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As classical methods are intractable for solving Markov decision processes (MDPs) requiring
a large state space, decomposition and aggregation techniques are very useful to cope with
large problems. These techniques are in general a special case of the classic Divide-and-Conquer
framework to split a large, unwieldy problem into smaller components and solving the parts
in order to construct the global solution. This paper reviews most of decomposition approaches
encountered in the associated literature over the past two decades, weighing their pros and cons.
We consider several categories of MDPs (average, discounted, and weighted MDPs), and we
present briefly a variety of methodologies to find or approximate optimal strategies.

1. Introduction

This survey focuses on decomposition techniques for solving large MDPs. However, in this
section we begin by discussing briefly some approaches to treat large Markov chain models
because they contain basic ideas of methods to tackle large MDPs.

1.1. Large Markov Chain Models

Markov chain models are still the most general class of analytic models widely used for
performance and dependability analysis. This class of problems is robust in terms of its
ability to represent a very broad class of models of interest. Unfortunately, the characteristics
of many models (complex interactions between components, sophisticated scheduling
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strategies, synchronization among parallel tasks, etc.) preclude the possibility of closed-form
solutions, in general. Numerical solution methods are the most general solution methods [1].
The most pervasive practical limitation to the use of numerical solution techniques is the size
of the state space of realistic models. One natural way to deal with this problem is via state
space reduction techniques, that is, a transformation of the model to one with fewer states.
Another is to modify the model to one with a structure which enables efficient solution. The
transformed model in general is an approximation of the original model. Several classes of
such transformations are described below.

There are several methods of state space reduction that are applicable to Markov chain
models. One such method is combining “lumpable states” [2]. When lumping applies, it
is exact, but only partial information is retrievable from the solution except in very special
circumstances. Also, lumping is only valid for models that have certain very limited types of
structure.

Another method to treat large state spaces is aggregation/disaggregation [3]. This
applies particularly well to cases in which the system model can be viewed as an interacting
set of tightly coupled subsystems. The solution method is generally an iterative one in
which submodels are solved and the obtained results are used to adjust the submodels
repetitively until a convergence criterion is met. This is an efficient procedure if (a) the model
is decomposable into tightly coupled submodels, (b) the state space of each submodel is
practically solvable, and (c) the number of such submodels is not too large.

There is an additional property of many models that is not capitalized on by any of
the above methods. In many important cases, although the state space is extremely large,
the stationary state probability distribution is highly skewed, that is, only a small subset
of the states account for the vast majority of the probability mass. This is easily illustrated
by considering the nature of several modeling application areas. This observation indicates
that most of the probability mass is concentrated in a relatively small number of states in
comparison to the total number of states in the model. During its lifetime, the system spends
most of its time in this relatively small subset of states and only rarely reaches other states.
The above observation is used to motivate truncation of the model state space, that is, choose
to only represent a subset of the more “popular” states and ignore the remainder, deleting
transitions from the represented states to the “discarded states”. Some form of heuristic is
often used to decide which states to retain and which to discard. For dependability models
a simple heuristic might be to discard all states in which the system has more than a certain
number of failed components. A more sophisticated heuristic for determining which states to
retain is described in [4]. The most persistent practical constraint to the use of the above state
space truncation is that in certain models (health management, reliability, security problems)
deleting some infrequently states may cause significant fatalities.

There is also the issue of how much error is introduced by state space truncation.
For some transient measures, error bounds are easily obtained by introducing trap states
[5]. For example, in dependability analysis we may be interested in interval reliability. For
this purpose one can introduce a trap state and change all transitions to “discarded states”
into transitions to the trap state. Then the importance of the error is a direct function of the
probability that the system is in the trap state at the end of the interval. For-steady state
measures, the issue of error bounds can be more difficult. There are a number of approaches
available for computing bounds or for proving that one model provides a bound compared
with some other model. Among these we can quote the method of Courtois and Semal [6, 7],
the methods based on sample-path analysis and stochastic ordering [8, 9], and the bias terms
approach of Van Dijk [10].
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In [11], the authors explain with some examples where the model modifications only
affect the less popular states and therefore have less effect on the performancemeasures. They
also present some methods to compute bounds on performance measures.

1.2. Large Markov Decision Models

Over the past five decades there has been a lot of interest within planning community
in using stochastic models, which provide a good framework to cope with uncertainties.
Among them, Markov decision processes [12–22], either fully observable (MDP or FOMDP)
or partially observable (POMDP), have been the subject of several recent studies [23–30]. The
optimal strategy is computed with respect to all the uncertainties, but unfortunately, classical
algorithms used to build these strategies are intractable with the twin drawbacks of large
environments and lack of model information in most real-world systems [31–33]. Several
recent studies aim to obtain a good approximation of the optimal strategy. Among them,
aggregation and decomposition techniques have been the subject of a lot of attention. These
techniques are really different flavors of the well-known framework Divide-and-Conquer: (1)
partitioning the state space on regions, that is, transforming the initial MDP into small local
MDPs, (2) independently solving the local MDPs, and (3) combining the local solutions to
obtain an optimal (or near-optimal) strategy for the global MDP.

