
Hindawi Publishing Corporation
Advances in Operations Research
Volume 2009, Article ID 732010, 20 pages
doi:10.1155/2009/732010

Research Article
An Exact Method for the 2D Guillotine
Strip Packing Problem

Abdelghani Bekrar1 and Imed Kacem2

1 Research and Development Department in Algorithmic, DynaSys S.A., Allee de Stockholm,
67300 Schiltigheim, France

2 LITA Laboratory, University of Paul Verlaine Metz, Ile du Saulcy, 57000 Metz, France

Correspondence should be addressed to Imed Kacem, kacem@univ-metz.fr

Received 24 August 2008; Revised 13 January 2009; Accepted 16 April 2009

Recommended by Mhand Hifi

We consider the two-dimensional strip packing problem with guillotine cuts. The problem consists
in packing a set of rectangular items on one strip of width W and infinite height. The items packed
without overlapping must be extracted by a series of cuts that go from one edge to the opposite
edge (guillotine constraint). To solve this problem, we use a dichotomic algorithm that uses a lower
bound, an upper bound, and a feasibility test algorithm. The lower bound is based on solving a
linear program by introducing new valid inequalities. A new heuristic is used to compute the
upper bound. Computational results show that the dichotomic algorithm, using the new bounds,
gives good results compared to existing methods.

Copyright q 2009 A. Bekrar and I. Kacem. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

1. Introduction

The two-dimensional strip packing problem (2SP) is a well-known combinatorial optimiza-
tion problem. It has several industrial applications like the cutting of rolls of paper or textile
material. Moreover, some approximation algorithms for bin packing problems are in two
phases where the first phase aims to solve a strip packing problem [1, 2]. Consider a set J
of n rectangular items. Each item i has a width wi and a height hi (i ∈ {1, 2, . . . , n}). The 2SP
consists in packing all the items in a strip of width W and infinite height. The dimensions
of the items and the strip are integers. The objective is to minimize the total height used to
pack the items without overlapping. The orientation of items is fixed, that is, they cannot be
rotated.

This problem is NP-hard in the strong sense since the special case where all items have
the same height is equivalent to the one-dimensional bin packing [3, 4].

2 Advances in Operations Research

An additional constraint considered in this paper is the guillotine cut: All items must
be extracted by cuts that go from one edge to the opposite edge. Figure 1(a) shows a guillotine
pattern where all items can be extracted by guillotine cuts. When items cannot be extracted
by guillotine cuts, the pattern is called nonguillotine as shown in Figure 1(b).

Most of papers considering the 2SP problem are approximation algorithms. Fernandez
de la Vega and Zissimopoulos [5], Lesh et al. [6] Kenyon and Rémila [7], and Zhang et al.
[8] presented approximation algorithms for the strip packing problem. Bortfeldt [9], and
Beltran et al. [10] used metaheuristics. Hopper and Turton [11] provided an overview of
metaheuristic algorithms applied to 2D strip packing problem.

To the best of our knowledge, there are only few papers which used exact algorithms
to solve 2SP problem. Hifi [12] introduced the cutting/packing problem with guillotine cut,
and he proposed two algorithms based on branch and bound. Martello et al. [4] proposed
a new lower bound and used a branch and bound to solve the problem without guillotine
constraint.

Recently, three papers introduced the strip packing problem with guillotine constraint.
Cui et al. [13] proposed a recursive branch and bound to obtain an approximate solution.
A new lower bound and a Branch and Bound were proposed by Bekrar et al. [14]. Finally,
Cintra et al. [15] used the column generation method and dynamic programming to solve
another variant of the problem (a bound on the number of each small rectangle to be packed
is imposed).

In this paper, we propose an exact algorithm based on dichotomic search to solve
the two-dimensional strip packing problem with guillotine cut. In Section 2 we present
some lower bounds proposed in literature. In Sections 3 and 4, we, respectively, present
the lower bound and the upper bound used in the algorithm. In Section 5, we explain the
dichotomic algorithm. We provide computational results in Section 6. Finally, we discuss
some perspectives of our work.

2. Lower Bounds for the 2SP Problem

In this section, we first recall existing lower bounds proposed for the strip packing problem:
the continuous lower bound Lc, the lower bounds of Martello et al. [4], Lmmv1 and Lmmv2,
and our lower bound proposed in Bekrar et al. [16], LBKCS. Note that, in all lower bounds the
guillotine constraint is relaxed.

2.1. The Continuous Lower Bound Lc

By splitting each item into unit squares, we obtain a lower bound Lc which is called the
continuous lower bound:

Lc =
⌈∑n

i=1 hiwi

W

⌉
(2.1)

Let L0 = max{Lc,maxi=1,...,nhi}. Martello et al. [4] proved that the absolute worst case
performance ratio is equal to 1/2.

Advances in Operations Research 3

2.2. First Lower Bound Lmmv1 (Martello et al. [4])

This first lower bound presented by Martello et al. [4] is an extension of the one presented in
Martello and Toth [17] proposed for the one-dimensional bin packing problem. The idea is to
decompose the set of items (J) into three subsets according to their dimensions: the subset of
the largest items (J1), the subset of medium items (J2), and the subset of the smallest items
(J3).

Let α ∈ [1,W/2],
J1 = {j ∈ J : wj > W − α},
J2 = {j ∈ J : W − α ≥ wj > W/2},
J3 = {j ∈ J : W/2 ≥ wj ≥ α}.
Observe that

(i) beside a large item we cannot pack any item of the other subsets,

(ii) two items of the subset of medium items cannot be packed one beside the other,
and

(iii) beside items of medium items only items of the last class can be packed.

The sum of heights of items in the two first classes is a valid lower bound for the 2SP
problem, LJ1J2. Some items of J3 cannot be packed beside the first class or the second class. A
continuous lower bound on those items is computed and added to LJ1J2.

2.3. Second Lower Bound Lmmv2 (Martello et al. [4])

The second lower bound proposed by Martello et al. [4] is based on a relaxation of the 2SP
problem by cutting each item j ∈ J into hj unit-height slices of widthwj . The authors consider
the one-dimensional contiguous bin packing problem (1CBP), where all slices must be packed in
bins of size W . The hj slices derived from the item j must be packed into hj contiguous bins.
The optimal solution value of (1CBP) is a valid lower bound for the 2SP problem (denoted
Lmmv2). This solution is computed by a Branch and Bound. The authors proved that Lmmv2

dominates the previous bounds (Lc and Lmmv1).
When the Branch and Bound fails in determining the optimal solution within a fixed

time, a new instance of (1CBP) is created from the 2SP instance by cutting each item j ∈ J into
�hj/2� slices of height 2 or into �hj/3� slices of height 3, and so on, until a solvable (1CBP)
instance is produced. Lmmv2 is improved by using a special binary search procedure (for more
details see [4]).

