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This paper deals with a Neumann boundary value problem for a Keller-Segel model with a cubic source term in a d-dimensional
box (𝑑 = 1, 2, 3), which describes the movement of cells in response to the presence of a chemical signal substance. It is proved that,
given any general perturbation of magnitude 𝛿, its nonlinear evolution is dominated by the corresponding linear dynamics along a
finite number of fixed fastest growingmodes, over a time period of the order ln(1/𝛿). Each initial perturbation certainly can behave
drastically differently from another, which gives rise to the richness of patterns. Our results provide a mathematical description for
early pattern formation in the model.

1. Introduction

Keller and Segel in their pioneering work [1] proposed the
following model

𝑈
𝑡
= ∇ (𝐷

𝑢
∇𝑈 − 𝜒𝑈∇𝑉) ,

𝑉
𝑡
= 𝐷

𝑣
∇
2
𝑉 + 𝛼𝑈 − 𝛽𝑉,

(1)

where 𝑈(𝑥, 𝑡) is cell density, 𝑉(𝑥, 𝑡) is chemoattractant con-
centration, 𝐷

𝑢
is the amoeboid motility, 𝜒 is the chemotac-

tic sensitivity, 𝐷
𝑣
is the diffusion rate of cyclic adenosine

monophosphate (cAMP), 𝛼 is the rate of cAMP secretion per
unit density of amoebae, and 𝛽 is the rate of degradation
of cAMP in environment. Keller and Segel wanted to model
the chemotactic movement of the cellular slime mold Dic-
tyostelium discoideum during its aggregation phase, where
population growth does not occur.Therefore, they considered
a population in the absence of “death” and “birth.” For some
main results on the Keller-Segel model, please see [2–4] and
references therein.

Recently, Guo and Hwang in [5] investigated the non-
linear dynamics near an unstable constant equilibrium of
the Keller-Segel model satisfying the Neumann boundary

conditions for 𝑈(𝑥, 𝑡) and 𝑉(𝑥, 𝑡) on a 𝑑-dimensional box
T𝑑 = (0, 𝜋)

𝑑
(𝑑 = 1, 2, 3); that is,

𝜕𝑈

𝜕𝑥
𝑖

=
𝜕𝑉

𝜕𝑥
𝑖

= 0, at 𝑥
𝑖
= 0, 𝜋, for 1 ≤ 𝑖 ≤ 𝑑. (2)

Let [𝑈, 𝑉] be the uniform constant solution of the Keller-
Segel model, and 𝑢(𝑥, 𝑡) = 𝑈(𝑥, 𝑡) − 𝑈, 𝑣(𝑥, 𝑡) = 𝑉(𝑥, 𝑡) − 𝑉.
Then [𝑢, 𝑣] satisfies the equivalent Keller-Segel system below:

𝑢
𝑡
= 𝐷

𝑢
∇
2
𝑢 − 𝜒𝑈∇

2
𝑣 − 𝜒∇ (𝑢∇𝑣) ,

𝑣
𝑡
= 𝐷

𝑣
∇
2
𝑣 + 𝛼𝑢 − 𝛽𝑣.

(3)

Guo and Hwang proved that linear fastest growing modes
determine unstable patterns for the above system.Their result
can be interpreted as a rigorous mathematical characteriza-
tion for early pattern formation in the Keller-Segel model.

In recent years, more and more attention has been given
to the Keller-Segel model with the reaction terms, that is, the
following chemotaxis-diffusion-growth model:

𝑈
𝑡
= ∇ (𝐷

𝑢
∇𝑈 − 𝜒𝑈∇𝑉) + 𝑓 (𝑈) ,

𝑉
𝑡
= 𝐷

𝑣
∇
2
𝑉 + 𝛼𝑈 − 𝛽𝑉.

(4)
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For 𝑓(𝑈) = 𝑟𝑈(1 − 𝑈/𝐾), Painter and Hillen [6] demon-
strated the capacity of the above model to self-organize
into multiple cellular aggregations which, according to its
position in parameter space, either form a stationary pattern
or undergo a sustained spatiotemporal sequence of merging
(two aggregations coalesce) and emerging (a new aggregation
appears). This spatiotemporal patterning can be further
subdivided into either a time-periodic or time-irregular
fashion. Numerical explorations into the latter indicate a
positive Lyapunov exponent (sensitive dependence to initial
conditions) together with a rich bifurcation structure. In
particular, they found stationary patterns that bifurcate onto
a path of periodic patterns which, prior to the onset of
spatiotemporal irregularity, undergo a “periodic-doubling”
sequence. Based on these results and comparisons with
other systems, they argued that the spatiotemporal irreg-
ularity observed here describes a form of spatiotemporal
chaos.

