. Our result of convergence in relative error
is stronger than uniform convergence because of the fine behavior near the boundary;
moreover, it easily implies elliptic Harnack inequalities near finite extinction time T .

It is also worth noticing that the convergence result can be viewed as a concrete S-
theorem, in the spirit of [17], applied to the problem under consideration. The proof
borrows the main lines of the proofs of the same result for the PME as done, for example,
in [2].

Let us also note that the convergence in relative error cannot be true for obvious rea-
sons when the profiles have moving free boundaries, like in the porous medium case or
its rescaled version (nonlinear Fokker-Planck equation), and the problem is posed in free
space. This is due to the fact that the interfaces do not match exactly, so that the quotient
u/� may be infinite. As a final note on this issue, let us point out that our REC result
shows convergence in time to the ω-limit, but the question of establishing precise rates is
not investigated. This is a natural further question that deserves attention.

6. Harnack inequalities

We finally come to one of the most important aims of this paper. We want to show how an
intelligent combination of direct and reverse smoothing effects implies easily an optimal
Harnack inequality, whose form changes in time.

As a precedent, DiBenedetto and Kwong proved an intrinsic Harnack inequality (see
[19, Theorem 2.1]): there exist constants 0 < δ < 1 and C > 1 depending on d and m such
that for every point P0 = (t0,x0)∈QT , QT = (0,T)×Ω,

inf
x∈BR

u
(
t0 + θ,x

)≥ Cu
(
t0,x0

)
(6.1)

provided u(t0,x0) is strictly positive and

(
t0− τ, t0 + τ

)×BR
(
x0
)⊂QT , τ = u

(
t0,x0

)1−m
R2. (6.2)
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The constant θ = δτ depends on the positive value of u at P0. It is a local property and
thus it holds both for the case of the whole space and for the domain case. Our local pos-
itivity results, Theorems 2.1 and 2.5, support quantitatively the above intrinsic Harnack
inequality, proving its validity in another aspect.

We will present intrinsic and elliptic forms of the Harnack inequality. We can say that
the intrinsic Harnack inequality, which compares values of the solution in different times,
is the only Harnack possible for small times, while for intermediate times, the elliptic
Harnack inequality seems to be the best one: it is stronger, since it easily implies the
Intrinsic.

6.1. Harnack inequalities for the FDE on Rd. We now show that the positivity result
implies a full local Harnack inequality on the whole Euclidean space. We will see that
once again, the critical time

tc = Cm,dM
(1−m)
R R1/ϑ (6.3)

plays a role, indeed, the form of the Harnack inequality changes when dealing with times
smaller or larger than tc. First we deal with the case of large times, namely, t > tc: we will
consider u0 ∈ L1(Rd), u0 ≥ 0 and we let

M∞ =
∫

Rd
u0(x)dx, MR =

∫

BR

u0(x)dx (6.4)

for some R > 0, x0 ∈Rd.

Theorem 6.1 (elliptic Harnack inequality). Let u(t,x) satisfy the same hypothesis as The-
orem 2.1. If moreover u0 ∈ L1(Rd), there exists a positive constant �, depending only on m
and d on the ratio MR/M∞, such that for any t ≥ tc(MR,R),

sup
x∈BR

u(t,x)≤� inf
x∈BR

u(t,x). (6.5)

If moreover u0 is supported in BR, then the constant � is universal and depends only on m
and d.

Proof. First we remark that the exact expression for tc is given in Theorem 2.1. The well
known smoothing effect can be rewritten in an equivalent form

sup
x∈BR

u(t,x)≤ C1M
2ϑ
∞ t−dϑ = C1

[
M∞
MR

]2ϑ

M2ϑ
R t−dϑ. (6.6)

Using now the reverse smoothing effect when t > tc, we get

inf
x∈BR

u(t,x)≥ KM2ϑ
R t−dϑ ≥ KC−1

1

[
MR

M∞

]2ϑ

sup
x∈BR

u(t,x), (6.7)

that is, (6.5) with �= K−1C1[M∞/MR]2ϑ. This concludes the proof. �
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The above elliptic Harnack inequality holds for times larger than the critical time tc
and it strongly depends on the sharp lower bounds of Theorem 2.1, for t > tc. In the case
of small times, the lower bound changes its shape and we recover the intrinsic Harnack
inequality of [19] by different methods and with a little improvement: the intrinsic Har-
nack inequality (6.18) holds for any positive time, namely, we have the following