In preparing this survey, we first attempt to summarize some general decomposition
approaches introduced in [34–38]. These works have proposed some algorithms to compute
optimal strategies as opposed to nearly all methods to treat large MDPs that compute only
near optimal strategies. Moreover, they are suitable to several categories of MDPs (average,
discounted andweightedMDPs) and can be applicable to many practical planning problems.
These algorithms are based on the graph associated to the original MDP and by introducing
some hierarchical structure of this graph.

A lot of other recent works are concerned with autonomous exploration systems
which require planning under uncertainty. In [39], the authors present a main decomposition
technique to cope with large state spaces for practical problems encountered in autonomous
exploration systems. They assume that an expert has given a partition of the state space
into regions; a strategy is independently computed for each region. These local solutions
are pieced together to obtain a global solution. Subproblems correspond to local MDPs
over regions associated with a certain parameter that provides an abstract summary of the
interactions among regions. Next, two algorithms are presented for combining solutions
to subproblems. The first one, called Hierarchical Policy Construction, solves an abstract
MDP (each region becomes an abstract state). This algorithm finds for each region an
optimal local strategy, that is, an optimal region to reach. The second algorithm, called
Iterative Improvement Approach, iteratively approximates parameters of the local problems
to converge to an optimal solution. In [40], the approach is analogous to the latter one
but aims to show how domain characteristics are exploited to define the way regions
communicate with each other. The authors represent the MDP as a directed graph which
allows to precisely define the cost of going from one region to another. The approach in [41]
is quite different. The authors present a particular structured representation of MDPs, using
probabilistic STRIPS rules. This representation allows to quickly generate clusters of states
which are used as states of an abstract MDP. The solution to this abstract MDP can be used as
an approximate solution for the global MDP.

Other authors aim to use macro-actions to efficiently solve large MDPs [42, 43]. Given
a partition of the state space, a set of strategies are computed for each region. A strategy
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in a region is called a macro-action. Once the transition and the reward functions have
been transformed to cope with macro-actions, an abstract MDP is solved using these macro-
actions. The problemwith this approach is that the quality of the solution is highly dependent
on the quality of the set of strategies computed for each region. To ensure high quality, a large
set of macro-actions have to be computed. As the transition and reward functions have to
be computed for each macro-action, the time needed to find macro-actions can outweigh the
speedup provided bymacro-actions during strategy computing. The approach in [44] is quite
similar, but based on Reinforcement Learning (RL).

It is important to note that the above approaches differ essentially for the following
reasons: the choice of the regions, the manner to combine the local solutions, and the quality
of the final solution (optimal or only near optimal). For instance, in [35, 36] the authors use
graph theory and choose the communicating classes as regions whereas in [39, 40, 45, 46]
they use algorithmic geometry of field for determining the regions.There is also the remark
that most of these state space decomposition methods are valid if (a) each subproblem is
practically solvable, (b) the number of such subproblems is not too large, and (c) combining
such subproblems is not difficult.

On the other hand, most research in Reinforcement Learning (RL) is based on the
theoretical discrete-time state and action formalism of the MDP. Unfortunately, as stated
before, it suffers from the curse of dimensionality [47] where the explicit state and action
space enumeration grow exponentially with the number of state variables and the number
of agents, respectively. To deal with this issue, RL introduces Monte Carlo methods,
stochastic approximation, trajectory sampling, temporal difference backups, and function
approximation. However, even these methods have reached their limits. As a result, we
discuss briefly in this survey broad categorizations of factored and hierarchical approaches
which break up a large problem into smaller components and solve the parts [48–58]. The
main idea of these approaches is to leverage the structure present inmost real-world domains.
For instance, the state of the environment is much better described in terms of the values of
the states variables than by a monolithic number. This fact leads to powerful concepts of state
aggregation and abstraction.

In order to solve linear programs of very large sizes, decomposition principles [59]
that divide a large linear program into many correlated linear programs of smaller sizes
have been well studied, among which the Dantzig-Wolfe decomposition [60] may be the
most well known. Further, in view of [61] the MDPs can be solved as linear programs using
Dantzig-Wolfe decomposition. Thus, in this paper we present briefly the classical Dantzig-
Wolfe decomposition procedure.

The paper is organized as follows Section 2 presents the problem formulation.
Section 3 treats extensively some decomposition approaches introduced in [34–36, 38].
Section 4 presents the decomposition technique proposed by Dean and Lin [39]. Section 5
reviews some Reinforcement Learning methods proposed in the associated literature to
alleviate the curse of dimensionality. Section 6 describes briefly the classic Dantzig-Wolfe
decomposition procedure. We conclude and discuss open issues in Section 7.

2. Markov Decision Processes

We consider a stochastic dynamic systemwhich is observed at discrete-time points t = 1, 2, . . ..
At each time point t, the state space of the system is denoted by Xt, where Xt is a random
variable whose values are in a state space E. At each time point t, if the system is in state
i, an action a ∈ A(i) = {1, 2, . . . , m(i)} has to be chosen. In this case, two things happen:



Advances in Operations Research 5

a reward r(i, a) is earned immediately, and the system moves to a new state j according
to the transition probability piaj . Let At be the random variable which represents the action
chosen at time t. We denote by Ht = (E ×A)t−1 × E the set of all histories up to time t and by
Ψ = {(q1, q2, . . . , q|A|) :

∑|A|
a=1 qa = 1, qa ≥ 0, 1 ≤ a ≤ |A|} the set of probability distributions over

A =
⋃

i∈E A(i).
A strategy π is defined by a sequence π = (π1, π2, . . .), where πt: Ht → Ψ is a

decision rule. A Markov strategy is one in which πt depends only on the current state at time
t. A stationary strategy is a Markov strategy with identical decision rules. A deterministic
(or pure) strategy is a stationary strategy whose single decision rule is nonrandomized. An
ultimately deterministic strategy is a Markov strategy π = (π1, π2, . . .) such that there exist a
deterministic strategy g and an integer t0 such that πt = g for all t ≥ t0. Let F, FM, FS, FD,
and FUD be the sets of all strategies: Markov strategies, stationary strategies, deterministic
strategies, and ultimately deterministic strategies, respectively.