For 𝑓(𝑈) = 𝑟𝑈(1 −𝑈), Banerjee et al. [7] showed that the
dynamics of the chemotaxis-diffusion-growth model may
lead to steady states, to divergencies in a finite time, and to
the formation of spatiotemporal irregular patterns.The latter,
in particular, appears to be chaotic in part of the range of
bounded solutions, as demonstrated by the analysis ofwavelet
power spectra. Steady states are achieved with sufficiently
large values of the chemotactic coefficient 𝜒 and/or with
growth rate 𝑟 below a critical value 𝑟

𝑐
. For 𝑟 > 𝑟

𝑐
, the solutions

of the differential equations of the model diverge in a finite
time. They also reported on the pattern formation regime,
for different value of 𝜒, 𝑟 and of the diffusion coefficient 𝐷

𝑢
.

For the same 𝑓(𝑈), Kuto et al. [8] considered some qua-
litative behaviors of stationary solutions from global and
local (bifurcation) viewpoints. They studied the asymptotic
behavior of stationary solutions as the chemotactic intensity
grows to infinity and construct local bifurcation branches of
stripe and hexagonal stationary solutions in the special case
when the habitat domain is a rectangle. For this case, the
directions of the branches near the bifurcation points are also
obtained. Finally, they exhibited several numerical results for
the stationary and oscillating patterns.

In [9], Okuda and Osaki studied the chemotaxis-dif-
fusion-growthmodel with𝑓 = 𝑝𝑈(1−𝑈) + 𝑞𝑈(1−𝑈)(𝑈−𝜈)

in a rectangular domain by applying the center manifold
theory, where constant 𝜈 ∈ (0, 1) and either 𝑝 > 0, 𝑞 = 0,
or 𝑝 = 0, 𝑞 > 0. It is observed that the trivial solutions
are destabilized due to the chemotaxis term. They obtained
the normal form on the center manifold, and it is proved
that the locally asymptotically stable hexagonal patterns
exist.

Another extended formation of logistic source term is the
cubic source term 𝑓 = 𝑈(𝑏

1
+𝑏
2
𝑈−𝑏

3
𝑈2), where 𝑏

1
≥ 0 is the

intrinsic growth rate, the sign of 𝑏
2
is undetermined, 𝑏

3
> 0 is

a positive constant, and 𝑏
2
𝑈 − 𝑏

3
𝑈2 is the density restriction

term (see [10, 11] for more information and references).
Recently, Cao and Fu in [11] studied global existence and
convergence of solutions to a cross-diffusion cubic predator-
prey system with stage structure for the prey. In this paper,
we investigate dynamics of the chemotaxis-diffusion-growth

model with the source term 𝑓 = (𝑏
1
+ 𝑏

2
𝑈 − 𝑏

3
𝑈2)𝑈; that

is,

𝑈
𝑡
= ∇ (𝐷

𝑢
∇𝑈 − 𝜒𝑈∇𝑉)

+ (𝑏
1
+ 𝑏
2
𝑈 − 𝑏

3
𝑈
2
)𝑈,

𝑉
𝑡
= 𝐷

𝑣
∇
2
𝑉 + 𝛼𝑈 − 𝛽𝑉,

(5)

where 𝐷
𝑢
, 𝜒, 𝐷

𝑣
, 𝛼, and 𝛽 are positive constants and 𝑈(𝑥, 𝑡),

𝑉(𝑥, 𝑡) satisfies the Neumann boundary conditions. We will
prove that given any general perturbation of magnitude 𝛿,
its nonlinear evolution is dominated by the corresponding
linear dynamics along a fixed finite number of fastest growing
modes, over a time period of ln(1/𝛿). Each initial perturba-
tion certainly can behave drastically differently from another,
which gives rise to the richness of patterns. Our results
provide a mathematical description for early pattern forma-
tion in the model (5).

The organization of this paper is as follows: In Section 2,
we prove that the positive constant equilibrium solution of
(5) without chemotaxis is globally asymptotically stable if
𝑏
1
> 0. In Section 3, we investigate the growing modes of

(5). In Section 4, we present and prove the Bootstrap lemma.
In Section 5, given any general perturbation of magnitude
𝛿, we prove that its nonlinear evolution is dominated by the
corresponding linear dynamics along a fixed finite number of
fastest growing modes, over a time period of ln(1/𝛿).