Theorem 6.2 (intrinsic Harnack inequality). Let u(t,x) satisfy the same hypothesis as
Theorem 2.1, and let R > 0. There exist constants 0 < δ < 1 and C > 1 depending on m and
d such that for every 0 < t0 ≤ tc,

inf
x∈BR

u
(
t0 + θ,x

)≥ Cu
(
t0,x0

)
, (6.8)

where

θ = δτ, τ = u
(
t0,x0

)1−m
R2 > 0. (6.9)

Proof. Let us consider the lower bound of Theorem 2.1 in the case 0 < t < tc:

u(t,x)≥ t1/(1−m)

t∗1/(1−m)
c

u
(
t∗c ,x

)≥ t1/(1−m)

t∗1/(1−m)
c

M2ϑ
R

t∗,dϑ
c

= (C3C2
)2/d(1−m) t1/(1−m)

R2/(1−m)
(6.10)

since

t∗c =
(
C3C2

)1/(dϑ)
M1−m

R R1/ϑ, ϑ= 1
(
2−d(1−m)

) . (6.11)

We remark that we can take C3C2 > 1, as remarked in the proof of Theorem 2.2, and such
intrinsic lower bound is independent of MR, and thus of u0. Indeed, the choices

t = t0 + θ, θ = δτ, τ = u(t0,x0)1−mR2 > 0, (6.12)

where δ ∈ (0,1) can be chosen in such a way that t0 + δτ ≤ t∗c and the positivity of τ is
guaranteed by the positivity estimates. We then get

u
(
t0 + θ,x

)≥ (C3C2
)2/d(1−m)

(
t0 + θ

)1/(1−m)

R2/(1−m)

>
(
C3C2

)2/d(1−m) θ1/(1−m)

R2/(1−m)

= (C3C2
)2/d(1−m)

δ1/(1−m)u
(
t0,x0

)
.

(6.13)

This concludes the proof. �

Remark 6.3. We now show how the elliptic Harnack inequality implies the intrinsic Har-
nack inequality when t > tc. From the above proofs, one can prove a stronger version of
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the elliptic Harnack inequality. Indeed,

sup
x∈BR

u(t−ω,x)≤ sup
x∈Ω

u(t−ω,x)≤ C1
M2ϑ∞

(t−ω)dϑ

= C1

K

[
M∞
MR

]2ϑ[ t

t−ω

]dϑ
M2ϑ

R t−dϑ

≤ C1

K

[
M∞
MR

]2ϑ[ t

t−ω

]dϑ
inf
x∈BR

u(t,x)

= C1

K

[
1

1− σ

]dϑ[M∞
MR

]2ϑ

inf
x∈BR

u(t,x)

(6.14)

since we took ω = σt, with σ ∈ [0,1). Thus, it can be rewritten as

inf
x∈BR

u(t+ω,x)≥� sup
x∈BR

u(t,x) (6.15)

and in particular, we can choose σ ∈ [0,1) such that ω = σt = δu(t0,x0)1−mR2 = θ, as in
the above intrinsic Harnack inequality (6.18).

Finally, we remark that the Harnack inequality (6.15) holds for any σ ∈ [0,1), thus it
compares the infimum and supremum of u at different times, and by the monotonicity
of the L∞ norm, we can compare the supremum and infimum of u at any two different
times t1, t2 ∈ (0,∞). This inequality is sometimes called the backward Harnack inequality,
in the case of the heat equation.

Panorama. At this point, it is convenient to make a summary for the Cauchy problem
in Rd. The role of the critical time tc is to split the time axis into two parts, showing the
range of validity of different Harnack inequalities and behaviors of the solutions.

(i) Small times, 0 < t < tc: intrinsic Harnack inequalities [19] and Theorem 6.2. The
validity for all positive times is guaranteed by our local positivity result. The
constants do not depend on u0. There is Hölder continuity, implied by Harnack
inequalities.

(ii) Large times, t > tc: elliptic Harnack inequalities. The constant may depend on the
initial datum. Elliptic Harnack inequalities imply intrinsic Harnack inequalities
and Hölder continuity.