Let Pπ(Xt = j, At = a | X1 = i) be the conditional probability that at time t the system
is in state j and the action taken is a, given that the initial state is i and the decision maker
uses a strategy π.Now, if Rt denotes the reward earned at time t, then, for any strategy π and
initial state i, the expectation of Rt is given by Eπ(Rt, i) =

∑
j∈E

∑
a∈A(j) Pπ(Xt = j, At = a |

X1 = i)r(j, a).
The manner in which the resulting stream of expected rewards {Eπ(Rt, i) : t =

1, 2, . . .} is aggregated defines the MDPs discussed in the sequel.
In the discounted reward MDP , the corresponding overall reward criterion is defined

by V α
i (π) =

∑∞
t=1 α

t−1 Eπ(Rt, i), i ∈ E, where α ∈ [0, 1) is a fixed discount rate. A strategy f∗

is called discounted optimal if, for all i ∈ E, V α
i (f

∗) = maxπ∈FV α
i (π) = V α(i). We will denote

this MDP by Γ(α).
In the average reward MDP, the overall reward criterion is defined by Φi(π) =

limT →∞ inf(1/T)
∑T

t=1 Eπ(Rt, i), i ∈ E. A strategy f∗ is called average optimal if for all
i ∈ E,Φi(f∗) = maxπ∈FΦi(π) = V (i). We will denote this MDP by Γ.

In the weighted reward MDP, the overall reward criterion is defined by ωi(π) = λ(1 −
α)V α

i (π) + (1 − λ)Φi(π), i ∈ E, where λ ∈ [0, 1] is a fixed weight parameter, and α is the
discount rate in the MDP Γ(α). We denote this MDP by Γ(α, λ). A strategy f∗ is called optimal
if for all i ∈ E,ωi(f∗) = maxπ∈Fωi(π). Let ε > 0; for any i ∈ E, some strategy f∗ is called
ε-i-optimal if ωi(f∗) ≥ supπ∈Fωi(π) − ε. A strategy f∗ is called ε-optimal if f∗ is ε-i-optimal
for all i ∈ E.

Remark 2.1. (i) It is well known that each of the two first above problems possesses an optimal
pure strategy, and there are a number of finite algorithms for its computation (e.g., see [18, 62–
64]). (ii) In [65], the authors consider weighted MDPs and show that optimal strategies may
not exist and propose an algorithm to determine an ε-optimal strategy.

3. Some Decomposition Techniques for MDPs

Classical algorithms for solving MDPs cannot cope with the size of the state spaces
for typical problems encountered in practice [31–33]. In this section, we will summarize
two decomposition techniques for tackling this complexity: the first is proposed by Ross
and Varadarajan [38] and the second is introduced by Abbad and Boustique [36]. These
techniques propose some algorithms to compute optimal strategies for several categories of
MDPs (average, discounted, and weighted MDPs), as opposed to most solutions for large
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MDPs that compute only near-optimal strategies and are suitable to only some types of
planning problems. Also, we will present some related works.

3.1. Ross-Varadarajan Decomposition

Considered are discrete-time MDPs with finite state and action spaces under the average
reward optimality criterion [38]. We begin by introducing some notions of communication
for MDPs.

Definition 3.1. A set of states I communicate if, for any two states x, y ∈ I with x /=y, there
exists a pure strategy g such that y is accessible from x under P(g).An MDP is said to be
communicating if the state space E communicates.

Definition 3.2. A set of states I strongly communicate if there exists a stationary strategy f
such that I is a subset of a recurrent class associated with P(f).

Definition 3.3. A set of states C are a communicating class (a strongly communicating class)
if (i) C communicates (strongly communicates), and (ii) if x ∈ C and y /∈C, then {x, y} does
not communicate (strongly communicate).

Ross and Varadarajan [38] show that there is a unique natural partition of state
space E into strongly communicating classes (SCC): C1, C2, . . . , Cp and a set T of states that
are transient under any stationary strategy. This decomposition is inspired from Bather’s
decomposition algorithm [37]. The sets Ei in the Bather decomposition are the strongly
communicating classes Ci and the set of transient states T is the union of the sets T1, T2, . . . , Tm
in [37]. This decomposition is also later formalized by Kallenberg in [66, Algorithm 7]which
studied irreducibility, communicating, weakly communicating, and unichain classification
problems for MDPs. A polynomial algorithm is given to compute this partition. Further, they
propose an algorithm to solve large MDPs composed of the following steps: (i) solving some
small MDPs restricted to each SCC, (ii) aggregating each SCC into one state and finding an
optimal strategy for the corresponding aggregated MDP, and (iii) combining solutions found
in the latter steps to obtain a solution to the entire MDP.