2. Stability of Positive Equilibrium Point of
(5) without Chemotaxis

The corresponding semilinear system of (5) without chemo-
taxis is as follows:

𝑈
𝑡
= 𝐷

𝑢
∇
2
𝑈 + (𝑏

1
+ 𝑏
2
𝑈 − 𝑏

3
𝑈
2
)𝑈, 𝑥 ∈ T

𝑑
, 𝑡 > 0,

𝑉
𝑡
= 𝐷

𝑣
∇
2
𝑉 + 𝛼𝑈 − 𝛽𝑉, 𝑥 ∈ T

𝑑
, 𝑡 > 0,

𝜕𝑈

𝜕𝑥
𝑖

=
𝜕𝑉

𝜕𝑥
𝑖

= 0, 𝑥
𝑖
= 0, 𝜋, 1 ≤ 𝑖 ≤ 𝑑,

𝑈 (𝑥, 0) = 𝑈
0
(𝑥) ≥ 0,

𝑉 (𝑥, 0) = 𝑉
0
(𝑥) ≥ 0,

𝑥 ∈ T𝑑 (𝑑 = 1, 2, 3) .

(6)

Obviously, [𝑈, 𝑉] ≡ [(𝑏
2
+ √𝑏2

2
+ 4𝑏

1
𝑏
3
)/2𝑏

3
, 𝛼(𝑏

2
+

√𝑏2
2
+ 4𝑏

1
𝑏
3
)/2𝛽𝑏

3
] is a positive equilibrium point of (6) if

and only if either of the following two cases happens: (i) 𝑏
1
>

0, 𝑏
2
∈ R, (ii) 𝑏

1
= 0, 𝑏

2
> 0. In the following we will discuss

the stability of [𝑈, 𝑉] in (6).
Let 𝑊 = [𝑈,𝑉], 𝑊 = [𝑈,𝑉], and 0 = 𝜇

1
< 𝜇

2
<

𝜇
3
< ⋅ ⋅ ⋅ be the eigenvalues of the operator −Δ on T𝑑(𝑑 =

1, 2, 3) with the homogeneous Neumann boundary condi-
tion, and let 𝐸(𝜇

𝑖
) be the eigenspace corresponding to 𝜇

𝑖
in

𝐿2(T𝑑). Let 𝑋 = [𝐿2(T𝑑)]
2, {𝜙

𝑖𝑗
: 𝑗 = 1, . . . , dim𝐸(𝜇

𝑖
)} be an

orthonormal basis of 𝐸(𝜇
𝑖
), and𝑋

𝑖𝑗
= {c ⋅ 𝜙

𝑖𝑗
| c ∈ R2}. Then

𝑋 = ⊕
∞

𝑖=1
𝑋
𝑖
, 𝑋

𝑖
= ⊕

dim [𝐸(𝜇𝑖)]
𝑗=1

𝑋
𝑖𝑗
. (7)
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LetD = diag(𝐷
𝑢
, 𝐷
𝑣
) and L = DΔ + 𝐺

𝑊
(𝑊), where

𝐺
𝑊
(𝑊) = (

−3𝑏
3
𝑈
2

+ 2𝑏
2
𝑈 + 𝑏

1
0

𝛼 −𝛽
) . (8)

Then the linearization of (6) at [𝑈, 𝑉] is𝑊
𝑡
= L(𝑊 −𝑊).

For each 𝑖 ≥ 1, 𝑋
𝑖
is invariant under the operator L, and

𝜆 is an eigenvalue of L on 𝑋
𝑖
if and only if it is an eigenvalue

of the matrix

− 𝜇
𝑖
D + 𝐺

𝑊
(𝑊)

= (
−𝜇
𝑖
𝐷
𝑢
− 3𝑏

3
𝑈
2

+ 2𝑏
2
𝑈 + 𝑏

1
0

𝛼 −𝜇
𝑖
𝐷
𝑣
− 𝛽

) .

(9)

Notice that (𝑏
2
+ √𝑏2

2
+ 3𝑏

1
𝑏
3
)/3𝑏

3
is the positive root of

−3𝑏
3
𝑥2 + 2𝑏

2
𝑥 + 𝑏

1
= 0 and

𝑈 >
𝑏
2
+ √𝑏2

2
+ 3𝑏

1
𝑏
3

3𝑏
3

. (10)

Thus, −𝜇
𝑖
D + 𝐺

𝑊
(𝑊) has two negative eigenvalues −𝜇

𝑖
𝐷
𝑢
−

3𝑏
3
𝑈
2

+2𝑏
2
𝑈+𝑏

1
and −𝜇

𝑖
𝐷
𝑣
−𝛽. It follows from [12,Theorem

5.1.1] that [𝑈, 𝑉] is locally asymptotically stable.
Let [𝑈, 𝑉] be a unique nonnegative global solution of (6).

