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1. Introduction

Consider the following system of nonlinear equations:

g(x) = 0, x ∈ Rn, (1.1)

where g : Rn → Rn is continuously differentiable, and the Jacobian ∇g(x) of g is symmetric
for all x ∈ Rn. Let ϑ be the norm function defined by ϑ(x) = 1/2‖g(x)‖2. Then the nonlinear
equations (1.1) is equivalent to the following global optimization problem:

minϑ(x), x ∈ Rn. (1.2)

There are two ways for nonlinear equations by numerical methods. One is the line
search method and the other is the trust region method. For the line search method, the
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following iterative formula is often used to solve (1.1):

xk+1 = xk + αkdk, (1.3)

where xk is the kth iteration point, αk is a steplength, and dk is search direction. To begin, we
briefly review somemethods for (1.1) by line search technique. First, we give some techniques
for αk. Brown and Saad [1] proposed the following line search method to obtain the stepsize
αk :

ϑ(xk + αkdk) − ϑ(xk) ≤ σαk∇ϑ(xk)Tdk, (1.4)

where σ ∈ (0, 1). Based on this technique, Zhu [2] gave the nonmonotone line search
technique:

ϑ(xk + αkdk) − ϑ
(
xl(k)
) ≤ σαk∇ϑ(xk)Tdk, (1.5)

‖ϑ(xl(k))‖ = max0≤j≤m(k){‖ϑ(xk−j)‖}, m(0) = 0 andm(k) = min{m(k−1)+1,M}, k ≥ 1, andM
is a nonnegative integer. From these two techniques (1.4) and (1.5), it is easy to see that the
Jacobian matrix ∇gk must be computed at every iteration, which will increase the workload
especially for large-scale problems or this matrix is expensive to calculate. Considering these
points, we [3] presented a new backtracking inexact technique to obtain the stepsize αk:

∥∥g(xk + αkdk)
∥∥2 ≤ ∥∥g(xk)

∥∥2 + δα2
kg

T
k dk, (1.6)

where δ ∈ (0, 1), gk = g(xk), and dk is a solution of the system of linear (1.15). We established
the global convergence and the superlinear convergence of this method. The numerical
results showed that the new line search technique is more effective than the normal methods.
Li and Fukashima [4] proposed an approximate monotone line search technique to obtain the
step-size αk satisfying

ϑ(xk + αkdk) − ϑ(xk) ≤ −δ1‖αkdk‖2 − δ2
∥∥αkgk

∥∥2 + εk
∥∥g(xk)

∥∥2, (1.7)

where δ1 > 0 and δ2 > 0 are positive constants, αk = rik , r ∈ (0, 1), ik is the smallest
nonnegative integer i such that (1.7), and εk satisfies

∞∑

k=0

εk < ∞. (1.8)

Combining the line search (1.7) with one special BFGS update formula, they got some better
results (see [4]). Inspired by their idea,Wei [5] and Yuan [6–8] presented several approximate
methods. Further work can be found in [9].

Second, we present some techniques for dk. One of the most effective methods is
Newton method. It normally requires a fewest number of function evaluations, and it is very
good at handling ill-conditioning. However, its efficiency largely depends on the possibility



Advances in Operations Research 3

of solving a linear system efficiently which arises when computing the search dk in each
iteration:

∇g(xk)dk = −g(xk). (1.9)

Moreover, the exact solution of the system (1.9) could be too burdensome, or it is not
necessary when xk is far from a solution [10]. Inexact Newtonmethods [2, 3, 10] represent the
basic approach underlying most of the Newton-type large-scale algorithms. At each iteration,
the current estimate of the solution is updated by approximately solving the linear system
(1.9) using an iterative algorithm. The inner iteration is typically “truncated” before the
solution to the linear system is obtained. Griewank [11] firstly proposed the Broyden’s rank
one method for nonlinear equations and obtained the global convergence. At present, a lot
of algorithms have been proposed for solving these two problems (1.1) and (1.2)(see [12–22]
etc.).

Trust region method is a kind of important and efficient methods in the area of
nonlinear optimization. This method can be traced back to the works of Levenberg [17] and
Marquardt [18] on nonlinear least-squares problems and the work of Goldfeld et al. [23]
for unconstrained optimization. Powell [24] was the first to establish the convergence result
of trust region method for unconstrained optimization. Fletcher [25, 26] firstly proposed
trust region algorithms for linearly constrained optimization problems and nonsmooth
optimization problems, respectively. This method has been studied by many authors [15, 27–
31] and has been applied to equality constrained problems [32–34]. Byrd et al. [35], Fan
[36], Powell and Yuan [37], Vardi [38], Yuan [39, 40], Yuan et al. [41], and Zhang and Zhu
[42] proposed various trust region algorithms for constrained optimization problems and
established the convergence. Fan [36], Yuan [39], and Zhang [43] presented the trust region
algorithms for nonlinear equations and got some results.

The normal trust-region subproblem for nonlinear equations is to find the trial step dk

such that

min q∗k(d) = dT∇g(xk)g(xk) +
1
2
dT∇g(xk)T∇g(xk)d

s.t. ‖d‖ ≤ Δk,

(1.10)

where Δk > 0 is a scalar called the trust region radium. Define the predicted descent of the
objective function g(x) at kth iteration by

Pred∗
k = q∗k(0) − q∗k(dk), (1.11)

the actual descent of g(x) by

Ared∗
k = ϑ(xk) − ϑ(xk + dk), (1.12)

and the ratio of actual descent to predicted descent:

r∗k =
Ared∗

k

Pred∗
k

. (1.13)
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For the normal trust region algorithm, if r∗k ≥ ρ (ρ ∈ (0, 1), this case is called a successful
iteration), the next iteration is xk+1 = xk + dk, and go to the next step; otherwise reduce the
trust region radium Δk and solve this subproblem (1.10) repeatedly. Sometimes, we must
do this work many times and compute the Jacobian matrix ∇g(xk) and ∇g(xk)

T∇g(xk) at
every time, which obviously increases the work time and workload, especially for large-scale
problems. Even more detrimental, the trust region subproblem is not very easy (see [36, 39]
etc.) to be solved for most of the practical problems.