Here, we will define correctly the latter two types of MDPs.

The Restricted MDPs

For each i = 1, 2, . . . , p, the restricted MDP to the class Ci is denoted by Γi, and is defined
by: the state space Ci. For each x ∈ Ci, the action space is Fx = {a ∈ A(x) : pxay = 0 for all
y /∈Ci}; the transition probabilities and the rewards are still analogous to those in the original
problem; however, they are restricted to the state space Ci and the action spaces Fx, x ∈ Ci.

The Aggregated MDP

The aggregated MDP is defined by:

(i) the state space E = {1, . . . , p, p + 1, . . . , p + t}, where t = |T |,
(ii) the action spaces A(i) = A(i) if i ∈ {p + 1, . . . , p + t} and A(i) = {θ} ∪ {(x, a) : x ∈

Ci, a /∈Fx} if i ∈ {1, . . . , p},
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(iii) the transition probabilities

piθi = 1 if i ∈ {
1, . . . , p

}
,

pi(x,a)j =
∑

y∈Cj

pxay if i, j ∈ {
1, . . . , p

}
,

piaj =
∑

y∈Cj

piay if i ∈ {
p + 1, . . . , p + t

}
, j ∈ {

1, . . . , p
}
, a ∈ A(i),

piaj = piaj if i, j ∈ {
p + 1, . . . , p + t

}
,

(3.1)

(iv) the rewards r(i, a) = r(i, a) if i ∈ {p + 1, . . . , p + t} and a ∈ A(i), r(i, θ) = γi if
i ∈ {1, . . . , p}, r(i, (x, a)) = r(x, a) if i ∈ {1, . . . , p}.

Remark 3.4. For each i = 1, . . . , p, the restricted MDP Γi is communicating, and then it can be
solved by the simpler linear programming in [51]. As a consequence, all the states in Γi have
a similar optimal value γi.

The most important step in the algorithm above consists in solving the aggregated
MDP which is also an MDP, and then it can be solved by using the classical algorithms [34].
Ross and Varadarajan [38] did not give any new method for solving the aggregated MDP. As
a result, the aim of [34] is to provide some algorithms which exploit the particular structure
of the aggregated MDP and improve the classical ones. The authors consider deterministic
MDPs and aggregated MDPs without cycles. In the sequel of this subsection, we will present
briefly these algorithms.

3.1.1. Deterministic MDPs

The work in [34] considers firstly deterministic MDPs and shows that the singletons {i}, i ∈
{1, 2, . . . , p}, are the only strongly communicating classes for the aggregated MDP. This result
permits to prove the correctness of the following simple algorithm which constructs g: an
optimal strategy in the aggregated MDP.

Algorithm 3.5.

Step 1. One has E := {1, . . . , p, p + 1, . . . , p + t}, v (i) := γi for i ∈ {1, . . . , p} and v(i) :=
(mink∈{1,...,p}γk) − 1 for i ∈ {p + 1, . . . , p + t}.

Step 2. Compute i∗ such that γi∗ = (maxj∈{1,...,p}γj) and determineW = {i ∈ {1, . . . , p} : γi = γi∗}.
For j ∈ W , set g(j) := θ and v(j) = γi∗ .

Step 3. While i ∈ E −W , ai ∈ A(i), j ∈ W : piaij
> 0 do g(i) = ai,W := W ∪ {i}, v(i) := γi∗ .

Step 4. (i) If E = W , stop: g is an aggregated optimal strategy. (ii) If E/=W , find i′ such that
v(i′) = maxk∈E−Wv(k) and determine W = {i ∈ {1, . . . , p} : v(i) = v(i′)}. For j ∈ W , set
g(j) := θ, v(j) := v(i′), and E := E −W.
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3.1.2. The Aggregated MDP and Cycles

Let G = (V , S) be the graph associated with the aggregated MDP; that is, the state space
represents the set of nodes and S := {(i, j) ∈ E × E : piaj > 0 for some a ∈ A(i)} is the set
of arcs. We say that an aggregated MDP has no cycle if the associated graph has no cycle
containing two or more nodes. The next algorithm extends Algorithm 3.5 in the case where
the original MDP may be not deterministic and its aggregated MDP has no cycle [34].

Algorithm 3.6.

Step 1. One has E := {1, . . . , p, p + 1, . . . , p + t}; v(i) := γi for i ∈ {1, . . . , p}; v(i) :=
(mink∈{1,...,p}γk) − 1 for i ∈ {p + 1, . . . , p + t}.

Step 2. Compute γ∗ = maxk∈{1,...,p}γk and determine W = {i ∈ {1, . . . , p} : γi = γ∗}. For j ∈ W ,
set g(j) := θ.

Step 3. While there exist i ∈ E − W , ai ∈ A(i) such that
∑

j∈W piaij
= 1, do: g(i) = ai, W :=

W ∪ {i}, v(i) := γ∗.

Step 4. While there exists i ∈ {1, . . . , p} − W such that piaj = 0 for all a ∈ A(i) − θ, j /= i, do:
g(i) := θ,W := W ∪ {i}.