(iii) All positive times, for any ε > 0 and for all t > ε: global Harnack principle that
implies the convergence in relative error.

(iv) Asymptotics, t→∞: uniform convergence in relative error.

6.2. Harnack inequalities for FDE on a domain. In this section, we analyze the case of
the mixed Cauchy-Dirichlet problem on a bounded domain. We find an extra difficulty,
due to the presence of the finite extinction time. We start by recalling the result of [7],
where the following rather peculiar property of the solutions of problem (2.28) is found
as a consequence of the global Harnack principle on domains,

u
(
t0,x0

)≥ γ0 sup
|x−x0|<R

u
(
t0,x

)
, (6.16)
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valid for an R > 0, so small that the box
(
t0− τ, t0 + τ

)×BR
(
x0
)⊂QT , τ = u

(
t0,x0

)1−m
R2, (6.17)

but again the box depends on the positivity value of u in the point (t0,x0). It resembles
our elliptic Harnack inequality, but again it has to be supported by a positivity result to
hold in full generality.

Analogously to what we did before, we can prove the elliptic Harnack inequality for
intermediate times in the case of bounded domains. Our main result takes the form of a
precise lower estimate for the values in question, and will thus ensure that such intrinsic
Harnack inequality will hold for all positive times not too close to the extinction time. We
also prove an elliptic Harnack inequality for intermediate times, that is, for t ∈ I = [tc,Tc]
with 0 < tc < Tc < T , where tc and Tc are computed in terms of the initial datum, which
follows from our sharp result on positivity. Note that this allows to calculate explicitly all
the constants. As before, we can say that our positivity results somehow “support” the
results of [7], in the sense that we ensure positivity in a quantitative way, and a posteriori
their result holds true for times not too close to the extinction time.

In this section, we prove intrinsic and elliptic Harnack inequalities, in the whole in-
terval (0,T), in analogy to what has been done in the whole space. We point out that for
times close to the extinction time, an elliptic Harnack inequality is still valid, thanks to the
accurate asymptotic information given by the relative error estimates, compare Theorems
5.5 and 5.6.

Theorem 6.4 (intrinsic Harnack inequality). Let u(t,x) and R > 0 satisfy the same hypoth-
esis as Theorem 2.1. There exist constants 0 < δ < 1 and C > 1 depending on m and d such
that for every 0 < t0 ≤ tc,

inf
x∈BR

u
(
t0 + θ,x

)≥ Cu
(
t0,x0

)
, (6.18)

where

θ = δτ, τ = u
(
t0,x0

)1−m
R2 > 0. (6.19)

Proof. The proof is formally the same as in Theorem 6.2. �

Theorem 6.5 (elliptic Harnack inequality for intermediate times). Let u(t,x) and R >
0 satisfy the same hypothesis as Theorem 2.5. If moreover u0 ∈ L1(Ω), then there exists a
positive constant �, depending only on m, d, and on the ratio

MΩ

MR0

=
∫
Ωu0(x)dx
∫
BR0

u0(x)dx
, (6.20)

such that for any t∗c < t < Tc < T ,

sup
x∈BR0

u(t,x)≤� inf
x∈BR0

u(t,x). (6.21)

If moreover u0 is supported in BR0 , then the constant � is universal and depends only on m
and d.
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Proof. The proof is formally the same as in Theorem 6.1, since the upper bounds are the
same, (once one replaces M∞ with MΩ) and uses (2.30) when t∗c < t < Tc. �

At this point, it is natural to ask if there holds a Harnack inequality for times close to
the extinction time, and of which kind. The answer is that there holds an elliptic Harnack
inequality, but the proof is different from the above ones, since it relies on the fine as-
ymptotic behavior close to the extinction time. We already discussed the question of the
asymptotic profile near the extinction time, and we showed the convergence in relative
error. This very strong convergence to the solution obtained by separation of variables,
also transports some other regularity properties, from the elliptic problem to the para-
bolic one, namely, the validity of the following Harnack inequality for the elliptic problem
(5.6) implies the validity of an elliptic Harnack inequality for the solution to the parabolic
problem (5.1).

Theorem 6.6 (Harnack inequalities for the elliptic problem (5.6)). Let 0≤ S∈W1,2
0 (Ω)

be a solution to the elliptic Dirichlet problem (5.6). Then, if the ball B4R(x0)⊂Ω,

sup
BR(x0)

S≤H inf
BR(x0)

S, (6.22)

where H is a positive constant depending on m, d, and R.