It is not hard to verify by the maximum principle that

0 ≤ 𝑈 ≤ max {𝑈, 󵄨󵄨󵄨󵄨𝑈0 (𝑥)
󵄨󵄨󵄨󵄨∞} ,

0 ≤ 𝑉 ≤ max {𝑉, 󵄨󵄨󵄨󵄨𝑉0 (𝑥)
󵄨󵄨󵄨󵄨∞} ,

∀𝑡 ≥ 0. (11)

Moreover, if𝑈
0
, 𝑉

0
≥ ( ̸≡ )0, then𝑈(𝑥, 𝑡) > 0,𝑉(𝑥, 𝑡) > 0, for

all 𝑡 > 0.
According to the main result in [13], we have

‖𝑈 (⋅, 𝑡)‖
𝐶
2,𝛼
(T
𝑑

)
≤ 𝐶,

‖𝑉 (⋅, 𝑡)‖
𝐶
2,𝛼
(T
𝑑

)
≤ 𝐶,

∀𝑡 ≥ 1. (12)

(i) If 𝑏
1
> 0, 𝑏

2
∈ R, then 𝑏

3
𝑈 − 𝑏

2
> 0. We define the

Lyapunov function

𝐸 (𝑡) = ∫
T𝑑
[𝑝 (𝑈 − 𝑈 − 𝑈 ln 𝑈

𝑈
) + (𝑉 − 𝑉)

2

] 𝑑𝑥, (13)

where 𝑝 = 2𝛼2/(𝛽(𝑏
3
𝑈 − 𝑏

2
)).

Calculating the derivative of 𝐸(𝑡) along positive solution
of (6) by integration by parts and the Cauchy inequality, we
have

𝑑𝐸 (𝑢, 𝑣)

𝑑𝑡

≤ −∫
T𝑑
{
𝑝𝐷

𝑢
𝑈

𝑈2
|∇𝑈|

2
+ 2𝐷

𝑣
|∇𝑉|

2
}𝑑𝑥

− ∫
T𝑑
{𝑝 (𝑏

3
𝑈 + 𝑏

3
𝑈 − 𝑏

2
) (𝑈 − 𝑈)

2

−2𝛼 (𝑈 − 𝑈) (𝑉 − 𝑉) + 2𝛽(𝑉 − 𝑉)
2

} 𝑑𝑥

≤ −∫
T𝑑
{𝑝 (𝑏

3
𝑈 − 𝑏

2
) (𝑈 − 𝑈)

2

−2𝛼 (𝑈 − 𝑈) (𝑉 − 𝑉) + 2𝛽(𝑉 − 𝑉)
2

} 𝑑𝑥

≤ −
𝛼2

𝛽
∫
T𝑑
(𝑈 − 𝑈)

2

𝑑𝑥 − 𝛽∫
T𝑑
(𝑉 − 𝑉)

2

𝑑𝑥.

(14)

(ii) If 𝑏
1
= 0, 𝑏

2
> 0, then 𝑏

2
= 𝑏

3
𝑈. We define the

Lyapunov function

𝐸 (𝑡) = ∫
T𝑑
[
𝑞

𝑈
(𝑈 − 𝑈)

2

(𝑉 − 𝑉)
2

] 𝑑𝑥, (15)

where 𝑞 = 2𝛼2/𝛽𝑏
3
𝑈.

Calculating in the same way as (14), we have

𝑑𝐸 (𝑢, 𝑣)

𝑑𝑡
≤ − ∫

T𝑑
2
𝑞𝐷

𝑢
𝑈
2

𝑢3
|∇𝑈|

2
+ 𝐷

𝑣
|∇𝑉|

2
𝑑𝑥

− ∫
T𝑑
𝑞𝑏
3
(𝑈 + 𝑈) (𝑈 − 𝑈)

2

− 2𝛼 (𝑈 − 𝑈) (𝑉 − 𝑉) + 2𝛽(𝑉 − 𝑉)
2

𝑑𝑥

≤ − ∫
T𝑑
𝑞𝑏
3
𝑈(𝑈 − 𝑈)

2

− 2𝛼 (𝑈 − 𝑈) (𝑉 − 𝑉)

+ 2𝛽(𝑉 − 𝑉)
2

𝑑𝑥

≤ −
𝛼
2

𝛽
∫
T𝑑
(𝑈 − 𝑈)

2

𝑑𝑥 − 𝛽∫
T𝑑
(𝑉 − 𝑉)

2

𝑑𝑥.

(16)

Combining (12)–(16) and Lemma 3.2 in [11], we conclude
that

lim
𝑡→∞

󵄩󵄩󵄩󵄩󵄩
𝑈 (⋅, 𝑡) − 𝑈

󵄩󵄩󵄩󵄩󵄩𝐿2(T𝑑)
= 0,

lim
𝑡→∞

󵄩󵄩󵄩󵄩󵄩
𝑉 (⋅, 𝑡) − 𝑉

󵄩󵄩󵄩󵄩󵄩𝐿2(T𝑑)
= 0.

(17)

The global asymptotic stability of [𝑈, 𝑉] follows from (17)
and the local stability of [𝑈, 𝑉].