Step 5. If E/=W , while there exists i ∈ E − W such that, for all a ∈ A(i),
∑

j∈W piaj = 1,
do: w(i) := maxa∈A(i)

∑
j∈W piajv(j); if v(i) > w(i), set g(i) := θ; if v(i) ≤ w(i) set g(i) :=

argmaxa∈A(i)
∑

j∈W piajv(j) and v(i) := w(i); W := W ∪ {i}. If E = W , stop; g is an aggregated
optimal strategy.

Remark 3.7. (i) The previous algorithm is applicable if the decomposition leads to T =
∅, because in this case the aggregated MDP has no cycle. (ii) In [1], the authors have
also considered an arbitrary MDP without any condition and they have presented two
algorithms for the computation of an aggregated optimal strategy. The latter comes up with
some significant simplifications on the classical policy improvement algorithm and linear
programming algorithm. In the construction they have exploited the fact that the recurrent
classes in the aggregated MDP are singletons.

3.2. Abbad-Boustique Decomposition

Abbad and Boustique [36] propose an algorithm to compute an average optimal strategy
which is based on the graph associated to the original MDP introducing some hierarchical
structure of this graph. The main contribution of their approach consists in constructing by
induction the levels of the graph G and solving the restricted MDPs corresponding to each
level. The local solutions of the latter MDPs provide immediately an optimal strategy in the
entire MDP. This state space decomposition into levels is inspired by the work in[67].

Let G = (V, S) be a directed graph associated to the original MDP. A communicating
class for the MDP corresponds to a connected component in the graph G. Thus, there exists a
unique partition of the state space E into communicating classes C1, C2,. . . , Cq, which can be
determined via standard depth-first algorithms [68]. The level L0 is formed by all classes Ci

such that Ci is closed. The nth level Ln is formed by all classes Ci such that the end of any arc
emanating from Ci is in some level Ln−1, Ln−2, . . . , L0.
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Let (Clk), k ∈ {1, 2, . . . , K(l)}, be the classes corresponding to the nodes in level l.
The restricted MDPs corresponding to each level Ln, n = 0, 1, 2, . . . , L, are constructed, by
induction, as follows.

3.2.1. Construction of the Restricted MDPs in Level L0

For each k = 1, 2, . . . , K(0), we denote by Γ0k the restricted MDP corresponding to the class
C0k, that is, the restricted MDP in which the state space is S0k = C0k. Note that any restricted
MDP, Γ0k is well defined since any class C0k is closed and can be solved easily by a finite
algorithm (see [69]).

3.2.2. Construction of the Restricted MDPs in Level Ln, n ≥ 1

Let En = ∪{Cmk,m = 0, . . . , n − 1; k = 1, . . . , K(m)}. Let Tmk(i) be the optimal value in state
i ∈ En, computed in the previous MDP: Γmk(m < n). For each k = 1, 2, . . . , K(n), we denote by
Γnk the MDP defined by the following.

(i) State space. Snk = Cnk ∪ {j ∈ En : piaj > 0 for some i ∈ Cnk,a ∈ A(i)}.

(ii) Action spaces. For each i ∈ Snk, the associated action space isAnk(i) = A(i) if i ∈ Cnk

and Ank(i) = {θ} if i /∈Cnk.

(iii) Transition probabilities. For each i, j ∈ Snk, Pnk(j | i, a) = piaj if i ∈ Cnk, a ∈ A(i) and
Pnk(j | i, a) = 1 if i = j, i /∈Cnk.

(iv) Rewards. Let i ∈ Snk; if i ∈ Cnk , then rnk(i, a) := r(i, a).

If i /∈Cnk, then there exist m ∈ {0, 1, . . . , n − 1}, there exist h ∈ {1, 2, . . . , K(m)} : i ∈
Cmh, and rnk(i, θ) := Tmh(i).

The basic result of Abbad-Boustique approach shows that the optimal value for a fixed
state in any restricted MDP is equal to the optimal value in the original MDP. Consequently,
optimal actions in the restricted MDPs are still optimal in the original MDP. Such approach
is advantageous because it allows that an optimal action and the optimal value for a fixed
state can be computed only through some restricted MDPs before solving the entire MDP;
however, there is still considerable overhead in determining the communicating classes.

The work in [35] is a main related work on Abbad-Boustique decomposition. The
authors have considered the discounted and weighted optimality criterion with finite
state and action spaces. With these criterions the Ross-Varadarajan decomposition is not
available. That is why the authors have used the approach introduced in [36], and they have
constructed the levels and the restricted MDPs in a similar way as above. In the discounted
optimality criterion, they also have showed that optimal actions in the restricted MDP are
still optimal in the original MDP, and they have proposed an algorithm to find an optimal
strategy. Under the weighted optimality criterion, they have first proposed an algorithm
which constructs an ε-optimal strategy corresponding to each restricted MDP; whereas, in
[65], for each state i ∈ E, an ε-i- optimal strategy is constructed by solving the entire MDP.
Finally, by coalescing the last restricted ε-optimal strategies they have presented an algorithm
which determines an ε-optimal strategy in the original MDP.