In order to alleviate the above bad situation that traditional algorithms have to
compute Jacobian matrix ∇g(xk) and ∇g(xk)

T∇g(xk) at each and every iteration while
repeatedly resolving the trust region subproblem, in this paper, we would like to rewrite
the following trust-region subproblem as

min qk(d) = g(xk)
Td +

1
2
dTBkd

s.t. ‖d‖ ≤ Δk,

(1.14)

where matrix Bk is the approximation to the Jacobian matrix of g(x) at xk. Due to the
boundness of the region {d | ‖d‖ ≤ Δk}, (1.14) has a solution regardless of B′

ks definiteness
(see [43]). This implies that it is valid to adopt a BFGS update formula to generate Bk for trust
region methods and the BFGS update is presented as follows:

Bk+1 = Bk +
yky

T
k

sT
k
yk

− Bksks
T
kBk

sT
k
Bksk

, (1.15)

where yk = gk+1 − gk, sk = xk+1 − xk. Define the predicted descent of the objective function
g(x) at kth iteration by

Predk = qk(0) − qk(dk), (1.16)

the actual descent of g(x) by

Aredk =
∥∥g(xk)

∥∥2 − ∥∥g(xk + dk)
∥∥2, (1.17)

and the ratio of actual descent to predicted descent:

rk =

∥∥g(xk)
∥∥2 − ∥∥g(xk + dk)

∥∥2

qk(0) − qk(dk)
. (1.18)

If rk ≥ ρ (ρ ∈ (0, 1), called a successful iteration ), the next iteration is xk+1 = xk+dk.Otherwise,
we use a search technique to obtain the steplength λk and let the next iteration be xk+1 = xk +
λkdk. Motivated by the idea of the paper [4], we propose the following linesearch technique
to obtain λk:

∥∥g(xk + λkdk)
∥∥2 − ∥∥gk

∥∥2 ≤ −σ1
∥∥λkgk

∥∥2 − σ2‖λkdk‖2 + σ3λkd
T
kgk, (1.19)
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where σ1, σ2, and σ3 are some positive constants. In Section 3, we will show (1.19) is well-
defined. Here and throughout this paper, ‖ · ‖ denotes the Euclidian norm of vectors or its
induced matrix norm. g(xk) is replaced by gk.

In the next section, the proposed algorithm for solving (1.1) is given. The global and
superlinear convergence of the presented algorithm are stated in Section 3 and Section 4,
respectively. The numerical results of the method are reported in Section 5.

2. Algorithms

Algorithm 2.1.

Initial: choose ρ, r ∈ (0, 1), 0 < τ1 < τ2 < 1 < τ3, σ1, σ2, σ3 > 0,Δmin > 0, x0 ∈ Rn.
Let k := 0;

Step 1: Let Δk = Δmin;

Step 2: If ‖gk‖ = 0, stop. Otherwise go to Step 3;

Step 3: Solve the subproblem (1.14)with Δ = Δk to get dk;

Step 4: If

rk �
∥∥g(xk)

∥∥2 − ∥∥g(xk + dk)
∥∥2

qk(0) − qk(dk)
< ρ, (2.1)

Go to Step 5; Otherwise Let xk+1 = xk + dk,Δk+1 ∈ [‖dk‖, τ3‖dk‖], and go to Step 6;

Step 5: Let k be the smallest nonnegative integer i such that (1.19) holds for λ = ri.
Let λk = rik and xk+1 = xk + λkdk, Δk+1 ∈ [τ1‖dk‖, τ2‖dk‖];
Step 6: Update Bk to get Bk+1 by (1.15). Let k := k + 1. Go to Step 2.

Here we also give a normal trust-region method for (1.1) and call it Algorithm 2.2.

Algorithm 2.2 (the normal Trust-Region Algorithm [44]).

Initial: Given a starting point x0 ∈ Rn, Δ0 > 0 is the initial trust region radium, an
upper bound of trust region radius Δ′, 0 < Δ0 ≤ Δ′. Set 0 < μ < 1, 0 < η1 < η2 < 1 <
η3, k := 0.

Step 1: If ‖gk‖ = 0, stop. Otherwise, go to Step 2.

Step 2: Solve the trust-region subproblem (1.10) to obtain dk.

Step 3: Let

rk =
ϑ(xk) − ϑ(xk + dk)

q∗k(0) − q∗k(dk)
, (2.2)

if rk < η1, set Δk+1 = η1Δk; If rk > η2 and ‖dk‖ = Δk, let Δk+1 = min{η3Δk,Δ′};
Otherwise, let Δk+1 = Δk.

Step 4: If rk > μ, let xk+1 = xk + dk and go to Step 5; otherwise, let xk+1 = xk, go to
Step 2.

Step 5: Set k := k + 1. Go to Step 1.
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Remark 2.3. By yk = gk+1 − gk,we have the following approximate relations:

yk = gk+1 − gk ≈ ∇gk+1sk. (2.3)

Since Bk+1 satisfies the secant equation Bk+1sk = yk and ∇gk+1 is symmetric, we have
approximately

Bk+1sk ≈ ∇gk+1sk = ∇gT
k+1sk. (2.4)

This means that Bk+1 approximates ∇gk+1 along direction sk.

3. The Global Convergence

In this section, we will establish the global convergence of Algorithm 2.1. Let Ω be the level
set defined by

Ω =
{
x | ∥∥g(x)∥∥ ≤ ∥∥g(x0)

∥∥}, (3.1)

which is bounded.

Assumption 1. (A) g is continuously differentiable on an open convex set Ω1 containing Ω.
(B) The Jaconbian of g is symmetric and bounded on Ω1 and there exists a positive

constant M such that

∥∥∇g(x)
∥∥ ≤ M ∀x ∈ Ω1. (3.2)

(C) ∇g is positive definite on Ω1; that is, there is a constant m > 0 such that

m‖d‖2 ≤ dT∇g(x)d ∀x ∈ Ω1, d ∈ Rn. (3.3)

(D) ϑ(x) is differentiable and its gradient satisfies

∥∥∇ϑ(x) − ∇ϑ
(
y
)∥∥ ≤ L

∥∥x − y
∥∥, ∀x, y ∈ Ω1, (3.4)

where L is the Lipschitz constant. By Assumptions 1(A) and 1(B), it is not difficult to get the
following inequality:

∥∥yk

∥∥ ≤ M‖sk‖. (3.5)

According to Assumptions 1(A) and 1(C), we have

sTkyk = sTk∇g(ξ)sk ≥ m‖sk‖2, (3.6)
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where ξ = xk + ϑ0(xk+1 − xk), ϑ0 ∈ (0, 1), which means that the update matrix Bk is always
positive definite. By (3.5) and (3.6), we have

sTkyk

‖sk‖2
≥ m,

∥
∥yk

∥
∥2

sTkyk

≤ M2

m
. (3.7)

Lemma 3.1 ([see Theorem2.1 in [45]]). Suppose that Assumption 1 holds. Let Bk be updated by
BFGS formula (1.15) and let B0 be symmetric and positive definite. For any k ≥ 0, sk and yk satisfy
(3.7). Then there exist positive constants β1, β2, and β3 such that, for any positive integer k̃

β1‖dk‖2 ≤ dT
kBkdk ≤ β2‖dk‖2, β1‖dk‖ ≤ ‖Bkdk‖ ≤ β3‖dk‖ (3.8)

hold for at least 
k̃/2� value of k ∈ {1, 2, . . . , k̃}.