4 Advances in Mathematical Physics

Theorem 1. The positive equilibrium point [𝑈, 𝑉] of (6) is
locally asymptotically stable. If either 𝑏

1
> 0, 𝑏

2
∈ R or 𝑏

1
= 0,

𝑏
2
> 0 holds, then [𝑈, 𝑉] is globally asymptotically stable.

3. Growing Modes in the System (5)

Let 𝑢(x, 𝑡) = 𝑈(x, 𝑡) − 𝑈, 𝑣(x, 𝑡) = 𝑉(x, 𝑡) − 𝑉. Then

𝑢
𝑡
= 𝐷

𝑢
∇
2
𝑢 − 𝜒𝑈∇

2
𝑣 − (3𝑏

2

3
𝑈
2

− 2𝑏
2
𝑈 − 𝑏

1
) 𝑢

− 𝜒∇ (𝑢∇𝑣) + (𝑏
2
− 3𝑏

3
𝑈)𝑢

2
− 𝑏

3
𝑢
3
,

𝑣
𝑡
= 𝐷

𝑣
∇
2
𝑣 + 𝛼𝑢 − 𝛽𝑣.

(18)

The corresponding linearized system takes the form

𝑢
𝑡
= 𝐷

𝑢
∇
2
𝑢 − 𝜒𝑈∇

2
𝑣 − (3𝑏

2

3
𝑈
2

− 2𝑏
2
𝑈 − 𝑏

1
) 𝑢,

𝑣
𝑡
= 𝐷

𝑣
∇
2
𝑣 + 𝛼𝑢 − 𝛽𝑣.

(19)

Let w(x, 𝑡) ≡ [𝑢(x, 𝑡), 𝑣(x, 𝑡)], q = (𝑞
1
, . . . , 𝑞

𝑑
) ∈ Ω = N𝑑,

and 𝑒q(x) = ∏
𝑑

𝑖=1
cos(𝑞

𝑖
𝑥
𝑖
). Then {𝑒q(x)}q∈Ω forms a basis of

the space of functions in T𝑑 that satisfy Neumann boundary
conditions. We look for a normal mode to the linearized
system (19) of the following form

w (x, 𝑡) = rq exp (𝜆q𝑡) 𝑒q (x) , (20)

where rq is a vector depending on q. Plugging (20) into (19)
we have the following dispersion formula for 𝜆q

𝜆
2

q + {𝑞
2
(𝐷
𝑢
+ 𝐷

𝑣
) + 𝛽 + 3𝑏

3
𝑈
2

− 2𝑏
2
𝑈 − 𝑏

1
} 𝜆q

+ 𝑞
2
{𝐷

𝑢
𝐷
𝑣
𝑞
2
+ 𝛽𝐷

𝑢
+ (3𝑏

3
𝑈
2

− 2𝑏
2
𝑈 − 𝑏

1
)𝐷

𝑣

−𝛼𝜒𝑈} + (3𝑏
3
𝑈
2

− 2𝑏
2
𝑈 − 𝑏

1
) 𝛽 = 0.

(21)

Thus we deduce the following well-known aggregation (i.e.,
linear instability) criterion by requiring there exists a q such
that

𝑞
2
{𝐷

𝑢
𝐷
𝑣
𝑞
2
+ 𝛽𝐷

𝑢
+ (3𝑏

3
𝑈
2

− 2𝑏
2
𝑈 − 𝑏

1
)𝐷

𝑣
− 𝛼𝜒𝑈}

+ (3𝑏
3
𝑈
2

− 2𝑏
2
𝑈 − 𝑏

1
) 𝛽 < 0

(22)

to ensure that (21) has at least one positive root 𝜆q. This
implies that for q,

{𝑞
2
(𝐷
𝑢
+ 𝐷

𝑣
) + 𝛽 + 3𝑏

3
𝑈
2

− 2𝑏
2
𝑈 − 𝑏

1
}
2

− 4 {𝑞
2
{𝐷

𝑢
𝐷
𝑣
𝑞
2
+ 𝛽𝐷

𝑢
+ (3𝑏

3
𝑈
2

− 2𝑏
2
𝑈 − 𝑏

1
)𝐷

𝑣

−𝛼𝜒𝑈} + (3𝑏
3
𝑈
2

− 2𝑏
2
𝑈 − 𝑏

1
) 𝛽}

= {𝑞
2
(𝐷
𝑢
− 𝐷

𝑣
) − (𝛽 − 3𝑏

3
𝑈
2

+ 2𝑏
2
𝑈 + 𝑏

1
)}
2

+ 4𝛼𝜒𝑈𝑞
2
≥ 0.