Remark 3.8. (i) The decomposition approaches presented in [34, 37, 57, 66] are merely moti-
vating if (a) the cardinalities of the Strongly Communicating Classes (SCCs): C1, C2, . . . , Cp
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and a set T are small compared to the cardinality of the state space E and (b) the number
p of the SCCs is not too large. However, they are most suitable to solve constrained MDPs.
(ii) the approaches proposed in [35, 36] alleviate the last inconvenient; however, there is still
considerable overhead in determining the communicating classes.

4. Dean-Lin Decomposition

the study by Dean and Lin in [39] is one of the first works that introduces decomposition
techniques for planning in stochastic domains. Their framework as stated before is also a
special case of Divide-and-Conquer: given a partition of the state space into regions, (i)
reformulate the problem in terms of smaller MDPs over the subspaces of the individual
regions, (ii) solve each of these subproblems, and then (iii) combine the solutions to obtain
a solution to the original problem. In this section, we discuss briefly Dean-Lin approach and
some related works.

Let P be any partition of E, P = {R1, . . . , Rm} such that E = ∪m
i=1Ri and Ri ∩ Rj = ∅, for

all i /= j. We refer to a region R ∈ P as an aggregate (or a macro) state. The periphery of an
aggregate state R (denoted Periphery(R)) is the set of states not in R but reachable in a single
transition from some state in R, that is, { j |j /∈R and there exist i ∈ R, a ∈ A(i), piaj > 0}.

To model interactions among regions, a set of parameters are introduced. Let U =
∪R∈P Periphery(R), and λi for each i ∈ U denote a real-valued parameter. Let λ ∈ R|U|

denote a vector of all such λi parameters, and let λ|R denote a subvector of λ composed of λi,
where i is in Periphery(R). Parameter λi serves as a measure of the expected cost of starting
from a periphery state, and λ|R provides an abstract summary of how the other regions affect
R. Given a particular λ, the original MDP is decomposed into smaller MDPs. For a region R

and the subvector λ|R, a local MDPMλ|R is defined by the following:

(i) state space R∪ Periphery(R),

(ii) state transition matrix (qij): qij = pij for i ∈ R, and qii = 1 for i ∈ Periphery(R),
(iii) cost matrix (kij): kij = cij for i, j ∈ R; kij = λj +cij for i ∈ R and j ∈ Periphery(R); kii =

0 for i ∈ Periphery(R).

Let π∗ denote an optimal strategy for the original MDP. If λi = V α
i (π

∗), the authors
show that the resulting local strategies for the local MDPs define an optimal strategy on the
entire state space. They further propose two methods for either guessing or successively
approximating V α

i (π
∗) for all i ∈ U: a hierarchical construction approach and iterative

improvement approach.
The former constructs an abstract MDP by considering individual regions as abstract

states and their local strategies as abstract actions. The solution to this abstract MDP finds
for each region an optimal region to reach, thus yielding a solution on the original MDP.
Unfortunately, this approach does not guarantee to produce an optimal strategy; however,
it has an intuitive interpretation that makes it particularly suitable for robot navigation
domains.

The second method iteratively approximates V α
i (π

∗) to converge to an optimal
solution. On each iteration, for each region R a specific estimate of the parameter values
of region R is considered and the resulting MDP to obtain a local strategy is solved. By
examining the resulting local strategies we get information to engender a new estimate of the
parameter values that is guaranteed to improve the global solution. This information about
local strategies also tells us when the current solution is optimal or within some specified
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tolerance and it is therefore appropriate to terminate the iterative procedure. The iterative
approach computes several strategies for each region, which is not good news, but it provides
an optimal strategy. Also, it is important to note that this approach is based on a reduction
to the methods of Kushner and Chen [61] that demonstrates how to solve MDPs as linear
programs using Dantzig-Wolfe decomposition [60]. For more details, we refer the reader to
the longer version of the paper in [70].

Closely related to hierarchical construction approach, two methods have been
proposed in [42, 43]. They also solve an abstract MDP composed of one abstract state per
region, but many strategies, called macro-actions, are computed in each region. In [43], to
compensate this weakness only a small set of strategies are calculated per region, without
loss of optimality.

In [40], the approach aims also to solve weakly coupled MDPs, but it is quite different
to Dean-Lin approach for the following reasons: (i) only one strategy is computed in each
region which reduces time consuming on each iteration and (ii) the MDP is represented as
a directed graph, and so a simple heuristic valuated graph is used to estimate periphery
state values. This approach constructs strategies that are only near optimal; however, they
are computed quickly.

The related work on abstraction and decomposition is extensive. In the area planning
and search assuming deterministic action models, there is the work on macro-operators [71]
and hierarchies of state space operators [72, 73]. Closely related is the work on decomposing
discrete-event systems modeled as (deterministic) finite state machines [74]. In the area
of reinforcement learning, there is work on deterministic action models and continuous
state spaces [75] and stochastic models and discrete state spaces [76]. Finally, the approach
described in [46] represents a special case of the Dean-Lin framework, in which the partition
consists of singleton sets for all of the states in the envelope and a set for all the states in the
complement of the envelope.

5. Hierarchical Reinforcement Learning

Reinforcement Learning (RL) is a machine learning paradigm in which an agent learns a
behavioral policy through direct interaction with an unknown, stochastic environment [77].
Most research in RL is based on the theoretical discrete-time state and action formalism of
the MDP. Unfortunately, it suffers from the curse of dimensionality [47], where the explicit
state and action space enumeration grow exponentially with the number of state variables
and the number of agents, respectively. So, RL has introduced Monte Carlo methods,
stochastic approximation, trajectory sampling, temporal difference backups, and function
approximation. However, even these methods have reached their limits. As a result, we
discuss briefly in this section broad categorizations of factored, and hierarchical approaches
which break up a large problem into smaller components and solving the parts.