This lower bound gives the best results on the tested instances, but as we can remark
it is complicated and it takes considerable computation time.

2.4. Bekrar et al. [14] Lower Bound (LBKCS)

This lower bound is based on the same decomposition presented in Martello et al. [4]. The
idea is to calculate the maximum number of items from the last class J3 that can be packed
beside items of the second class J2. This allowed us to compute a best bound on the items of
J3 that cannot be packed with J2.

This lower bound gives good results on the same instances of Martello et al. [4] with
the advantage of reducing the computation time.

4 Advances in Operations Research

3. MIP Formulation and Introduction of Valid Inequalities

This method is based on an adapted formulation of the problem in a mixed integer
programming. It is impossible to solve effectively this problem by a commercial solver
because of the large number of constraints and variables. In addition, the linear relaxation
(relaxation of the integrity constraint) is very poor. This is why we add a family of valid
inequalities to the model to improve the lower bound associated to its linear relaxation.

3.1. The MIP Formulation for the Two-Dimensional Bin Packing Problem
(Pisinger and Sigurd [18])

The model which we used is adapted from the one presented by Pisinger and Sigurd [18]
for the two-dimensional bin packing problem. The latter is based on the modeling technique
proposed by Onodera et al. [19] and Chen et al. [20] described as follows.

Let J denote the set of items. (W,H) are, respectively, the width and the length of the
bin.

Decision Variables

Consider the following variables.

(i) (xi, yi), forall i ∈ J : the lower-left coordinates of item i.

(ii) mi, forall i ∈ J : the index of the bin containing rectangle i.

(iii) lij ∈ {0, 1}, forall i, j ∈ J is equal to 1 if rectangle i is located left of rectangle j, that
is, lij = 1 if xi +wi ≤ xj .

(iv) bij ∈ {0, 1}, forall i, j ∈ J is equal to 1 if rectangle i is located below rectangle j,
that is, bij = 1 if yi + hi ≤ yj .

(MIP1)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Min v

s. t.

lij + lji + bij + bji + pij + pji ≥ 1, i, j ∈ J, i < j, (1)
xi − xj +Wlij ≤W −wi, i, j ∈ J, (2)
yi − yj +Hbij ≤ H − hi, i, j ∈ J, (3)
mi −mj + npij ≤ n − 1, i, j ∈ J, (4)
0 ≤ xi ≤W −wi, i ∈ J, (5)
0 ≤ yi ≤ H − hi, i ∈ J, (6)
1 ≤ mi ≤ v, i ∈ J, (7)
lij , bij , pij ∈ {0, 1}, i, j ∈ J, (8)
xi, yi ∈ R, i ∈ J, (9)
mi, v ∈N, i ∈ J, (10)

(3.1)

(v) pij ∈ {0, 1}, forall i, j ∈ J : pij = 1 if mi + 1 ≤ mj , that is, pij = 1 if rectangle i is
packed in a bin before the bin where rectangle j is packed (the index of the bin
containing i is less than the bin containing j).

(vi) v is the number of used bins.

Advances in Operations Research 5

1 2
3

4

5

(a)

1 2
3

4
5

(b)

Figure 1: (a) Guillotine pattern, (b) nonguillotine pattern.

Constraints (1) avoids the overlapping between items, so item i should be in the left or the
right side of item j, and, in the same time, it should be located above or below item j. In
constraint (2), if lij = 1, we have: xj ≥ xi +wi, which means that item i is located left to item
j. If bij = 1 in constraint (3), we deduce that item i is located below item j. In constraint (4),
we determine if item i is packed “before” item j, pij = 1 (the index of the bin containing i is
less than the index of the bin containing j). These three constraints determine the position of
item i relative to the position of item j. Constraints (5) and (6) ensure that the items do not
exceed the edges of the bins.

3.2. MIP Formulation for the Two-Dimensional Strip Packing Problem 2SP

We adapted the model of Pisinger and Sigurd [18] for the 2SP problem. Constraints (4), (7),
and (10) are eliminated since they concern the bin packing problem. The length of the bin H
is replaced by an upper bound Hh corresponding to the length of the strip.

The 2SP problem can be formulated in the following MIP model, denoted (MIP2):

(MIP2)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Min HH

s. t.

lij + lji + bij + bji ≥ 1, i, j ∈ J, i < j, (1)
xi − xj +Wlij ≤W −wi, i, j ∈ J, (2)
yi − yj +Hhbij ≤ Hh − hi, i, j ∈ J, (3)
0 ≤ xi ≤W −wi, i ∈ J (4)
0 ≤ yi ≤ Hh − hi, i ∈ J (5)
HH ≥ yi + hi, i ∈ J (6)
lij , bij ∈ {0, 1}, i, j ∈ J, (7)
HH,xi, yi ∈ R, i ∈ J. (8)

(3.2)

The valid inequalities are added to MIP2 in which we relax the integrity constraint
(constraints (7) are replaced by the constraints 0 ≤ li,j ≤ 1 and 0 ≤ bi,j ≤ 1, resp.).

In the following, we propose a series of valid inequalities to improve the lower bound
of the 2SP problem.

6 Advances in Operations Research

3.3. Inequalities Related to the Parallel-Machine Scheduling Problem and yi

This bound is inspired from the principle proposed in Kacem [21] applied to the tardiness
minimization on a single machine. Kacem [21] associates fictitious weights to jobs to be
scheduled and computes a lower bound on the weighted flow-time of the optimal solution.
Therefore, for each vector of fictitious weights, he obtained a valid inequality. For the studied
problem, we consider the items as a set of jobs (i.e., each item i is a set of wi jobs of duration
hi) to be scheduled on W identical parallel machines. Hence, the variables (yi +hi) represents
the completion time of the item i (all the jobs corresponding to this item). Clearly, feasible
packing can be viewed as a schedule of these fictitious jobs. To each item i, we associate a
fictitious weight γi. We use an iterative method to calculate different values of weights. For
each vector of fictitious weights, we obtain a valid inequality. We deduce the following valid
inequality based on the lower bound of Eastman et al. [22] for the problem of minimizing the
weighted flow-time on identical parallel machines(Pm ‖∑wiCi):

n∑
i=1

γiwi

(
yi + hi

) ≥ 1
W

n∑
i=1

γ[i]

⎛
⎝w[i]

i−1∑
j=1

w[j]h[j] +
w[i]∑
j=1

jh[i]

⎞
⎠ +

W − 1
2W

n∑
i=1

γiwihi, (3.3)

where [i] is the item in position i when the set J is sorted in non-decreasing order of hi/γi.
This constraint is valid for any positive vector of fictitious weight γ = (γi)1≤i≤n. We generated
several constraints of this type.