Considering the subproblem (1.14), we give the following assumption similar to
(1.14). Similar to [2], the following assumption is needed.

Assumption 2. Bk is a good approximation to ∇gk, that is,

∥∥(∇gk − Bk

)
dk

∥∥ ≤ ε0
∥∥gk
∥∥, (3.9)

and dk satisfies

∥∥gk + Bkdk

∥∥ ≤ ε1
∥∥gk
∥∥, (3.10)

where ε0 ∈ (0, 1) is a small quantity, and ε1 > 0, ε0 + ε1 ∈ (0, 1).

Lemma 3.2. Let Assumption 2 hold. Then dk is descent direction for ϑ(x) at xk, that is,

∇ϑ(xk)Tdk < 0. (3.11)

Proof. Let rk be the residual associated with dk so that gk + Bkdk = rk:

∇ϑ(xk)Tdk = g(xk)T∇g(xk)dk

= g(xk)T
[(∇g(xk) − Bk

)
dk +

(
rk − g(xk)

)]

= g(xk)T
(∇g(xk) − Bk

)
dk + g(xk)T rk − g(xk)Tg(xk).

(3.12)

So we have

∇ϑ(xk)Tdk +
∥∥g(xk)

∥∥2 = g(xk)T
(∇g(xk) − Bk

)
dk + g(xk)T rk. (3.13)
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Therefore, taking the norm in the right-hand side of the above equality, we have that from
Assumption 2

∇ϑ(xk)Tdk ≤ ∥∥g(xk)
∥
∥
∥
∥(∇g(xk) − Bk

)
dk

∥
∥ +
∥
∥g(xk)

∥
∥‖rk‖ −

∥
∥g(xk)

∥
∥2

≤ −(1 − ε0 − ε1)
∥
∥g(xk)

∥
∥2.

(3.14)

Hence, for ε0 + ε1 ∈ (0, 1), the lemma is satisfied.

According to the above lemma, it is easy to deduce that the norm function ϑ(x) is
descent, which means that ‖gk+1‖ ≤ ‖gk‖ is true.

Lemma 3.3. Let {xk} be generated by Algorithm 2.1 and suppose that Assumption 2 holds. Then
{xk} ⊂ Ω. Moreover, {‖gk‖} converges.

Proof. By Lemma 3.2, we have ‖gk+1‖ ≤ ‖gk‖. Then we conclude from Lemma 3.3 in [46] that
{‖gk‖} converges. Moreover, we have for all k

∥∥gk+1
∥∥ ≤ ∥∥gk

∥∥ ≤ ∥∥gk−1
∥∥ ≤ · · · ≤ ∥∥g(x0)

∥∥. (3.15)

This implies that {xk} ⊂ Ω.

Lemma 3.4. Let Assumption 1 hold. Then the following inequalities

gT
k dk ≤ −β1‖dk‖2,

∥∥gk
∥∥2 ≥ β21‖dk‖2 (3.16)

− 1
β1

∥∥gk
∥∥2 ≤ gT

k dk (3.17)

hold.

Proof. Since the update matrix Bk is positive definite. Then, problem (1.14) has a unique
solution dk, which together with some multiplier αk ≥ 0 satisfies the following equations:

Bkdk + αkdk = −gk,
αk(‖dk‖ −Δk) = 0.

(3.18)

From (3.18), we can obtain

dT
kBkdk + gT

k dk = −αk‖dk‖2 ≤ 0, (3.19)

αk =
−gT

k
dk − dT

k
Bkdk

‖dk‖2
. (3.20)

By (3.19) and (3.8), we get (3.16), which also imply that the inequality (3.17) holds.



Advances in Operations Research 9

The next lemma will show that (1.19) is reasonable, and then Algorithm 2.1 is well
defined.

Lemma 3.5. Let Assumptions 1(D) and 2 hold. Then there exists a step-size λk such that (1.19) in a
finite number of backtracking steps.

Proof. From Lemma3.8 in [1] we have that in a finite number of backtracking steps, λk must
satisfy

∥
∥g(xk + αkdk)

∥
∥2 − ∥∥g(xk)

∥
∥2 ≤ δλkg(xk)T∇g(xk)dk, δ ∈ (0, 1). (3.21)

By (3.12) and (3.14), let β0 = (1 − ε0 − ε1), and we have

g(xk)T∇g(xk)dk ≤ −β0
∥
∥gk
∥
∥2 = −β0

3
∥
∥gk
∥
∥2 − β0

3
∥
∥gk
∥
∥2 − β0

3
∥
∥gk
∥
∥2

≤ −β0
3
∥∥gk
∥∥2 − β0

3
β21‖dk‖2 +

β0
3
β1g

T
k dk,

(3.22)

where the last inequality follows (3.16) and (3.17). By λk ≤ 1, let σ1 ∈ (0, (β0/3)δ), σ2 ∈
(0, (β0/3)β21δ), σ3 ∈ (0, (β0/3)β1δ), then we obtain (1.19). The proof is complete.

Lemma 3.6. Let {xk} be generated by the Algorithm 2.1. Suppose that Assumptions 1 and 2 hold.
Then one has

∞∑

k=0

(
−gT

k dk

)
< ∞,

∞∑

k=0

dT
kBkdk < ∞. (3.23)

In particular, one has

lim
k→∞

(
−gT

k dk

)
= 0, lim

k→∞
dT
kBkdk = 0. (3.24)

Proof. By (3.8) and (3.19), we have

qk(dk) = gT
k dk +

1
2
dT
kBkdk ≤ 1

2
gT
k dk ≤ −1

2
dT
kBkdk. (3.25)

From Step 4 of Algorithm 2.1, if rk ≥ ρ is true, we get

∥∥g(xk+1)
∥∥2 − ∥∥g(xk)

∥∥2 ≤ qk(dk) ≤ 1
2
gT
k dk ≤ −1

2
dT
kBkdk, (3.26)

otherwise, if rk < ρ is true, by Step 5 of Algorithm 2.1, (3.8), and (3.26), we can obtain

∥∥g(xk+1)
∥∥2 − ∥∥g(xk)

∥∥2 ≤ −σ1
∥∥λkgk

∥∥2 − σ2‖λkdk‖2 + σ3λkd
T
kgk

≤ σ3λkd
T
kgk ≤ −σ3λkd

T
kBkdk.