5.1. Factored Approaches

When the state space of the MDP can be specified as a cross-product of sets of state variables
Ei (E = E0 × E1 × · · · × En), it is called a factored MDP (FMDP). The concepts of state
abstraction and aggregation are strongly related to the idea of a factored state space. A
factored formulation also allows for system dynamics to be specified using a more natural
and intuitive representation instead of an S×S probability matrix per action. Representations
that can describe such structure are 2-slice Dynamic Bayesian Networks (DBNs) [78] and
probabilistic STRIPS operators, the former being more popular in the literature.
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In [48], the authors exploit such a factored state space directly, and reveal reduction in
the computation and memory required to compute the optimal solution. The assumption is
that the MDP is specified by a set of DBNs, one for each action, although the claim made is
that it is amenable to a probabilistic STRIPS specification too. In addition to using the network
structure to elicit variable independence, they use decision-tree representations of the
conditional probability distributions (CPDs) to further exploit propositional independence.
Next, they construct the structured policy iteration (SPI) algorithm which aggregates states
for two distinct reasons: either if the states are assigned the same action by the current
strategy, or if states have the same current estimated value. With the aggregation in place, the
learning algorithm (based on modified policy iteration) only computes at the coarser level
of these state partitions instead of that of the individual states. The algorithm itself is split
into two phases, structured successive approximation and structured policy improvement,
mirroring the two phases of classical policy iteration. It is important to note that SPI will see
fewer advantages if the optimal strategy cannot be compactly represented by a tree structure,
and for the reason that there is still big overhead in finding the state partitions.

In [53], Algebraic Decision Diagrams (ADDs) replace the decision-tree learning of
SPI for the value function and strategy representation. The paper deals with a very large
MDP (≈63 million states) and shows that the learned ADD value function representation
is considerably more compact than the corresponding learned decision tree in most cases.
However, a big disadvantage of using ADDs is that the state variables must be boolean, which
makes the modified state space larger than the original.

In order to solve large weakly coupled FMDPs, the state space of the original MDP is
divided into regions that comprise sub-MDPs which run concurrently (the original MDP is a
cross-product of the sub-MDPs) [79]. It is assumed that states variables are only associated
with a particular task and the numbers of resources that can be allocated to the individual
tasks are constrained; these global constraints are what cause the weak coupling between the
sub-MDPs. Their approach contains two phases: an offline phase that computes the optimal
solutions (value functions) for the individual sub-MDPs and an online phase that uses these
local value functions to heuristically guide the search for global resource allocation to the
subtasks.

One class of methods for solving weakly coupled FMDPs involves the use of linear
value function approximation. In [52], the authors present two solution algorithms (based on
approximate linear and dynamic programming) that approximate the value functions using a
linear combination of basis functions, each basis function only depending on a small subset of
the state variables. In [80], a general framework is proposed that can select a suitable basis set
and modify it based on the solution quality. Further, they use piecewise linear combination of
the subtask value functions to approximate the optimal value function for the original MDP.
The above approaches to solving FMDPs are classified under decision-theoretic planning
in that they need a perfect model (transition and reward) of the FMDP. The work in [50]
proposes the SDYNA framework that can learn in large FMDPs without initial knowledge
of their structure. SDYNA incrementally builds structured representations using incremental
decision-tree induction algorithms that learn from the observations made by the agent.

5.2. Hierarchical Approaches

To deal with large-scale FMDPs, RL approaches aim to leverage the structure of the state
space. However, they do not impart enough structure to the strategy space itself. Hierarchical
reinforcement learning (HRL) is a broad and very active subfield of RL that imposes
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hierarchical structure onto the state, action, and strategy spaces. To alleviate the curse of
dimensionality, HRL applies principled methods of temporal abstraction to the problem;
decision-making should not be required at every step but instead temporally extended
activities or macro-operators or subtasks can be selected to achieve subgoals.

The work in [49] proposes a new approach which relies on a programmer to design
a hierarchy of abstract machines that limit the possible strategies to be considered. In this
hierarchy, each subtask is defined in terms of goal states or termination conditions. Each
subtask in the hierarchy corresponds to its own MDP, and the methods seek to compute a
strategy that is locally optimal for each subtask.

Many researches in RL allow the learner to work not just with primitive actions, but
with higher-level, temporally-extended actions, called options [55, 57, 58, 81]. An option is a
closed-loop policy that operates over a period of time, and is defined by the tuple (I, π, β),
where π is its strategy, I ⊂ S is the initiation set of states, and β(s) is the probability of
termination in state s. The theory of options is based on the theories of MDPs and semi-
Markov decision processes (SMDPs), but extends these in significant ways. Options and
models of options can be learned for a wide variety of different subtasks, and then rapidly
combined to solve new tasks. Using options enables planning and learning simultaneously,
at a wide variety of times scales, and toward a wide variety of subtasks. However, the agent’s
action set is augmented rather than simplified by options which intensify the dimensionality
of action spaces.