Recall that the bound of Eastman et al. [22] for the Pm ‖∑wiCi problem is given by
the following equation:

LBM =
LB1
M

+
M − 1

2M

N∑
j=1

wjpj , (3.4)

where LB1 is the optimal solution of the problem on a single machine. M is the number
of machines, and N is the number of jobs. wj and pj are, respectively, the weight and the
duration of the job j.

3.4. Inequalities Related to the Parallel-Machine Scheduling Problem and xi

This inequality consists in the same principle. We consider items as jobs; each item i is
considered as a set of hi jobs of duration wi. These jobs are to be scheduled on Hh identical
machines. Therefore, the variables (xi +wi) represent the completion time of the item i. It is
obvious that any feasible packing can be viewed as a scheduling of fictitious jobs.

To each job i, a fictitious weight γi is associated. Hence, we deduce the following valid
inequalities that used the bound of Eastman et al. [22] for the problem Pm ‖∑wiCi:

n∑
i=1

γihi(xi +wi) ≥ 1
Hh

n∑
i=1

γ[i]

⎛
⎝h[i]

i−1∑
j=1

w[j]h[j] +
h[i]∑
j=1

jw[i]

⎞
⎠ +

Hh − 1
2Hh

n∑
i=1

γiwihi, (3.5)

where [i] is the ith item when the set J is sorted in nondecreasing order of wi/γi.

Advances in Operations Research 7

This constraint is valid for any vector γ = (γi)1≤i≤n of fictitious weights. For this reason,
we generate several constraints of this family.

3.5. Inequalities Linking yi and HH

By solving the model with the previous cuts (Sections 3.3 and 3.4), we noticed that in the
obtained solutions items are in the bottom and in the right of the strip to respect these
inequalities. To avoid this problem, we adopted the solution which consists in bounding the
weighted sum of yi.

We apply the same reasoning used in the previous inequality, and then we can obtain a
valid inequality able to link yi andHH. Indeed, by replacing (y′

i = HH−yi, i.e., yi = HH−y′
i)

and using a similar notation as in the first family (Section 3.3), we can introduce the following
inequality:

n∑
i=1

γiwiy
′
i ≥

1
W

n∑
i=1

γ[i]

⎛
⎝w[i]

i−1∑
j=1

w[j]h[j] +
w[i]∑
j=1

jh[i]

⎞
⎠ +

W − 1
2W

n∑
i=1

γiwihi, (3.6)

or

H
n∑
i=1

γiwi ≥
n∑
i=1

γiwiyi +
1
W

n∑
i=1

γ[i]

⎛
⎝w[i]

i−1∑
j=1

w[j]h[j] +
w[i]∑
j=1

jh[i]

⎞
⎠ +

W − 1
2W

n∑
i=1

γiwihi. (3.7)

3.6. Inequalities Bounding the Weighted Sum on xi

This inequality is similar to the previous one. It is based on the following transformation of
variables: x′

i =W − xi. It is described as follows:

W
n∑
i=1

γihi ≥
n∑
i=1

γihixi +
1
Hh

n∑
i=1

γ[i]

⎛
⎝h[i]

i−1∑
j=1

w[j]h[j] +
h[i]∑
j=1

jw[i]

⎞
⎠ +

Hh − 1
2Hh

n∑
i=1

γiwihi. (3.8)

3.7. Inequalities for Large Items and High Items

For the set of large items such that each pair cannot be packed side by side, we can consider
it as items of width W . Indeed, let G = {i | forall j ∈ G and j /= i, we have wi +wj > W}. The
following constraints are valid inequalities:

li,j + lj,i = 0 ∀ i, j ∈ G, j /= i,

bi,j + bj,i = 1 ∀ i, j ∈ G, j /= i
(3.9)

8 Advances in Operations Research

Let (γi)1≤i≤|G| be a vector of fictitious weights. [i]1≤i≤|G| represents the ith item of the set G by
sorting the items in nondecreasing order of hi/γi. The following constraint defines a valid
inequality:

∑
i∈G
γi
(
yi + hi

) ≥
|G|∑
i=1

γ[i]

⎛
⎝ i∑

j=1

h[j]

⎞
⎠. (3.10)

Obviously, the following constraint is also a valid inequality:

HH
∑
i∈G
γi ≥

∑
i∈G
γiyi +

|G|∑
i=1

γ[i]

⎛
⎝ i∑

j=1

h[j]

⎞
⎠ (3.11)

We use the same reasoning in the previous cut. Let G′ = {i | forall j ∈ G′and
j /= i, we have hi + hj > Hh}. The following constraints are valid inequalities:

li,j + lj,i = 1 ∀ i, j ∈ G′, j /= i,

bi,j + bj,i = 0 ∀ i, j ∈ G′, j /= i.
(3.12)

Let (γi)1≤i≤|G′| be a vector of fictitious weights. [i]1≤i≤|G′| represents the ith item in the set
G′ when it is sorted in the nondecreasing order of wi/γi. The following constraint is a valid
inequality:

∑
i∈G′

γi(xi +wi) ≥
|G′|∑
i=1

γ[i]

⎛
⎝ i∑

j=1

w[j]

⎞
⎠. (3.13)

The following constraint is also a valid inequality:

W
∑
i∈G′

γi ≥
∑
i∈G′

γixi +
|G′|∑
i=1

γ[i]

⎛
⎝ i∑

j=1

w[j]

⎞
⎠. (3.14)

3.8. Inequalities with Identical Fictitious Weights

It is obvious that all the previous cuts remain valid for the special case when the fictitious
weights are equal to 1. However, it is more advantageous in this case to apply the Shortest
Processing Time (SPT) rule instead of the Eastman bound.

We established a simple procedure to apply this rule to our problem in which we
consider items as jobs.

Advances in Operations Research 9

3.9. Valid Constraints Avoiding the Overlapping of Items
in the Bottom of the Strip

When we tested the previous cuts, we noticed in some obtained solutions that items overlap
in the bottom of the strip (yi = 0) while the sum of their widths exceeds the width of the strip
W . Therefore, we introduced a special cut to avoid this situation for which a constraint of the
initial problem is violated.

Let S be the real solution violated and V = {i | yi = 0 in S}. We have
∑

i∈Vwi > W . We
apply for the items of this set V a cut of the same type of the first one with fictitious weights
equal to 1 (Section 3.3). Obviously, we do not use the bound of Eastman but the generalized
SPT mentioned previously. Let SPT(V) be the value of this bound calculated for the set V.
The following constraint is a valid cut:

∑
i∈V
wi

(
yi + hi

) ≥ SPT(V). (3.15)

We observed that, in some solutions, items overlap on the other sides of the strip.
Using the same approach, we can see that this cut can be immediately generalized for the
items on the top, on the right edge, and the left edge of the strip.