(23)

If q = 0, then (21) has two negative roots −𝛽 and −3𝑏
3
𝑈
2

+

2𝑏
2
𝑈 + 𝑏

1
. Therefore, the positive equilibrium point of (18) is

locally asymptotically stable.
Nowwe investigate nonlinear dynamics near the unstable

constant equilibrium solution of (18) in the caseq ̸= 0. Ifq ̸= 0,
the right side of (23) is positive. Therefore, there exist two
distinct real roots 𝜆±q for all q ̸= 0 to the quadratic equation
(21). We denote the corresponding (linearly independent)
eigenvectors by r

−
(q) and r

+
(q), such that

r
±
(q) = [

𝜆±q + 𝐷𝑣𝑞
2 + 𝛽

𝛼
, 1] . (24)

Clearly, for 𝑞 large

𝑞
2
{𝐷

𝑢
𝐷
𝑣
𝑞
2
+ 𝛽𝐷

𝑢
+ (3𝑏

3
𝑈
2

− 2𝑏
2
𝑈 − 𝑏

1
)𝐷

𝑣
− 𝛼𝜒𝑈}

+ (3𝑏
3
𝑈
2

− 2𝑏
2
𝑈 − 𝑏

1
) 𝛽 > 0.

(25)

Hence, there are only finitely many q such that 𝜆+q > 0.
We denote the largest eigenvalue by 𝜆max > 0 and define
Ωmax ≡ {q ∈ Ω | 𝜆+q = 𝜆max}. It is easy to see that there is
one 𝑞2 (possibly two) having 𝜆+(𝑞2) = 𝜆max if we regard 𝜆

+

q as
a function of 𝑞2. We also denote 𝜈 > 0 to be the gap between
the 𝜆max and the rest. Given any initial perturbation w(x, 0),
we can expand it as

w (x, 0) = ∑
q∈Ω

wq𝑒q (x)

= ∑
q∈Ω

{𝑤
−

q r− (q) + 𝑤
+

q r+ (q)} 𝑒q (x) ,
(26)

so that

wq = 𝑤
−

q r− (q) + 𝑤
+

q r+ (q) . (27)

The unique solution w(x, 𝑡) = [𝑢(x, 𝑡), 𝑣(x, 𝑡)] to (19) is given
by

w (x, 𝑡)

= ∑
q∈Ω

{𝑤
−

q r− (q) exp (𝜆
−

q𝑡)

+𝑤
+

q r+ (q) exp (𝜆
+

q𝑡)} 𝑒q (x) ≡ 𝑒
L𝑡w (𝑥, 0) .

(28)

For any g(⋅, 𝑡) ∈ [𝐿2(T𝑑)]
2, we denote ‖g(⋅, 𝑡)‖ ≡ ‖g(⋅, 𝑡)‖

𝐿
2 .

Our main result of this section is the following lemma.

Lemma 2. Suppose that the instability criterion (22) holds. Let
w(x, 𝑡) ≡ 𝑒L𝑡w(x, 0) be a solution to the linearized system (19)
with initial conditionw(x, 0).Then there exists a constant𝐶

1
≥

1 depending on 𝐷
𝑢
, 𝜒, 𝑈, 𝑏

1
, 𝑏
2
, 𝑏
3
,𝐷

𝑣
, 𝛼, and 𝛽, such that

‖w (⋅, 𝑡)‖ ≤ 𝐶
1
exp (𝜆 max 𝑡) ‖w (⋅, 0)‖ , ∀𝑡 ≥ 0. (29)



Advances in Mathematical Physics 5

Proof. We first consider the case for 𝑡 ≥ 1. By analyzing (21),
for 𝑞 large, we have

lim
𝑞→∞

𝜆±q

𝑞2
= −𝐷

𝑢
, −𝐷

𝑣
, (30)

respectively. From the quadratic formula of (21), we can see
that

𝜆+q − 𝜆
−

q

𝑞2
≥
2√𝛼𝜒𝑈

𝑞
. (31)

It follows from (27) that

󵄨󵄨󵄨󵄨󵄨
𝑤
±

q
󵄨󵄨󵄨󵄨󵄨
≤

󵄨󵄨󵄨󵄨r± (q)
󵄨󵄨󵄨󵄨 ×

󵄨󵄨󵄨󵄨󵄨
wq
󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨det [r− (q) , r+ (q)]
󵄨󵄨󵄨󵄨
. (32)

Later on we will always denote universal constants by 𝐸
𝑖
(𝑖 =

1, 2, . . .). Note that q ∈ N𝑑 and q ̸= 0. From (24) and (30), for
all 𝑞 > 0, there exists a positive constant 𝐸

1
and 𝐸

2
, such that

|𝜆±q/𝛼𝑞
2| ≤ 𝐸

1
, and

󵄨󵄨󵄨󵄨r± (q)
󵄨󵄨󵄨󵄨 ≤ 𝐸2𝑞

2
. (33)