(3.27)
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By Lemma 3.5, we know that (1.19) can be satisfied in a finite number of backtracking steps,
which means that there exists a constant λ∗ ∈ (0, 1) satisfying λ∗ ≤ λk for all k. By (3.26) and
(3.27), we have

∥
∥g(xk+1)

∥
∥2 − ∥∥g(xk)

∥
∥2 ≤ ρ1g

T
k dk ≤ −ρ1dT

kBkdk ≤ −ρ1β1‖dk‖2 < 0, (3.28)

where ρ1 = min{1/2, σ3λ
∗}. According to (3.28), we get

∞∑

k=0

dT
kBkdk ≤

∞∑

k=0

(
−gT

k dk

)
≤ 1

ρ1

∞∑

k=0

(∥
∥g(xk)

∥
∥2 − ∥∥g(xk+1)

∥
∥2
)

=
1
ρ1

lim
N→∞

N∑

k=0

(∥
∥g(xk)

∥
∥2 − ∥∥g(xk+1)

∥
∥2
)

=
1
ρ1

lim
N→∞

(∥∥g(x0)
∥∥2 − ∥∥g(xN+1)

∥∥2
)
,

(3.29)

and by Lemma 3.3, we know that {‖gk‖} is convergent. Therefore, we deduce that (3.23)
holds. According to (3.23), it is easy to deduce (3.24). The proof is complete.

Lemma 3.7. Suppose that Assumptions 1 and 2 hold. There are positive constants b1 ≤ b2, and b3
such that for any k, if ‖dk‖/=Δmin, then the following inequalities hold:

b1
∥∥gk
∥∥ ≤ ‖dk‖ ≤ b2

∥∥gk
∥∥, αk ≤ b3. (3.30)

Proof. We will prove this lemma in the following two cases.

Case 1 (‖dk‖ < Δk). By (3.18), we have αk = 0 and Bkdk = −gk. Together with (3.8) and (3.19),
we get

β1‖dk‖2 ≤ dT
kBkdk = −dT

kgk ≤ ‖dk‖
∥
∥gk
∥∥,

∥∥−gk
∥∥ =
∥∥gk
∥∥ = ‖Bkdk‖ ≤ β3‖dk‖.

(3.31)

Then (3.30) holds with b1 = 1/β3 ≤ b2 = 1/β1 and b3 = 0.

Case 2 (‖dk‖ = Δk). From (3.19) and (3.8), we have

β1‖dk‖2 ≤ dT
kBkdk ≤ −gT

k dk ≤ ∥∥gk
∥∥‖dk‖. (3.32)

Then, we get ‖dk‖ ≤ 1/β1 ‖gk‖. By (3.10) and (3.8), it is easy to deduce that

(1 − ε1)
∥∥gk
∥∥ ≤ ‖Bkdk‖ ≤ β3‖dk‖. (3.33)
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So we obtain ‖dk‖ ≥ (1 − ε1)/β3 ‖gk‖. Using (3.20), we have

αk =
−gT

k
dk − dT

k
Bkdk

‖dk‖2
≤
∥
∥gk
∥
∥

‖dk‖ ≤ β3
1 − ε1

. (3.34)

Therefore, (3.30) holds. The proof is complete.

In the next theorem, we establish the global convergence of Algorithm 2.1.

Theorem 3.8. Let {xk} be generated by Algorithm 2.1 and the conditions in Assumptions 1 and 2
hold. Then one has

lim
k→∞

∥
∥gk
∥
∥ = 0. (3.35)

Proof. By Lemma 3.6, we have

lim
k→∞

− gT
k dk = lim

k→∞
dT
kBkdk = 0. (3.36)

Combining (3.8) and (3.36), we get

lim
k→∞

‖dk‖ = 0. (3.37)

Together with (3.30), we obtain (3.35). The proof is complete.

4. The Superlinear Convergence Analysis

In this section, we will present the superlinear convergence of Algorithm 2.1.

Assumption 3. ∇g is Hölder continuous at x∗; that is, for every x in a neighborhood of x∗,
there are positive constants M1 and γ such that

∥∥∇g(x) − ∇g(x∗)
∥∥ ≤ M1‖x − x∗‖γ , (4.1)

where x∗ stands for the unique solution of (1.1) in Ω1.

Lemma 4.1. Let {xk} be generated by Algorithm 2.1 and the conditions in Assumptions 1 and 2 hold.
Then, for any fixed γ > 0, one has

∞∑

k=0

‖xk − x∗‖γ < ∞. (4.2)
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Moreover, one has

∞∑

k=0

χk

(
γ
)
< ∞, (4.3)

where χk(γ) = max{‖xk − x∗‖γ , ‖xk+1 − x∗‖γ}.

Proof. Using Assumption 1, we can have the following inequality:

m‖x − x∗‖ ≤ ∥∥g(x)∥∥ =
∥
∥g(x) − g(x∗)

∥
∥ ≤ M‖x − x∗‖, x ∈ Ω1. (4.4)

By (3.8) and (3.30), we have

−β2‖dk‖2 ≤ −dT
kBkdk ≤ −β1‖dk‖2,

−b22
∥∥gk
∥∥2 ≤ −‖dk‖2 ≤ −b21

∥∥gk
∥∥2.

(4.5)

Together with (3.28), we get

∥∥gk+1
∥∥2 − ∥∥gk

∥∥2 ≤ ρ1g
T
k dk ≤ −ρ1dT

kBkdk

≤ −ρ1β1‖dk‖2

≤ −ρ1β1b21
∥∥gk
∥∥2,

(4.6)

and let ρ0 = min{ρ1β1b21, ρ} ∈ (0, 1). Suppose that there exists a positive integer k0, as k ≥ k0,
(3.8) holds. Then we obtain

∥∥gk+1
∥∥2 ≤ ∥∥gk

∥∥2 − ρ0
∥∥gk
∥∥2 =

(
1 − ρ0

)∥∥gk
∥∥2 ≤ · · · ≤ (1 − ρ0

)k−k0+1∥∥gk0
∥∥2 = c0c

k
1 , (4.7)

where c0 = (1 − ρ0)
1−k0‖g0‖2, c1 = (1 − ρ0) ∈ (0, 1). This together with (4.4) shows that

‖xk+1 − x∗‖2 ≤ m−2c0ck1 holds for all k large enough. Therefore, for any γ,we have (4.2). Notice
that χk(γ) ≤ ‖xk − x∗‖γ + ‖xk+1 − x∗‖γ ; from (4.2), we can get (4.3).