3.10. Valid Constraints Based on Precedence Considerations

For all j ≤ n, the following relations hold due to the precedence considerations:

yj ≥
i=n∑

i=1∩i /= j

hiwibi,j

W
,

xj ≥
i=n∑

i=1∩i /= j

hiwili,j

Hh
,

yj + hj ≤ HH −
i=n∑

i=1∩i /= j

hiwibj,i

W
,

xj +wj ≤W −
i=n∑

i=1∩i /= j

hiwilj,i

Hh
.

(3.16)

4. Upper Bounds for the 2SP Problem

4.1. The Two-Dimensional Level Algorithms

Many papers proposed approximation algorithms for 2D Strip Packing Problem, but few of
them consider the guillotine constraint, citing from this category: Fernandez de la Vega and
Zissimopoulos [5], Lesh et al. [6], Kenyon and Rémila [7], Zhang et al. [8], and Cui et al. [13]

To maintain this constraint, most of the proposed approaches are level algorithms,
that is, the strip packing is obtained by placing the items, from left to right, in rows forming
levels. The set of items is sorted in decreasing order of their heights. The first item packed
in the bottom-left of the strip initializes the first level. The remaining items are packed in the

10 Advances in Operations Research

yi

yp

xi xp

Ri

P

(a) The item is located in the right side of
Ri

yi

yp

xi xp

Ri

P

(b) The item is located in the left side of
Ri

Figure 2: Updating the set of available rectangles in NSHF.

initialized levels according to the used strategy (Best Fit (BFDH), First Fit (FFDH), Next Fit
(NFDH), etc.). If no initialized level can contain the current item, a new level is initialized.

4.2. The Best Shelf Heuristic Filling (BSHF)

The Shelf Heuristic Filling (SHF) algorithm was proposed previously by Ben Messaoud et
al. [23]. It is a generalization of the two-dimensional level algorithms (for more details about
level algorithms like Floor Ceiling, see Lodi et al. [24]).

The main idea of SHF algorithm is to exploit the nonused area in each shelf. It makes
it possible to pack items one over the other in the same shelf, which is not permitted in
the level algorithms. This packing is achieved by respecting the guillotine constraint. For
this purpose, SHF uses the definition of the available rectangle: the rectangle which has its
bottom left corner as an available point. The available point can be the down-right or the top-
left corner of an item already packed. Items are sorted in nonincreasing order of heights.
The first item (the tallest one) is packed into the first available rectangle (the lowest). The
leftmost item initializes a shelf with a height equal to the height of this item. After every
item-packing, the set of available rectangles is updated in order to maintain the guillotine
constraint. The updating consists in reducing the dimensions of available rectangles which
overlap with the packed items. The item-packing creates two new available rectangles. This
procedure is repeated until the last item is packed.

In Bekrar et al. [14], we proposed some strategies to improve the SHF algorithm. We
called this new heuristic BSHF (Best SHF). We tested different rules of sorting items. We used
the Best Fit rule to pack items, and we proposed a new way to update the list of available
rectangles. The Best Fit rule consists in packing items in the available rectangle that minimizes
the unused surface. This algorithm gives good results on large instances in few seconds. The
average waste rate is estimated at 9%.

4.3. A New Heuristic for Solving the 2D Strip Packing Problem

In this subsection we present a new heuristic that is able to solve approximately the 2SP
problem with guillotine cuts. Unlike previous heuristics (BSHF and BFDH), the items are not
packed according to levels.

Advances in Operations Research 11

The items are sorted in different orders (decreasing heights, decreasing widths,
decreasing areas).

The items are then packed in available rectangle as it is done in BSHF. However,
the set of available rectangles is not updated in the same manner. When the current item
can fill in an available rectangle, we check if the obtained pattern is guillotine using the
procedure proposed by Ben Messaoud et al. [23]. If this pattern is guillotine, then the packing
is validated and the next item is treated; otherwise, we try with another available rectangle.

During the packing, no shelf is created, hence the name of the algorithm: Nonshelf
Heuristic Filling. The heuristic is adapted to the two-dimensional bin packing problem; when
the current item cannot be packed in the open bins, a new bin is initialized.

The updating procedure in the BSHF heuristic aims to maintain the guillotine property
of the patterns. In the NSHF heuristic, the updating procedure aims to correct the dimension
of the available rectangles that are overlapping with the packed item.

Let Ri(xi, yi,wi, hi) be an available rectangle that has a width wi and a height hi and
position (xi, yi). The bottom-left point coordinates of Ri are xi and yi. Let an item p with a
width wp and a height hp be packed in the position (xp, yp). We distinguish two possibilities.

(1) Case 1. xp ≥ xi, the item p is located in the right side of Ri. If p overlaps with Ri, (i.e.,
yp + hp > yi) then the width of Ri is reduced (Figure 2(a)): Ri(xi, yi, xp − xi, hi).

(2) Case 2. xp ≤ xi, the item p is located in the left side of Ri. If p overlaps with Ri (i.e.,
xp +wp > xi), then the height of Ri is reduced (Figure 2(b)): Ri(xi, yi,wi, yp − yi).

5. The Dichotomic Algorithm

In this section we present an exact method to solve the problem to optimality. The principle
of this method was introduced first by Hifi [12]. Its effectiveness has been shown on other
packing problems.

The algorithm starts by computing the lower bound LB using the cutting plane
method described in Section 3. An upper bound, UB, is then computed by the heuristic BSHF
and NSHF described in Section 4. If the upper bound is equal to the lower bound, then this is
the optimal solution. If it is not the case, we search the optimal length included in the interval
[LB,UB] for which the items can be packed.

To reduce the search space, we use a dichotomic search. The Dichotomic Algorithm is
sketched in Algorithm 1. The principle of this method was exploited in a previous work of
Bekrar et al. [14].

When a height S is chosen from the interval [LB,UB], a decision problem is generated:
could the set of items be packed in the bin of width W and height S? The problem of
determining if a set of rectangles can be packed in a larger rectangle of fixed size is well
known as the two-dimensional orthogonal packing problem (2OPP).

Several papers were interested in this problem. Fekete et al. [25] proposed an exact
algorithm based on the graph theory. Clautiaux et al. [26, 27] proposed two approaches
to solve 2OPP to optimality. The first one is a two-step algorithm where they determined
the x-coordinates of items in the first step, then they checked the feasibility of the obtained
configurations in the second step Clautiaux et al. [26]. In Clautiaux et al. [27], they used
another approach based on constraint programming. The constraint programming approach
was also used by Pisinger and Sigurd [18].