A Hierarchical Abstract Machine (HAM) is a program that diminishes the number of
decisions by partially representing the strategy in the form of finite state machines (FSMs)
with a few nondeterministic choice points [56]. HAMs also exploit the theory of SMDPs, but
the emphasis is on restricting the policy space rather than augmenting the action space. A
HAM is a collection of three tuples Hi = (μ, I, δ), where μ is a finite set of machine states,
I is the initial state, and δ is the transition function determining the next state using either
deterministic or stochastic transitions. Themain types of machine states are: start (execute the
current machine), action (execute an action), call (execute another machine), choice (select
the next machine state), and stop (halt execution and return control). Further, for any MDP
M and anyHAMH, there exists an inducedMDPM0 = H◦M [56] that workswith a reduced
search space using single-step and multistep (or high-level) actions. As a consequence, the
induced MDP is in fact a SMDP, because actions can take more that one timestep to complete.
A learning algorithm for the induced SMDP is a variation of Q-learning called SMDP Q-
learning. This algorithm can be applied to the HAMs framework using an extended Q-table
Q([s,m], a), which is indexed by an environment state s, machine statem, and action a taken
at a choice state m. Just like options, these HAMs have to be expertly designed because they
place strict restrictions on the final strategy possible for the original MDP.

In the MAXQ framework [51], the temporally extended actions or subtasks are
organized hierarchically. Faster learning is facilitated by constraining and structuring the
space of strategies, encouraging the reuse of subtasks, and enabling effective task-specific
state abstraction and aggregation. Unlike options and HAMs, the MAXQ framework does
not reduce the original MDP into one SMDP. Instead, the original MDP M is split into sub-
SMDPsM0,M1, . . . ,Mn, where each sub-SMDP represents a subtask.

The big contribution of [82–85] consists in extending the MAXQ framework to the
average reward setting with promising results. The work in [86] is a simple extension of
the MAXQ framework to the multiagent setting, and it leverages the structure of the task
hierarchy to communicate high-level coordination information among the agents. Learning
the structure of the task hierarchy is a very promising area of HRL research. The work in
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[87] introduces HEXQ, an algorithm that uses frequency of change in the state variables to
partition the state space into subtasks—the faster a variable changes, the more likely it is part
of the state abstraction of a lower-level subtask. Empirical results pit HEXQ against MAXQ
(with a predefined hierarchy) and show that, though there is initial overhead in discovering
the hierarchy, HEXQ ends up performing comparably. The work in [88] uses planning to
automatically construct task hierarchies based on abstract models of the behaviors’ purpose.
It then applies RL to flesh out these abstractly defined behaviors, and to learn the choices for
ambiguous plans.

6. Dantzig-Wolfe Decomposition

Kushner and Chen [61] investigate the use of the Dantzig-Wolfe decomposition in solving
large MDPs as linear programs. Thus, in this section we describe briefly this classic
decomposition procedure. A reference for a more complete description is [89].

We consider linear programming problems with the following a block angular
structure:
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(6.1)

where the Al are mo × nl matrices and the Bl are ml × nl matrices with full row rank.
Problems of this type can be decomposed by using the Dantzig-Wolfe decomposition. We
get h subproblems, corresponding to the constraints Blxl = bl. Let plj , j ∈ Pl, denote the
extreme points of the subproblem related to Bl. Problem (6.1) can be reformulated as:

min
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l=1
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clp

l
j

)
xl
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(6.2)
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Problem (6.2) is called the full master problem. Instead of looking at the full master problem
we only consider a subset of the columns and then generate new columns when they are
needed. The reduced or the restricted master problem has m0 + h rows, where the last h
corresponds to the convexity constraints. We assign the dual variables y to the first m0

constraints of the restricted master problem and λ to the h convexity constraints. In each
master iteration, the restricted master problem is solved. Each of the subproblems is then
solved with the cost vector (cl − yAl).Hence, the lth subproblem to be solved is

min
(
cl − yAl

)
x̃l,

s.t. Blx̃l = bl,

x̃l ≥ 0.

(6.3)

If there exists a solution x̃l with (cl − yAl)x̃l − λl < 0, then a column with negative reduced
cost has been found, and it is introduced into the restricted master. The new column is given
as

[
Alx̃l
el

]
, where el ∈ Rh is the lth unit-vector. It has the cost clx̃l.

Both the master problem and the subproblems axis on the use of simplex method in
solving the linear program in (6.2). We refer the readers to [90] for more details about (i)
cycling prevention and (ii) the initialization of the simplex method using big-M method.
Using the Dantzig-Wolfe decomposition, the solution is improved iteratively and converges
to an optimum solution in a finite number of iterations.

7. Conclusion

The benefit of decomposition techniques is that we are able to deal with subproblems of
smaller size; the tradeoff is that often extra effort is required to combine the solutions to these
subproblems into a solution to the original problem. Thus, some new methods are expected
to cope with the difficulty of combining the subproblems.

Many of the approaches discussed in this survey are collection of separate mature
fields coming together to deal with the twin drawbacks of curse of dimensionality and
lack of model information in most real-world systems. For instance, many Hierarchical
Reinforcement Learning concepts utilize some notions of programming languages such
as subroutines, task stacks, and control threads. We speculate if any other domains are
forthcoming to be imported.
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