Lemma 4.2. Let Assumptions 1, 2, and 3 hold. Then, for all k sufficiently large, there exists a positive
constant M2 such that

∥∥yk − ∇g(x∗)sk
∥∥ ≤ M2χk‖sk‖, (4.8)

where χk = max{‖xk − x∗‖γ , ‖xk+1 − x∗‖γ}.
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Proof. From Theorem 3.8 and (4.4), it is not difficult to get xk → x∗. Then (4.1) holds for all k
large enough. Using the mean value theorem, for all k sufficiently large, we have

∥
∥yk − ∇g(x∗)sk

∥
∥ =
∥
∥∇g(xk + t0(xk+1 − xk))sk − ∇g(x∗)sk

∥
∥

≤ ∥∥∇g(xk + t0(xk+1 − xk)) − ∇g(x∗)
∥
∥‖sk‖

≤ M1‖xk + t0(xk+1 − xk) − x∗‖γ‖sk‖
≤ M2χk‖sk‖,

(4.9)

where M2 = M1(2t0 + 1), t0 ∈ (0, 1). Therefore, the inequality of (4.8) holds.

Lemma 4.3. Let Assumptions 1, 2, and 3 hold and let xk be generated by Algorithm 2.1. Denote
Q = ∇g(x∗)−1/2, Hk = B−1

k
. Then, for all large k, there are positive constants ei, i = 1, 2, 3, 4, and

η ∈ (0, 1) such that

∥∥Bk+1 − ∇g(x∗)
∥∥
Q,F ≤ (1 + e1χk

)∥∥Bk − ∇g(x∗)
∥∥
Q,F + e2χk, (4.10)

∥∥∥Hk+1 − ∇g(x∗)−1
∥∥∥
Q−1,F

≤
(√

1 − η�2
k + e3χk

)∥∥∥Hk − ∇g(x∗)−1
∥∥∥
Q−1,F

+ e4χk, (4.11)

where ‖A‖Q,F = ‖QTAQ‖F , ‖ · ‖F is the Frobenius norm of a matrix and�k is defined as follows:

�k =

∥∥∥Q−1
(
Hk − ∇g(x∗)−1

)
yk

∥∥∥
∥∥∥Hk − ∇g(x∗)−1

∥∥∥
Q−1,F

∥∥Qyk

∥∥
. (4.12)

In particular, {‖Bk‖}F and {‖Hk‖}F are bounded.

Proof. From (1.15), we have

∥∥Bk+1 − ∇g(x∗)
∥∥
Q,F =

∥∥∥∥∥
Bk − ∇g(x∗) +

Bksks
T
kBk

sTkBksk
+
yky

T
k

sTkyk

∥∥∥∥∥
Q,F

≤ (1 + e1τk)
∥∥Bk − ∇g(x∗)

∥∥
Q,F + e2χk,

(4.13)

where the last inequality follows the inequality (49) of [47]. Hence, (4.10) holds. By (4.8), in
a way similar to that of [46], we can prove that (4.11) holds and ‖Bk‖ and ‖Hk‖ are bounded.
The proof is complete.

Lemma 4.4. Let {xk} be generated by Algorithm 2.1 and the conditions in Assumptions 1, 2 and 3
hold. Then

lim
k→∞

∥∥(Bk − ∇g(x∗)
)
sk
∥∥

‖sk‖ = 0, (4.14)

where sk = xk+1 − xk.
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Proof. In a similar way to [46], it is not difficult to obtain

lim
k→∞

∥
∥
∥Q−1

(
Hk − ∇g(x∗)−1

)
yk

∥
∥
∥

∥
∥Qyk

∥
∥ = 0. (4.15)

On the other hand, we have

∥
∥
∥Q−1

(
Hk − ∇g(x∗)−1

)
yk

∥
∥
∥ =
∥
∥
∥Q−1Hk

(∇g(x∗) − Bk

)∇g(x∗)−1yk

∥
∥
∥

≥
∥
∥
∥Q−1Hk

(∇g(x∗) − Bk

)
sk
∥
∥
∥

−
∥
∥
∥Q−1Hk

(∇g(x∗) − Bk

)(
sk − ∇g(x∗)−1yk

)∥∥
∥

≥
∥∥∥Q−1Hk

(∇g(x∗) − Bk

)
sk
∥∥∥

−
∥∥∥Q−1

∥∥∥‖Hk‖
(∥∥∇g(x∗)

∥∥ + ‖Bk‖
)∥∥∥∇g(x∗)−1

(
yk − ∇g(x∗)sk

)∥∥∥

≥
∥∥∥Q−1Hk

(∇g(x∗) − Bk

)
sk
∥∥∥

−M2χk

∥∥∥Q−1
∥∥∥‖Hk‖

(∥∥∇g(x∗)
∥∥ + ‖Bk‖

)∥∥∥∇g(x∗)−1
∥∥∥‖sk‖

=
∥∥∥Q−1Hk

(∇g(x∗) − Bk

)
sk
∥∥∥ − o(‖sk‖),

(4.16)

where the last inequality follows from (4.8). We know that {‖Bk‖} and {‖Hk‖} are bounded,
and {Hk} is positive definite. By (3.5), we get

∥∥Qyk

∥∥ ≤ M‖Q‖‖sk‖. (4.17)

Combining (4.15) and (4.17), we conclude that (4.14) holds. The proof is complete.

Theorem 4.5. Let the conditions in Assumptions 1, 2 and 3 hold. If ε1 → 0 in (3.10). Then the
sequence {xk} generated by Algorithm 2.1 converges to x∗ superlinearly for λk = 1.