Proof. See, for example, [20]. �

Also the range of the parameter m can be enlarged a bit, namely, we will consider

d− 2
d+ 2

=ms <m < 1. (6.23)

Harnack inequality via relative error estimates. The last part of the paper is devoted to de-
rive an elliptic Harnack inequality for the evolution trajectories near the extinction time,
showing that regularity properties of the solution to the parabolic problem are somehow
inherited from the elliptic problem via the strong convergence in relative error and are
independent from the exact profile near the extinction time. The relative error estimate
in the form of Corollary 5.7 implies the elliptic Harnack inequality as an easy corollary.

Theorem 6.7 (elliptic Harnack inequality near extinction time). Let u be a solution to the
problem (5.1). Then, for any ε∈ (0,1), there exists a time tε ∈ (0,T) such that the following
elliptic Harnack inequality holds for any ball B4R = B4R(x0)⊂Ω and for any t ∈ [tε,T):

sup
x∈BR

u(t,x)≤ 1 + ε

1− ε
H inf

x∈BR

u(t,x), (6.24)

where H is the positive constant in the Harnack inequality for problem (5.6).

Proof. By the relative error estimate of Theorem 5.5, we easily obtain that for any ε ∈
(0,1), there exists a time tε ∈ (0,T) such that for any t ≥ tε,

(1− ε)S(x)(T − t)1/(1−m) =�(t,x)(1− ε)≤ u(t,x)

≤ (1 + ε)�(t,x)= (1 + ε)S(x)(T − t)1/(1−m),
(6.25)
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where S= Sα(t) ∈�, that is, a suitable solution to the elliptic problem (5.6). Thus we have

sup
x∈BR

u(t,x)≤ (1 + ε)(T − t)1/(1−m) sup
x∈BR

S(x)

≤ (1 + ε)(T − t)1/(1−m)H inf
x∈BR

S(x)

≤ 1 + ε

1− ε
H inf

x∈BR

u(t,x),

(6.26)

where in the second step we used the Harnack inequality (6.22), valid for any solution
S(x) to the elliptic problem (5.6), with constant H which depends only on m, d, and R.
The proof is now complete. �

Panorama. At this point, it is convenient to make a panorama for the mixed Cauchy-
Dirichlet problem on a domain Ω⊂Rd. The rule of the critical time tc is again to split the
time axis, showing the range of validity of different Harnack inequalities and behaviors
of the solutions. Another critical time Tc appears, with tc ≤ Tc < T , between tc and the
extinction time T , thus the time interval (0,T) is split into three parts.

(i) Small times, 0 < t < tc: intrinsic Harnack inequalities [19] and Theorem 6.4. The
validity for all positive times is guaranteed by our local positivity result. The
constants do not depend on u0. There is, Hölder continuity, implied by Harnack
inequalities.

(ii) Intermediate times, tc < t < Tc: elliptic Harnack inequalities. The constant may
depend on the initial datum. Elliptic Harnack inequalities imply intrinsic Har-
nack inequalities and Hölder continuity.

(iii) Near extinction time, Tc < t < T : elliptic Harnack inequalities, as consequence of
the Convergence in relative error. The constants do not depend on the initial
datum. Elliptic Harnack inequalities imply intrinsic Harnack inequalities and
Hölder continuity.

(iv) All positive times, for any ε > 0 and for all t > ε: global Harnack principle, [7,
Theorem 4.1]

(v) Asymptotics, t→∞: uniform convergence in relative error, Theorems 5.5 and 5.6.

Appendix

Here we prove the reflection principle of Aleksandrov in a slightly different form, more
useful to our purposes. Other forms of the same principle in different settings can be
found, for example, in [17, Proposition 2.24, page 51] or in [21, Lemma 2.2]. We also
notice that it is sufficient to consider the Dirichlet problem on a suitable ball in order to
achieve the stated positivity results, namely, consider

ut = Δ
(
um
)

in (0,T)×B4R(0),

u(0,x)= u0(x) in B4R(0),

u(t,x)= 0 for 0 < t < T , x ∈ ∂B4R(0)

(A.1)

with supp(u0) ⊂ BR(0) ⊂ B4R(0) ⊂ Ω, where T > 0 is the finite extinction time. Let uB
denote the solution to the above problem (A.1), while let uΩ denote the solution to the
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problem (2.28). It is clear then that uB is a subsolution to the problem (2.28) so that
uB ≤ uΩ and thus local positivity result for uB will imply local positivity result for uΩ.
Note however that since the solutions have extinction in finite time and uB disappears
before uΩ, we are renouncing to obtain estimates near the extinction time of uΩ.