12 Advances in Operations Research

input: n: number of items;
listP : list of items with their dimensions;
W : the width of the strip;
TL: the limit of the algorithm running time;
output: H, the optimal height to pack all items

1//Functions;
2UBF(n, listP, W) : the function computing the upper bounds;
3LBF(n, listP, W) : the function computing the lower bounds;
4OPP(n, S, W1, H1) : this procedure returns TRUE if the set of items S can be packed in

a bin of width W1 and height H1;
5//initialization;
6LB := LBF(n, listP,W);
7UB := UBF(n, listP,W);
8if(LB == UB)then
9 Return LB; STOP;
10else
11 if OPP (n, listP, W, LB) ==TRUEthen
12 Return LB; STOP;
13 else
14 while((LB < UB) and (Time < TL))do
15 if(UB − LB == 1)then
16 Return UB; STOP;
17 else
18 S := �(UB + LB)/2�;
19 if OPP (n, listP, W, S) == TRUEthen
20 UB := S;
21 else
22 LB := S;

Algorithm 1: Dichotomic Algorithm (Bekrar et al. [14]).

We choose to use the last approach in our algorithm, because it maintains the
guillotine constraint, and we have experimentally checked that it has less computational
time.

The (2OPP) is solved by a constraint satisfaction program (CSP). Constraint
Satisfaction Programming (CSP) is a field of Artificial Intelligence that looks to solve
problems modeled by a set of constraints imposed on a finite set of variables. The set of
variables is defined in a domain: a finite set of values for each variable. A solution to CSP is a
complete assignment of variables satisfying all the constraints.

For each pair of items i, j the domain Mij is associated. Mij = {left, right,
below, above} determines the possible relative placements among which we should choose
at least one. rij is the variable that determines the position of item i according to the position
of item j. The different relations between items can be defined as

rij ∈Mij, i, j ∈ {1, . . . , n}, i/= j,
rij = left ⇒ xi +wi ≤ xj , i, j ∈ {1, . . . , n}, i/= j,
rij = right ⇒ xj +wj ≤ xi, i, j ∈ {1, . . . , n}, i/= j,
rij = below ⇒ yi + hi ≤ yj , i, j ∈ {1, . . . , n}, i/= j,
rij = above ⇒ yj + hj ≤ yi, i, j ∈ {1, . . . , n}, i/= j,
0 ≤ xi ≤W −wi, i ∈ {1, . . . , n},
0≤ yi ≤ H − hi, i ∈ {1, . . . , n}.
Initially all relations rij are set to undefined.

Advances in Operations Research 13

Table 1: Comparison of BSHF and NSHF heuristics and literature heuristics.

Name n W LB BestH
BestH
LB

BFDH
BFDH

LB
XSHF

XSHF

LB

SCPL1 110 425 49 57 1.16 62 1.26 54 1.10
SCPL2 120 127 127 165 1.29 170 1.33 154 1.21
SCPL3 84 225 156 181 1.16 182 1.16 178 1.14
SCPL4 102 356 59 67 1.13 77 1.30 67 1.13
SCPL5 102 165 129 147 1.14 148 1.14 140 1.08
SCPL6 56 657 19 24 1.26 28 1.47 22 1.15
SCPL7 139 357 121 126 1.04 197 1.62 135 1.11
SCPL8 156 475 64 77 1.20 78 1.21 71 1.10
SCPL9 117 175 90 102 1.13 99 1.10 99 1.10
Average 90.44 105.11 1.17 115.66 1.29 102.22 1.12

In each iteration of the algorithm, two rectangles i and j are considered, and a value is
assigned to rij fromMij . It is then checked whether a feasible assignment of coordinates exists
by respecting the current relations rij . If the coordinate check fails, the algorithm backtracks.
Otherwise a recursive call is done.

6. Computational Results

To evaluate the proposed algorithms, we compare them to some literature algorithms. The
heuristics NSHF and BSHF are compared to the best of the algorithm proposed by Hifi
[28] and BFDH heuristic (Chung et al. [1]). The dichotomic algorithm is compared with the
branch and bound of Bekrar et al. [16] and the algorithm of Hifi [12].

All our algorithms were coded in C++ and tested on a Pentium Xeon with 2.7 GHz of
RAM.

6.1. Computational Results for Heuristics

We test our heuristics BSHF and NSHF to literature heuristics. Hifi [12] proposed four
heuristics: FIA, SIA, HC/FIA, and HC/SIA. We compare the best values of those algorithms
to our heuristics on the large instances studied by Hifi [12].

In Table 1, we present the results. The following information is given:

(i) n and W : respectively, the number of items and the strip width,

(ii) LB: the value of the linear lower bound,

(iii) BestH : the best value obtained by Hifi’s heuristics (FIA, SIA, HC/FIA, HC/SIA),

(iv) XSHF: the best value obtained by our heuristics NSHF and BSHF

(v) BFDH: results of BFDH heuristic, and

(vi) A/LB: the ratio of each heuristic by the lower bound (A represents the value of
solution obtained by the heuristic).

As we can see in Table 1, our algorithms allow to obtain satisfactory solutions on the tested
instances. It improves generally the existing solutions. Note that Hifi’s algorithm remains the
best for instance (SCPL7). This confirms the interest of our heuristics.

14 Advances in Operations Research

6.2. Computational Results on Hifi’s Instances

The first tests are carried out on the instances of Hifi [12]. The dichotomic algorithm is
compared to the branch and bound of Bekrar et al. [14] and to the best-first search MVB
algorithm of Hifi [12]. The 25 instances are of various sizes and are available at http://www
.laria.u-picardie.fr/hifi/OR-Benchmark/Strip-cutting/Strip-cutting.html.

In Table 2, we give for each problem instance the following:

(i) the width W of the strip and the number of items n,

(ii) values of upper bound UB and lower bound LB computed by the methods
described previously,

(iii) values of lower bound Lmin computed by Hifi [12],

(iv) values of the optimal solution OPT , and

(v) the computational time of Hifi [12] Th, that of our branch and bound Tb, and that of
the dichotomic algorithm TDich (in seconds).

Note that we carry out our algorithms for one hour, and if the optimal solution was not
found (marked by “—”), we take the best solution found. Table 2 shows that the dichotomic
algorithm could optimally solve all the tested instances of Hifi [12] and outperform our
previous branch-and-bound algorithm in computational time, and on only few instances
from 25 the dichotomic algorithm was not better. Note that Hifi used a Sparc-Server20
(module 712 MP) to test his algorithm. For this reason, it is not possible to make a reliable
comparison in terms of the computation time. However, we prefer to report these results for
information completeness.

6.3. Computational Results on Martello’s Instances

The second tests were carried out on a series of instances from literature. All instances are
available at http://www.or.deis.unibo.it/research.html.

We compare the dichotomic algorithm to the branch and bound of Bekrar et al. [14].
For each problem, Table 3 gives the following information:

(i) problem name and values of n and W ,

(ii) values of the our lower bound LB and values of the upper bound UB,

(iii) values of lower bound Lmmv2 computed by Martello et al. [4],

(iv) values of the solutions: branch and bound (SB&B) and dichotomic algorithm (SDich),
and

(v) the computation time of the branch and bound TB&B and that of the dichotomic
algorithm TDich (in seconds).

As we can see in Table 3, the dichotomic algorithm often outperforms the Branch and
Bound both in the number of solved instances and in the computation time.