Proof. For all xk ∈ Ω1, we get

∥∥gk+1
∥∥

‖dk‖ =

∥∥∥gk + Bkdk +
(∇gk − Bk

)
dk +O

(
‖dk‖2

)∥∥∥

‖dk‖

≤
∥∥gk + Bkdk

∥∥
∥∥gk
∥∥

∥∥gk
∥∥

‖dk‖ +

∥∥(∇gk − Bk

)
dk

∥∥

‖dk‖ +
O
(
‖dk‖2

)

‖dk‖

≤ ε1

∥∥gk
∥∥

‖dk‖ +

∥∥(∇gk − Bk

)
dk

∥∥

‖dk‖ +O(‖dk‖),

(4.18)
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where the last inequality follows (3.10). By (3.5), we have

∥
∥gk
∥
∥ ≤ ∥∥gk+1 − gk

∥
∥ +
∥
∥gk+1

∥
∥ ≤ M‖dk‖ +

∥
∥gk+1

∥
∥. (4.19)

Dividing both sides by ‖dk‖, we get

∥∥gk
∥∥

‖dk‖ ≤ M +

∥∥gk+1
∥∥

‖dk‖ . (4.20)

Substituting this into (4.18), we can obtain

∥
∥gk+1

∥
∥

‖dk‖ ≤ ε1

(

M +

∥
∥gk+1

∥
∥

‖dk‖

)

+

∥
∥(∇gk − Bk

)
dk

∥
∥

‖dk‖ +O(‖dk‖), (4.21)

which means that

∥∥gk+1
∥∥

‖dk‖ ≤
(
Mε1 +

∥∥(∇gk − Bk

)
dk

∥∥/‖dk‖ +O(‖dk‖)
)

(1 − ε1)
. (4.22)

Since ε1 → 0, and ‖dk‖ → 0 as k → ∞, by (4.14) and (3.10), we have

lim
k→∞

∥∥gk+1
∥∥

‖dk‖ = 0. (4.23)

Using (3.16), we get

lim
k→∞

∥∥gk+1
∥∥

∥∥gk
∥∥ = 0. (4.24)

Considering (4.4), we have

lim
k→∞

‖xk + dk − x∗‖
‖xk − x∗‖ = 0. (4.25)

Therefore, we get the result of the superlinear convergence.

5. Numerical Results

In this section, we test the proposed BFGS trust-region method on symmetric nonlinear
equations and compare it with Algorithm 2.2. The following problems with various sizes
will be solved.
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Problem 1. The discretized two-point boundary value problem like the problem in [48] is

g(x) � Ax +
1

(n + 1)2
F(x) = 0, (5.1)

where A is the n × n tridiagonal matrix given by

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎢
⎢⎢
⎣

8 −1
−1 8 −1

−1 8 −1
. . . . . . . . .

. . . . . . −1
−1 8

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎥
⎥⎥
⎦

, (5.2)

and F(x) = (F1(x), F2(x), . . . , Fn(x))
Twith Fi(x) = sinxi − 1, i = 1, 2, . . . , n.

Problem 2. Unconstrained optimization problem is

min f(x), x ∈ Rn, (5.3)

with Engval function [49] f : Rn → R defined by

f(x) =
n∑

i=2

[(
x2
i−1 + x2

i

)2
− 4xi−1 + 3

]
. (5.4)

The related symmetric nonlinear equation is

g(x) � 1
4
∇f(x) = 0, (5.5)

where g(x) = (g1(x), g2(x), . . . , gn(x))
T with

g1(x) = x1

(
x2
1 + x2

2

)
− 1,

gi(x) = xi

(
x2
i−1 + 2x2

i + x2
i+1

)
− 1, i = 2, 3, . . . , n − 1,

gn(x) = xn

(
x2
n−1 + x2

n

)
.

(5.6)

In the experiments, the parameters in Algorithm 2.1 were chosen as τ1 = 0.5, τ2 = 0.9, τ3 =
3, r = 0.1,Δmin = ‖g0‖, B0 = I, ρ = 0.25, σ1 = σ2 = 10−5, and σ3 = 0.9. We obtain dk from
subproblem (1.14) by the well-known Doglegmethod. The parameters in Algorithm 2.2 were
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Table 1: Test Results For Problem 1.

(a) (Small-scales). Test results for Algorithm 2.1.

x0 (1,. . .,1) (60,. . .,60) (600,. . .,600) (−1, . . . ,−1) (−60, . . . ,−60) (−600, . . . ,−600)
Dim NI/NG/EG NI/NG/EG NI/NG/EG NI/NG/EG NI/NG/EG NI/NG/EG

n = 10 13/24/
2.406624e-07

14/25/
2.272840e-07

17/30/
3.104130e-07

13/24/
2.449361e-07

14/25/
2.398188e-07

17/30/
4.593832e-07

n = 50 48/101/
2.189696e-07

49/102/
4.009098e-07

50/103/
2.147571e-07

48/101/
2.181267e-07

49/102/
4.008911e-07

50/103/
2.120250e-07

n = 99 82/171/
6.794811e-07

89/188/
6.345939e-07

91/190/
7.804790e-07

82/171/
8.358725e-07

89/188/
6.367964e-07

91/190/
7.801889e-07

x0 (1,0,1,0,. . .) (60,0,60,0,. . .) (600,0,600,0,. . .) (−1, 0,−1, 0, . . .) (−60, 0,−60, 0, . . .) (−600, 0,−600, 0, . . .)
Dim NI/NG/EG NI/NG/EG NI/NG/EG NI/NG/EG NI/NG/EG NI/NG/EG

n = 10 21/42/
7.364467e-07

22/43/
3.922363e-07

22/45/
4.894966e-07

21/44/
3.463471e-08

22/43/
3.860638e-07

22/45/
4.895404e-07

n = 50 72/153/
9.350290e-07

86/181/
4.420131e-07

88/185/
7.620218e-07

70/151/
6.776281e-07

86/181/
4.420083e-07

49/83/
8.003368e-07

n = 99 73/156/
9.013346e-07

88/185/
7.631881e-07

88/191/
6.856481e-07

74/161/
9.918464e-07

88/185/
7.368909e-07

88/191/
6.856897e-07

(b) (Large-scales). Test results for Algorithm 2.1.