Proposition A.1 (local Aleksandrov’s reflection principle). Let BλR(x0)⊂Rd be an open
ball with center in x0 ∈ Rd of radius λR with R > 0 and λ > 2. Let u be a solution to the
problem

ut = Δ
(
um
)

in (0,+∞)×BλR
(
x0
)
,

u(0,x)= u0(x) in BλR
(
x0
)
,

u(t,x)= 0 for t > 0, x ∈ ∂BλR
(
x0
)

(A.2)

with supp(u0)⊂ BR(x0). Then, for any t > 0, one has

u
(
t,x0

)≥ u
(
t,x2

)
(A.3)

for any t > 0 and for any x2 ∈Dλ,R(x0)= BλR(x0) \B2R(x0). Hence,

u
(
t,x0

)≥ ∣∣Dλ,R
(
x0
)∣∣−1

∫

Dλ,R(x0)
u(t,x)dx =

∮

Dλ,R(x0)
u(t,x)dx. (A.4)

Proof. A detailed proof can be found in the appendix of [5]. �

Remark A.2. Formula (A.4) can be viewed as a local mean value inequality, it has been
derived here from the Aleksandrov principle, but it is interesting by itself and moreover it
is independent of the range of m: one can apply the same argument to any m> 0. Loosely
speaking, formula (A.4) states that for the solutions of diffusion equations, their average
on an annulus at a time t > 0 is smaller than their value taken at the same time and in the
center of the ball where mass was concentrated at the beginning. This property is crucial
in the proof of the positivity estimates and, a posteriori, of the Harnack inequality. We
used this mean value inequality (A.4) in a slightly different form

∫

BR+r (x0)\BR(x0)
u(t,x)dx ≤ Adr

du
(
t,x0

)
(A.5)

with r ≥ μR, μ > 1, and a suitable positive constant Ad,μ. This inequality can easily be
obtained from (A.4), noticing that for r ≥ μR, one has

(R+ r)d ≤ c1
(
Rd + rd

)
(A.6)

for a constant c1, that depends on d and μ > 1. Then, we get (R+ r)d −Rd ≤ (c1− 1)Rd +
rd ≤ c2rd, so that

∣
∣B2R+r

(
x0
) \B2bR

(
x0
)∣∣= ωd

[
(R+ r)d −Rd

]≤ Adr
d (A.7)

with Ad = ωdc2, where ωd is the volume of the unit ball in Rd.



30 Boundary Value Problems

Final remarks. Open problems. If we consider solutions to other more general diffusion
equations to prove inequality (A.4), we will automatically prove positivity and Harnack
inequalities, provided that there is a direct smoothing effect. We point out some direc-
tions which are actually under investigation by the authors and collaborators. The Subcrit-
ical case: we consider the same problems of this paper, that is, local and global positivity
and Harnack inequalities, but in the bad range, namely, 0≤m<mc. This range includes
also the cases of logarithmic diffusion, for example, m→ 0. The coefficient case: we want
to prove positivity and Harnack inequalities for solution to the FDE both on Rd, prob-
lem (2.1) and on domains, problem (2.28), in the more general case, when we replace the
Laplacian with an elliptic operator with measurable coefficient. Riemannian Manifolds:
we consider the above mentioned problems on a Riemannian manifold, in which case
the Laplacian is meant as the Laplace-Beltrami operator. The strategy to prove the prob-
lem would be the same: from (A.4), we get the local positivity result, or reverse smoothing
effect, that we combine with the well-known (direct) smoothing effects.
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Juan Luis Vazquez: Departamento de Matemáticas, Universidad Autónoma de Madrid,
Campus de Cantoblanco, 28049 Madrid, Spain
Email address: juanluis.vazquez@uam.es

mailto:bonforte@calvino.polito.it
mailto:juanluis.vazquez@uam.es