6.4. Computational Results on Randomly Instances

To further analyze the performance of the algorithms, we compare the branch-and-bound
method and the dichotomic algorithm on instances randomly generated. We adapt the classes

Advances in Operations Research 15

Table 2: Results of exact algorithms on Hifi’s instances.

Name n W Lmin LB UB OPT TDich Th Tb

SCP1 10 5 13 13 13 13 <0.01 <0.1 <0.01
SCP2 11 4 40 40 40 40 <0.01 1.2 <0.01
SCP3 15 6 14 14 19 14 403.83 19.4 47.07
SCP4 11 6 19 20 22 20 41.22 4.1 8.75
SCP5 8 20 20 20 20 20 <0.01 0.1 <0.01
SCP6 7 30 32 38 38 38 <0.01 3.4 <0.01
SCP7 8 15 12 13 15 14 0.03 1.4 0.23
SCP8 12 15 17 17 20 17 10.45 2.3 9.57
SCP9 12 27 68 68 69 68 0.01 0.1 0.14
SCP10 8 50 80 79 80 80 0.01 0.5 0.12
SCP11 10 27 47 47 49 48 0.12 0.7 14.89
SCP12 18 81 34 34 38 34 0.01 2.7 —
SCP13 7 70 42 50 56 50 0.1 16.8 2.38
SCP14 10 100 63 63 83 69 126.65 48.7 27.57
SCP15 14 45 34 34 35 34 445.94 165.7 —
SCP16 14 6 32 33 35 33 201.83 181.4 —
SCP17 9 42 34 39 39 39 <0.01 323.6 <0.01
SCP18 10 70 90 91 104 101 14.74 327.8 36.43
SCP19 12 5 25 26 26 26 <0.01 473.0 <0.01
SCP20 10 15 19 20 22 21 0.69 673.9 42.73
SCP21 11 30 135 135 145 145 12.34 2001.8 654.31
SCP22 22 90 34 34 43 34 1597.91 757.8 —
SCP23 12 15 28 33 35 35 10.03 1031.9 401.97
SCP24 10 50 105 105 123 114 5.26 5585.7 329.34
SCP25 15 25 36 36 41 36 116.11 2662.9 —

of instances proposed by Berkey and Wang [2] and Martello and Vigo [24] for the two-
dimensional bin packing problem to the strip packing problem. These instances consist of
ten classes of problems. For each class, there are 40 instances: 10 with 10 rectangles, 10 with
15 rectangles, 10 with 20 rectangles, and 10 with 25 rectangles. The first six classes have been
proposed by Berkey and Wang [2]:

j = 1, . . . , n. n = 10, 15, 20, 25,
Class I: wj and hjuniformly random in [1, 10], W = 10;
Class II: wj and hjuniformly random in [1, 10], W = 30;
Class III: wj and hjuniformly random in [1, 35], W = 40;
Class IV: wj and hjuniformly random in [1, 35], W = 100;
Class V: wj and hjuniformly random in [1, 100], W = 100;
Class VI: wj and hjuniformly random in [1, 100], W = 300.

The remainder four classes were inspired from Martello and Vigo [24]. The items are
classified into four types:

Type 1: wj uniformly random in [2/3W,W], hj uniformly random in[1,W/2];
Type 2: wj uniformly random in [1,W/2], hj uniformly random in[2/3W,W];
Type 3: wj uniformly random in [W/2,W], hj uniformly random in[W/2, W];
Type 4: wj uniformly random in [1,W/2], hj uniformly random in [1,W/2].

16 Advances in Operations Research

Table 3: Results of exact algorithms on literature instances.

Name n W Lmmv2 LB UB SDich SB&B TDich TB&B

ht1 16 20 20 20 20 20 20 0.01 <0.01
ht2 17 20 20 20 23 20 20 67.45 TL
ht3 16 20 20 20 25 20 20 197.53 353.10
ht4 25 40 15 15 17 15 15 874.05 TL
ht5 25 40 15 15 16 15 15 571.65 TL
ht6 25 40 15 15 15 15 15 0.00 <0.01
ht7 28 60 30 30 33 31 33 2045.34 TL
ht8 29 60 30 31 36 32 34 2101.33 TL
ht9 28 60 30 30 30 30 30 0.00 <0.00
cgcut1 16 10 23 23 25 23 23 323.54 TL
cgcut2 23 70 63 64 82 67 72 2012.24 TL
cgcut3 62 70 636 637 714 647 676 TL TL
gcut1 10 250 1016 1016 1016 1016 1016 0.00 <0.00
gcut2 20 250 1133 1133 1349 1284 1349 TL TL
gcut3 30 250 1803 1803 1810 1810 1810 TL TL
gcut4 50 250 2934 2934 3214 2956 3214 TL TL
ngcut1 10 10 23 21 23 23 23 16.73 2.58
ngcut2 17 10 30 30 31 30 30 1112.61 TL
ngcut3 21 10 28 28 33 29 29 724.31 TL
ngcut4 7 10 20 17 20 20 20 0.10 0.01
ngcut5 14 10 36 36 37 36 36 120.12 0.01
ngcut6 15 10 31 30 36 31 31 1091.33 TL
ngcut7 8 20 20 20 20 20 20 0.00 <0.00
ngcut8 13 20 33 32 38 33 33 188.64 TL
ngcut9 18 20 49 49 59 51 53 1531.20 TL
ngcut10 13 30 80 58 80 80 80 970.02 TL
ngcut11 15 30 52 50 60 52 52 55.84 TL
ngcut12 22 30 87 87 96 87 87 21.04 TL
beng1 20 25 30 30 35 30 30 608.41 TL
beng2 40 25 57 58 60 59 60 TL TL
beng3 60 25 84 85 89 88 89 TL TL
beng4 80 25 107 108 112 111 112 TL TL
beng5 100 25 134 134 138 138 138 TL TL
beng6 40 40 36 37 39 38 39 3152.27 TL
beng7 80 40 67 67 72 70 72 TL TL
beng8 120 40 101 101 108 108 108 TL TL
beng9 160 40 126 126 130 130 130 TL TL
beng10 200 40 156 156 158 158 158 TL TL

The strip widths are equal to 100 for all these classes, while the items are as follows:
Class VII: type 1with probability of 70%, type 2, 3, 4 with probability of 10% each;
Class VIII: type 2with probability of 70%, type 1, 3, 4 with probability of 10% each;
Class IX: type 3with probability of 70%, type 1, 2, 4 with probability of 10% each;
Class X: type 4with probability of 70%, type 1, 2, 3 with probability of 10% each.

Advances in Operations Research 17

Table 4: Results obtained by dichotomic and branch-and-bound algorithms on random instances.