By (24), (31), (32), and (33), we deduce that
󵄨󵄨󵄨󵄨󵄨
𝑤
±

q
󵄨󵄨󵄨󵄨󵄨
≤ 𝐸

3
𝑞
󵄨󵄨󵄨󵄨󵄨
wq
󵄨󵄨󵄨󵄨󵄨
. (34)

Thus, it is clear from (33) and (34) that
󵄨󵄨󵄨󵄨󵄨
𝑤
±

q r± (q) exp (𝜆
±

q𝑡)
󵄨󵄨󵄨󵄨󵄨
≤ 𝐸

2
𝐸
3
𝑞
3 󵄨󵄨󵄨󵄨󵄨
wq
󵄨󵄨󵄨󵄨󵄨
exp (𝜆±q𝑡) . (35)

For 𝑡 ≥ 1, it is not hard to verify that there exists a constant
𝐸
4
> 0, such that

𝑞
3 exp (𝜆±q𝑡) ≤ 𝐸4. (36)

It follows from (35) and (36) that
󵄨󵄨󵄨󵄨󵄨
𝑤
±

q r± (q) exp (𝜆
±

q𝑡)
󵄨󵄨󵄨󵄨󵄨
≤ 𝐸

5

󵄨󵄨󵄨󵄨󵄨
wq
󵄨󵄨󵄨󵄨󵄨
. (37)

Denote by ⟨⋅, ⋅⟩ and (⋅, ⋅) the inner product of [𝐿2(T𝑑)]2 and
the scaler product of R2, respectively. A simple computation
shows that

‖w (x, 0)‖2 = (𝜋
2
)
𝑑

∑
q∈Ω

󵄨󵄨󵄨󵄨󵄨
wq
󵄨󵄨󵄨󵄨󵄨

2

. (38)

From (28), (37) and (38), we have

‖w (x, 𝑡)‖ ≤ 2𝐸
5
exp (𝜆max𝑡) ‖w (x, 0)‖ , for 𝑡 ≥ 1. (39)

On the other hand, for 𝑡 < 1, it is sufficient to derive the
standard energy estimate in 𝐿2. By (19), we have

1

2

𝑑

𝑑𝑡
∫
T𝑑
{|𝑢|

2
+ 𝐴|𝑣|

2
} dx

+ ∫
T𝑑
{𝐷

𝑢
|∇𝑢|

2
+ 𝐴𝐷

𝑣
|∇𝑣|

2
−𝜒𝑈∇𝑢∇𝑣} dx

+ (3𝑏
3
𝑈
2

− 2𝑏
2
𝑈 − 𝑏

1
)∫

T𝑑
𝑢
2dx

+ 𝐴𝛽∫
T𝑑
𝑣
2dx = 𝐴𝛼∫

T𝑑
𝑢𝑣dx.

(40)

Let

𝐴 =
(𝜒𝑈)

2

𝐷
𝑢
𝐷
𝑣

. (41)

Then the integrand of the second term on the left side of (40)
satisfies

𝐷
𝑢
|∇𝑢|

2
+ 𝐴𝐷

𝑣
|∇𝑣|

2
− 𝜒𝑈∇𝑢∇𝑣

≥
𝐷
𝑢

2
|∇𝑢|

2
+
(𝜒𝑈)

2

2𝐷
𝑢

|∇𝑣|
2
≥ 0.

(42)

By (40), Young’s inequality, and 𝐴 ≥ 1, we deduce that

1

2

𝑑

𝑑𝑡
∫
T𝑑
{|𝑢|

2
+ 𝐴|𝑣|

2
} dx ≤ 𝐴𝛼

2
∫
T𝑑
{|𝑢|

2
+ 𝐴|𝑣|

2
} dx.

(43)

Using Grownwall’s inequality and noticing 𝐴 ≥ 1 and 𝑡 < 1,
we can obtain

‖w (x, 𝑡)‖ ≤ (𝐴 exp (𝐴𝛼))1/2 exp (𝜆max𝑡) ‖w (x, 0)‖ . (44)

If 0 < 𝐴 < 1, by (43), 𝑡 < 1, and Grownwall inequality, we
have

‖w (x, 𝑡)‖ ≤ (exp𝛼
𝐴

)
1/2

exp (𝜆max𝑡) ‖w (x, 0)‖ . (45)

Let 𝐶
1
= max{2𝐸

5
, (𝐴 exp(𝐴𝛼))1/2} ≥ 1 if 0 < 𝐴 < 1.

Then ‖w(x, 𝑡)‖ ≤ 𝐶
1
exp(𝜆max𝑡)‖w(x, 0)‖ if 𝐴 > 1 and 𝐶

1
=

max{2𝐸
5
, (exp𝛼/𝐴)1/2} ≥ 1.

4. Bootstrap Lemma

By a standard PDE theory [14], we can establish the existence
of local solutions for (18).