x0 (1,. . .,1) (60,. . .,60) (600,. . .,600) (−1, . . . ,−1) (−60, . . . ,−60) (−600, . . . ,−600)
Dim NI/NG/EG NI/NG/EG NI/NG/EG NI/NG/EG NI/NG/EG NI/NG/EG

n = 200 83/178/
9.096568e-7

106/225/
9.483206e-7

117/250/
8.796828e-7

85/180/
7.376219e-7

106/225/
9.263058e-7

117/250/
8.779599e-7

n = 500 85/180/
8.830573e-7

103/218/
9.825658e-7

115/244/
9.765194e-7

83/178/
7.659650e-7

103/218/
9.796118e-7

115/244/
9.755827e-7

n=1000 76/165/
8.611337e-7

96/207/
8.301215e-7

105/224/
9.957816e-7

76/165/
8.587066e-7

96/207/
8.291876e-7

105/224/
9.925005e-7

x0 (1,0,1,0,. . .) (60,0,60,0,. . .) (600,0,600,0,. . .) (−1, 0,−1, 0, . . .) (−60, 0,−60, 0, . . .) (−600, 0,−600, 0, . . .)
Dim NI/NG/EG NI/NG/EG NI/NG/EG NI/NG/EG NI/NG/EG NI/NG/EG

n = 200 68/149/
8.780047e-7

91/194/
7.484521e-7

101/216/
9.790557e-7

69/150/
9.770900e-7

91/194/
7.275693e-7

101/216/
9.559911e-7

n = 500 72/155/
9.797645e-07

96/205/
9.993161e-7

106/225/
8.916405e-7

72/155/
9.886969e-7

97/206/
7.492841e-7

106/225/
8.921008e-7

n=1000 69/152/
9.919863e-7

93/200/
6.930976e-7

106/227/
8.119328e-7

69/152/
9.948500e-7

93/200/
6.946308e-7

106/227/
8.123102e-7

(c) (Small-scales). Test results for Algorithm 2.2.

x0 (1,. . .,1) (60,. . .,60) (600,. . .,600) (−1, . . . ,−1) (−60, . . . ,−60) (−600, . . . ,−600)
Dim NI/NG/EG NI/NG/EG NI/NG/EG NI/NG/EG NI/NG/EG NI/NG/EG

n = 10 54/107/
8.039519e-7

67/133/
7.624248e-7

74/147/
8.167466e-7

54/107/
8.061366e-7

67/133/
7.624560e-7

74/147/
8.167469e-7

n = 50 58/115/
9.602663e-7

72/143/
7.684310e-007

79/157/
8.876868e-7

58/115/
9.603892e-7

72/143/
7.684327e-007

79/157/
8.876870e-7

n = 99 60/119/
7.614838e-7

73/145/
8.350445e-7

80/159/
9.679851e-7

60/119/
7.615091e-7

73/145/
8.350450e-7

80/159/
9.679851e-7

x0 (1,0,1,0,. . .) (60,0,60,0,. . .) (600,0,600,0,. . .) (−1, 0,−1, 0, . . .) (−60, 0,−60, 0, . . .) (−600, 0,−600, 0, . . .)
Dim NI/NG/EG NI/NG/EG NI/NG/EG NI/NG/EG NI/NG/EG NI/NG/EG

n = 10 52/103/
7.605486e-7

64/127/
9.929883e-7

72/143/
7.732628e-7

52/103/
7.646868e-7

64/127/
9.930747e-7

72/143/
7.732660e-7

n = 50 56/111/
8.896898e-7

69/137/
9.690007e-7

77/153/
8.223484e-7

56/111/
8.899175e-7

69/137/
9.690048e-7

77/153/
8.223488e-7

n = 99 57/113/
9.598124e-7

71/141/
7.734909e-7

78/155/
8.965851e-7

57/113/
9.598763e-7

71/141/
7.734918e-7

78/155/
8.965852e-7
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(d) (Large-scales). Test results for Algorithm 2.2.

x0 (1,. . .,1) (60,. . .,60) (600,. . .,600) (−1, . . . ,−1) (−60, . . . ,−60) (−600, . . . ,−600)
Dim NI/NG/EG NI/NG/EG NI/NG/EG NI/NG/EG NI/NG/EG NI/NG/EG

n = 200 61/121/
8.110467e-7

74/147/
8.917908e-7

82/163/
7.610549e-7

61/121/
8.110534e-7

74/147/
8.917909e-7

82/163/
7.610549e-7

n = 500 62/123/
9.526492e-7

76/151/
7.712044e-7

83/165/
8.958279e-7

62/123/
9.526504e-7

76/151/
7.712044e-7

83/165/
8.958279e-7

n = 1000 63/125/
9.938699e-7

77/153/
8.049274e-7

84/167/
9.351920e-7

63/125/
9.938703e-7

77/153/
8.049274e-7

84/167/
9.351920e-7

x0 (1,0,1,0,. . .) (60,0,60,0,. . .) (600,0,600,0,. . .) (−1, 0,−1, 0, . . .) (−60, 0,−60, 0, . . .) (−600, 0,−600, 0, . . .)
Dim NI/NG/EG NI/NG/EG NI/NG/EG NI/NG/EG NI/NG/EG NI/NG/EG

n = 200 59/117/
7.503172e-7

72/143/
8.249912e-7

79/157/
9.576414e-7

59/117/
7.503296e-7

72/143/
8.249914e-7

79/157/
9.576414e-7

n = 500 60/119/
8.811245e-7

73/145/
9.701366e-7

81/161/
8.285552e-7

60/119/
8.811269e-7

73/145/
9.701367e-7

81/161/
8.285552e-7

n = 1000 61/121/
9.191890e-7

75/149/
7.444393e-7

82/163/
8.649128e-7

61/121/
9.191896e-7

75/149/
7.444393e-7

82/163/
8.649128e-7

chosen as Δ′ = Δ0 = ‖g0‖, η1 = 0.25, η2 = 0.75, μ = 0.01, and η3 = 2. Since the matrices
∇g(xk)

T∇g(xk) will be singular, we solve (1.10) by Extreme Minimization with 2—Dimension
Subspace Method to obtain dk. The program was coded in MATLAB 6.5.1. We stopped the
iteration when the condition ‖g(x)‖ ≤ 10−6 was satisfied. If the iteration number is larger
than one thousand, we also stop this program and this method is considered to be failed. For
Algorithm 2.1, Tables 1(a) and 1(b) and Tables 2(a) and 2(b) show the performance of the
method need to solve Problem 1 and Problem 2, respectively. For Algorithm 2.2, Tables 1(c)
and 1(d) and Tables 2(c) and 2(d) show the performance of the normal trust region method
need to solve Problem 1 and Problem 2, respectively. The columns of the tables have the
following meaning:

Dim: the dimension of the problem,

NI: the total number of iterations,

NG: the number of the function evaluations,

EG: the norm of the function evaluations.

From Tables 1(a)–2(d), it is not difficult to see that the proposed method performs
better than the normal method does. Furthermore, the performance of Algorithm 2.1 hardly
changes with the dimension increasing. Overall, the given method is competitive to the
normal trust region method.