Problem Bound Dichotomic B&B
Class W n LB UB SDich #Opt T(sec) Sbb #Opt T (sec)

I 10

10 35.50 36 35.50 10 0.01 35.50 10 112.32
15 45.90 49.10 46.90 10 221.60 46.70 9 999.67
20 63.50 66.70 65 10 1112.25 65.70 6 2151.81
25 82.10 84.80 84 10 1758.08 85 3 1854.33

Avg 56.86 59.15 57.88 10.00 772.99 58.23 7 1279.53

II 30

10 10.20 11.30 10.70 10 0.01 10.70 10 301.21
15 16.40 19.40 17.10 10 137.78 18.30 5 1267.74
20 19.60 21.70 20.80 10 612.82 20.90 3 2921.28
25 26.90 29.40 28.20 10 955.14 29.30 3 2663.98

Avg 18.28 20.45 19.20 10.00 426.44 19.80 5.25 1788.55

III 40

10 31.90 34.90 33.80 10 0.07 34.40 10 516.54
15 147 153.60 147.50 10 171.80 149.30 5 1592.42
20 169 176.20 172.80 10 810.37 175.40 4 3004.14
25 220.20 232.60 227.20 8 1008.53 232 2 1518.21

Avg 142.03 149.33 145.33 9.50 497.69 147.78 5.25 1657.83

IV 100

10 37 41.70 40.80 10 1.01 40.80 10 960.26
15 49.40 59.90 54.50 10 465.60 55.50 4 968.76
20 60.80 67.60 63.60 10 854.63 68.20 4 1975.87
25 84.60 98.80 90.60 6 937.73 97.20 4 2980.43

Avg 57.95 67.00 62.38 9.00 564.74 65.43 3600 5.50 2381.27

V 100

10 320.92 330 321.40 10 1.98 321.40 10 111.04
15 403.50 434.40 419.50 10 319.54 421.50 5 812.22
20 569.90 593.00 581.10 8 1213.28 583 5 722.19
25 624.17 694.67 665 1 3489.31 689.17 0 3600

Avg 478.37 513.02 496.75 7.25 1256.03 503.77 5 1311.36

V I 300

10 108.10 122.70 118.30 10 0.17 118.30 10 429.45
15 121.20 144.10 128.60 10 231.44 136.70 2 2512.21
20 168.03 195.80 179.20 9 2012.20 193.50 1 3600
25 220 261.60 248 1 3512.89 250.10 1 2851.1

Avg 154.33 181.05 168.53 7.50 1439.17 174.65 3.50 2348.19

V II 100

10 337.30 338.70 338.40 10 3.56 338.40 10 5
15 532 532.20 532.10 10 2.20 542.30 10 3.6
20 731.30 738.10 738.10 10 466.15 738.10 10 332.8
25 707.70 715.20 714.60 6 1735.13 710.80 7 1342.76

Avg 577.08 581.05 580.80 9.00 551.76 582.40 9.25 421.04

V III 100

10 247.10 285.50 267.60 10 2.94 263.90 10 752.9
15 396.32 435.10 421.80 10 1153.48 433.10 6 2821.2
20 507.50 571.75 559 7 3086.11 561.50 2 3600
25 635.17 771 693.67 6 3475.83 701.70 1 1880.4

Avg 446.52 485.52 485.52 8.25 1929.59 490.05 4.75 2263.63

IX 100

10 543.70 544.50 543.70 10 0.54 543.70 10 30.7
15 871.20 871.20 871.20 10 0.10 871.20 10 59.8
20 1155.50 1159.80 1155.50 10 0.01 1159.70 9 432.3
25 1476.90 1479 1477 10 0.26 1479 8 754.1

Avg 1011.83 1013.65 1011.85 10.00 0.23 1013.40 9.25 319.23

18 Advances in Operations Research

Table 4: Continued.

Problem Bound Dichotomic B&B
Class W n LB UB SDich #Opt T(sec) Sbb #Opt T (sec)

X 100

10 163.40 174.90 170.60 10 0.12 170.5 10 343.2
15 253.01 268.90 258.50 10 243.07 265.10 4 2500.3
20 345.60 378.40 365.10 10 1637.05 375 4 2871.2
25 388.22 416 408.89 5 2581.66 419.67 1 3600

Avg 287.56 309.55 300.77 8.75 1115.47 307.57 4.75 2328.68

In Table 3, we present the results obtained by testing the two algorithms on random
generated instances (TL denotes the time limit). For each 10 instances, we present the average
values of

(i) LB: lower bound,

(ii) UB: upper bound,

(iii) SDich and Sbb: the best solution obtained by each algorithm. Each run instance was
carried out for 3600 seconds (if no optimal solution was achieved, we take the best
one),

(iv) #Opt: the number of found optimum, and

(v) T: the average time spent for solving the instance.

The results shown in Table 4 confirm the results obtained previously. The dichotomic
algorithm outperforms the branch-and-bound method in the number of optimal solutions
found and in the average time to compute a solution.

7. Concluding Remarks

In this paper we considered the strip packing problem under the guillotine constraint. The
main contribution consists in the elaboration of new tight lower and upper bounds. The
upper bounds are based on new rules for solving the problem under the above constraint. The
lower bounds are based on a linear formulation using a set of various valid inequalities with
a connection to scheduling on parallel machines. Such bounds were very useful to build an
efficient dichotomic method which we compared to an existing branch-and-bound method.
Based on the experimental results, several concluding remarks are worthy to note.

On the instances of Hifi our dichotomic algorithm was able to solve all the instances
generally in a shorter computation time compared to our previous branch-and-bound
method. Indeed, for the same instances our previous branch-and-bound algorithm cannot
solve 5 instances of them. The dichotomic algorithm was faster in 16 instances among
the 25, where the branch-and-bound algorithm was more efficient only on a few instances
(four instances). These results show the effectiveness of the introduction of the new valid
inequalities and the new heuristics for computing the bounds. Moreover, our heuristics allow
to improve the existing approximate solutions for several instances of the studied benchmark.

For the instances introduced by Martello et al. [4] the same observation remains valid.
Here, one can note that the average gap between the solution obtained by the dichotomic
algorithm and the lower bound is estimated to 1.5%, which represents a good performance
on the various and difficult instances.

Advances in Operations Research 19

Finally, the performance of the dichotomic algorithm is confirmed on the random
instances. Such an algorithm is more effective and rapid for solving some instances to
optimality. In average, this algorithm yielded an optimal solution for 9 instances on 10, where
the branch-and-bound algorithm solves only 6 instances on 10.