6. Discussion

We give a trust-region-based BFGS method and establish its convergent results in this paper.
The numerical results show that this method is promising. In fact, this problem (1.1) can
come from unconstrained optimization problem and an equality constrained optimization
problem (for details see [4]). There are some other practical problems, such as the saddle
point problem, the discretized two-point boundary value problem, and the discretized elliptic
boundary value problem, take the form of (1.1)with symmetric Jacobian (see, e.g., Chapter 1
in [50]). This presented method can also extend to solve the normal nonlinear equations.
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Table 2: Test Results For Problem 2.

(a) (Small-scales). Test results for Algorithm 2.1.

x0 (0.5,. . .,0.5) (1,. . .,1) (3,. . .,3) (−0.75, . . . ,−0.75) (−2, . . . ,−2) (−3, . . . ,−3)
Dim NI/NG/EG NI/NG/EG NI/NG/EG NI/NG/EG NI/NG/EG NI/NG/EG

n = 10 25/44/
9.720971e-07

21/32/
4.889567e-07

92/103/
2.475812e-08

21/32/
8.691255e-07

46/59/
5.860956e-07

86/105/
6.348374e-08

n = 50 37/56/
9.950345e-07

39/56/
8.776379e-07

113/139/
9.587026e-07

40/63/
6.984106e-07

69/96/
9.523480e-07

103/125/
9.404211e-07

n = 99 42/59/
9.725361e-07

41/60/
7.374460e-07

113/135/
7.909796e-07

40/55/
8.380367e-07

117/489/
9.805302e-07

97/129/
7.975248e-07

x0 (0.5,0,0.5,0,. . .) (1,0,1,0,. . .) (3,0,3,0,. . .) (−0.75, 0,−0.75, 0, . . .) (−2, 0,−2, 0, . . .) (−3, 0,−3, 0, . . .)
Dim NI/NG/EG NI/NG/EG NI/NG/EG NI/NG/EG NI/NG/EG NI/NG/EG

n = 10 24/35/
4.711749e-07

21/30/
3.147507e-07

44/65/
3.529113e-07

27/48/
4.004367e-07

39/76/
8.503415e-07

29/42/
7.623619e-07

n = 50 36/57/
8.776354e-07

36/57/
8.287552e-07

54/77/
8.491652e-07

41/64/
9.492805e-07

42/69/
9.029472e-07

58/77/
9.752703e-07

n = 99 36/61/
8.265146e-07

37/56/
9.507706e-07

60/93/
5.373087e-07

42/73/
8.247653e-07

50/79/
9.217390e-07

62/88/
8.307004e-07

(b) (Large-scales). Test results for Algorithm 2.1

x0 (0.5,. . .,0.5) (1,. . .,1) (3,. . .,3) (−0.75, . . . ,−0.75)
Dim NI/NG/EG NI/NG/EG NI/NG/EG NI/NG/EG

n = 200 40/57/
7.464372e-007

41/58/
4.921097e-007

112/130/
6.229759e-007

40/65/
7.785598e-007

n = 500 36/57/
7.887407e-007

41/60/
3.538433e-007

113/135/
8.871522e-007

38/69/
9.785814e-007

n = 1000 42/65/
7.382939e-007

40/59/
7.463210e-007

120/146/
6.044161e-007

40/69/
4.563405e-007

x0 (0.5,0,0.5,0,. . .) (1,0,1,0,. . .) (3,0,3,0,. . .) (−0.75, 0,−0.75, 0, . . .)
Dim NI/NG/EG NI/NG/EG NI/NG/EG NI/NG/EG

n = 200 41/64/
6.671246e-007

36/61/
9.977774e-007

63/94/
8.153527e-007

39/64/
9.737674e-007

n = 500 42/67/
9.154342e-007

37/58/
8.340650e-007

49/74/
8.277585e-007

37/60/
6.328648e-007

n = 1000 43/62/
7.874632e-007

40/61/
8.997602e-007

55/76/
8.830280e-007

41/68/
8.430165e-007

(c) (Small-scales). Test results for Algorithm 2.2.

x0 (0.5,. . .,0.5) (1,. . .,1) (3,. . .,3) (−0.75, . . . ,−0.75) (−2, . . . ,−2) (−3, . . . ,−3)
Dim NI/NG/EG NI/NG/EG NI/NG/EG NI/NG/EG NI/NG/EG NI/NG/EG

n = 10 NI > 1000 NI > 1000 NI > 1000 NI > 1000 NI > 1000 NI > 1000

n = 50 NI > 1000 NI > 1000 NI > 1000 NI > 1000 NI > 1000 NI > 1000

n = 99 NI > 1000 NI > 1000 NI > 1000 NI > 1000 NI > 1000 NI > 1000

x0 (0.5,0,0.5,0,. . .) (1,0,1,0,. . .) (3,0,3,0,. . .) (−0.75, 0,−0.75, 0, . . .) (−2, 0,−2, 0, . . .) (−3, 0,−3, 0, . . .)
Dim NI/NG/EG NI/NG/EG NI/NG/EG NI/NG/EG NI/NG/EG NI/NG/EG

n = 10 196/391/
9.528159e-007

204/407/
9.939962e-007

213/425/
9.975163e-007 NI > 1000 NI > 1000 NI > 1000

n = 50 199/397/
9.791882e-007

208/415/
9.592104e-007

217/433/
9.634499e-007 NI > 1000 NI > 1000 NI > 1000

n = 99 NI > 1000 NI > 1000 NI > 1000 NI > 1000 NI > 1000 NI > 1000
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(d) (Large-scales). Test results for Algorithm 2.2.

x0 (0.5,. . .,0.5) (1,. . .,1) (3,. . .,3) (−0.75, . . . ,−0.75)
Dim NI/NG/EG NI/NG/EG NI/NG/EG NI/NG/EG

n = 200 NI > 1000 NI > 1000 NI > 1000 NI > 1000

n = 500 NI > 1000 NI > 1000 NI > 1000 NI > 1000

n = 1000 NI > 1000 NI > 1000 NI > 1000 NI > 1000

x0 (0.5,0,0.5,0,. . .) (1,0,1,0,. . .) (3,0,3,0,. . .) (−0.75, 0,−0.75, 0, . . .)
Dim NI/NG/EG NI/NG/EG NI/NG/EG NI/NG/EG

n = 200 200/399/
9.537272e-007

208/415/
9.804205e-007

217/433/
9.775482e-007

NI > 1000

n = 500 201/401/
9.425775e-007

209/417/
9.430954e-007

217/433/
9.908579e-007

NI > 1000

n = 1000 202/403/
9.503816e-007

209/417/
9.824140e-007

218/435/
9.470469e-007

NI > 1000
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