As for the bin packing problem, the instances of classes V, VI, and VIII were the most
difficult to solve. For example, for Class VI, with 25 items the two algorithms were not able
to solve more than only one instance on the 10 generated. The other classes are easier since
our dichotomic algorithm yielded generally the optimal solution (classes I, II, III, IX) within a
short computation time (less than 10 minutes in average). The branch-and-bound algorithm
needs more time, and it is less effective to solve optimally the problem (6.6 on 10). The
easiness of these instances can be explained by the fact that they are constituted of many
small items, which enables the algorithms to compute tight bounds. The classes IX and X are
composed of 70% of items having widths greater than the half of the bin width. The bounds
computed for this type of instances are very tight. Indeed, the introduction of the inequalities
concerning the high and large items (inequalities in Section 3.7) allowed us to obtain a good
performance.

As future research, we aim to extend our approach to other variants of packing
problems.

Acknowledgments

This work has been carried out when the authors are with the University of Technology of
Troyes (Institue of Charles Delaunay). The research of the first author has been carried out
during a doctoral study funded by the Regional Council of Champagne-Ardenne.

References

[1] F. R. K. Chung, M. R. Garey, and D. S. Johnson, “On packing two-dimensional bins,” SIAM Journal on
Algebraic and Discrete Methods, vol. 3, no. 1, pp. 66–76, 1982.

[2] J. O. Berkey and P. Y. Wang, “Two-dimensional finite bin-packing algorithms,” Journal of the
Operational Research Society, vol. 38, no. 5, pp. 423–429, 1987.

[3] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness,
W. H. Freeman, San Francisco, Calif, USA, 1979.

[4] S. Martello, M. Monaci, and D. Vigo, “An exact approach to the strip-packing problem,” INFORMS
Journal on Computing, vol. 15, no. 3, pp. 310–319, 2003.

[5] W. Fernandez de La Vega and V. Zissimopoulos, “An approximation scheme for strip packing of
rectangles with bounded dimensions,” Discrete Applied Mathematics, vol. 82, no. 1–3, pp. 93–101, 1998.

[6] N. Lesh, J. Marks, A. McMahon, and M. Mitzenmacher, “Exhaustive approaches to 2D rectangular
perfect packings,” Information Processing Letters, vol. 90, no. 1, pp. 7–14, 2004.

[7] C. Kenyon and E. Rémila, “Approximate strip packing,” in Proceedings of the 37th Annual Symposium
on Foundations of Computer Science (FOCS ’96), pp. 31–36, Burlington, Vt, USA, October 1996.

[8] D. Zhang, Y. Kang, and A. Deng, “A new heuristic recursive algorithm for the strip rectangular
packing problem,” Computers & Operations Research, vol. 33, no. 8, pp. 2209–2217, 2006.

[9] A. Bortfeldt, “A genetic algorithm for the two-dimensional strip packing problem with rectangular
pieces,” European Journal of Operational Research, vol. 172, no. 3, pp. 814–837, 2006.

[10] J. D. Beltran, J. E. Calderon, R. J. Cabrera, J. A. Moreno Perez, and J. M. Moreno-Vega, “GRASP/VNS
hybrid for the strip packing problem,” in Proceedings of the 1st International Workshop on Hybrid
Metaheuristics (HM ’04), pp. 79–90, Valencia, Spain, August 2004.

[11] E. Hopper and B. C. H. Turton, “A review of the application of meta-heuristic algorithms to 2D strip
packing problems,” Artificial Intelligence Review, vol. 16, no. 4, pp. 257–300, 2001.

20 Advances in Operations Research

[12] M. Hifi, “Exact algorithms for the guillotine strip cutting/packing problem,” Computers & Operations
Research, vol. 25, no. 11, pp. 925–940, 1998.

[13] Y. Cui, Y. Yang, X. Cheng, and P. Song, “A recursive branch-and-bound algorithm for the rectangular
guillotine strip packing problem,” Computers & Operations Research, vol. 35, no. 4, pp. 1281–1291, 2008.

[14] A. Bekrar, I. Kacem, and C. Chu, “A comparative study of exact algorithms for the two dimensional
strip packing problem,” Journal of Industrial and Systems Engineering, vol. 1, no. 2, pp. 151–170, 2007.

[15] G. F. Cintra, F. K. Miyazawa, Y. Wakabayashi, and E. C. Xavier, “Algorithms for two-dimensional
cutting stock and strip packing problems using dynamic programming and column generation,”
European Journal of Operational Research, vol. 191, no. 1, pp. 61–85, 2008.

[16] A. Bekrar, I. Kacem, C. Chu, and C. Sadfi, “A branch and bound algorithm for solving the 2D strip
packing problem,” to apprear in International Journal of Production Development .

[17] S. Martello and P. Toth, “Lower bounds and reduction procedures for the bin packing problem,”
Discrete Applied Mathematics, vol. 28, no. 1, pp. 59–70, 1990.

[18] D. Pisinger and M. Sigurd, “The two-dimensional bin packing problem with variable bin sizes and
costs,” Discrete Optimization, vol. 2, no. 2, pp. 154–167, 2005.

[19] H. Onodera, Y. Taniguchi, and K. Tamaru, “Branch-and-bound placement for building block layout,”
in Proceedings of the 28th Conference on ACM/IEEE Design Automation Conference, pp. 433–439, San
Francisco, Calif, USA, June 1991.

[20] C. S. Chen, S. M. Lee, and Q. S. Shen, “An analytical model for the container loading problem,”
European Journal of Operational Research, vol. 80, no. 1, pp. 68–76, 1995.

[21] I. Kacem, “Lower bounds for tardiness minimization on a single machine with family setup times,”
International Journal of Operations Research, vol. 4, no. 1, pp. 18–31, 2007.

[22] W. L. Eastman, S. Even, and I. M. Isaacs, “Bounds for the optimal scheduling of n jobs on m
processors,” Management Science, vol. 11, no. 2, pp. 268–279, 1964.

[23] S. Ben Messaoud, Caracterisation, modelisation et algorithmes pour des problemes de decoupe guillotine,
Ph.D. thesis, Universite de Technologie de Troyes, Troyes, France, 2004.

[24] A. Lodi, S. Martello, and D. Vigo, “Models and bounds for two-dimensional level packing problems,”
Journal of Combinatorial Optimization, vol. 8, no. 3, pp. 363–379, 2004.

[25] S. P. Fekete, J. Schepers, and J. C. van der Veen, “An exact algorithm for higher-dimensional
orthogonal packing,” Operations Research, vol. 55, no. 3, pp. 569–587, 2007.

[26] F. Clautiaux, J. Carlier, and A. Moukrim, “A new exact method for the two-dimensional orthogonal
packing problem,” European Journal of Operational Research, vol. 183, no. 3, pp. 1196–1211, 2007.

[27] F. Clautiaux, A. Jouglet, J. Carlier, and A. Moukrim, “A new constraint programming approach for
the orthogonal packing problem,” Computers & Operations Research, vol. 35, no. 3, pp. 944–959, 2008.

[28] M. Hifi, “The strip cutting/packing problem: incremental substrip algorithms-based heuristics,”
Pesquisa Operacional, vol. 19, no. 2, pp. 169–188, 1999.