Lemma 3 (local existence). For 𝑠 ≥ 1(𝑑 = 1) and 𝑠 ≥ 2(𝑑 =

2, 3), there exists𝑇
0
> 0, such that (18)with 𝑢(⋅, 0), 𝑣(⋅, 0) ∈ 𝐻𝑠

has a unique solution w(⋅, 𝑡) on (0, 𝑇
0
) which satisfies

‖w (𝑡)‖
𝐻
𝑠 ≤ 𝐶‖w (0)‖

𝐻
𝑠 , 0 < 𝑡 < 𝑇

0
, (46)

where𝐶 is a positive constant depending on𝐷
𝑢
, 𝜒,𝑈, 𝑏

1
, 𝑏
2
, 𝑏
3
,

𝐷
𝑣
, 𝛼, and 𝛽.

It is not hard to verify the following result.

Lemma 4. Let w(x, 𝑡) be a solution of (18). Then the even
extension of w(x, 𝑡) on 2T𝑑 = (−𝜋, 𝜋)

𝑑
(𝑑 = 1, 2, 3) is also

the solution of (18) which satisfies homogeneous Neumann
boundary conditions and periodical boundary conditions on
2T𝑑 = (−𝜋, 𝜋)

𝑑
(𝑑 = 1, 2, 3).
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Lemma 5. Let [𝑢(x, 𝑡), 𝑣(x, 𝑡)] be a solution of (18). Then

1

2

𝑑

𝑑𝑡
∑
|𝛼|=2

∫
T𝑑

{

{

{

󵄨󵄨󵄨󵄨𝐷
𝛼
𝑢
󵄨󵄨󵄨󵄨
2

+
(𝜒𝑈)

2

𝐷
𝑢
𝐷
𝑣

󵄨󵄨󵄨󵄨𝐷
𝛼
𝑣
󵄨󵄨󵄨󵄨
2
}

}

}

dx

+ ∑
|𝛼|=2

∫
T𝑑

{

{

{

𝐷
𝑢

4

󵄨󵄨󵄨󵄨∇𝐷
𝛼
𝑢
󵄨󵄨󵄨󵄨
2

+
(𝜒𝑈)

2

2𝐷
𝑢

󵄨󵄨󵄨󵄨∇𝐷
𝛼
𝑣
󵄨󵄨󵄨󵄨
2
}

}

}

dx

+
𝐴𝛽

2
∑
|𝛼|=2

∫
T𝑑

󵄨󵄨󵄨󵄨𝐷
𝛼
𝑣
󵄨󵄨󵄨󵄨
2dx + 3𝑏

3
𝑈
2

− 2𝑏
2
𝑈 − 𝑏

1

2

× ∑
|𝛼|=2

∫
T𝑑

󵄨󵄨󵄨󵄨𝐷
𝛼
𝑢
󵄨󵄨󵄨󵄨
2dx ≤ 𝐶

0
(
𝜒

2
+
󵄨󵄨󵄨󵄨󵄨
𝑏
2
− 3𝑏

3
𝑈
󵄨󵄨󵄨󵄨󵄨
+
3

2
𝑏
3
)

× (‖w‖
𝐻
2 + ‖w‖2

𝐻
2)
󵄩󵄩󵄩󵄩󵄩
∇
3w󵄩󵄩󵄩󵄩󵄩

2

+ 𝐶
2
‖𝑢‖

2
,

(47)

where 𝐶
2
= 𝐸

15
𝜒12𝑈

12

𝛼12/2𝐷8
𝑢
𝐷6
𝑣
𝛽6(3𝑏

3
𝑈
2

− 2𝑏
2
𝑈 − 𝑏

1
)
3.

Proof. It is known by Lemma 4 that

𝑢̃
𝑡
= 𝐷

𝑢
∇
2
𝑢̃ − 𝜒𝑈∇

2
𝑣 − (3𝑏

3
𝑈
2

− 2𝑏
2
𝑈 − 𝑏

1
) 𝑢̃ − 𝜒∇ (𝑢̃∇𝑣)

+ (𝑏
2
− 3𝑏

3
𝑈) 𝑢̃

2
− 𝑏
3
𝑢̃
3
,

𝑣
𝑡
= 𝐷

𝑣
∇
2
𝑣 + 𝛼𝑢̃ − 𝛽𝑣,

𝜕𝑢̃

𝜕𝑥
𝑖

=
𝜕𝑣

𝜕𝑥
𝑖

= 0, at 𝑥
𝑖
= −𝜋, 0, 𝜋, for 1 ≤ 𝑖 ≤ 𝑑,

(48)

where [𝑢̃(x, 𝑡), 𝑣(x, 𝑡)] is the even extension of [𝑢(x, 𝑡), 𝑣(x, 𝑡)]
on (−𝜋, 0)

𝑑. Taking the second-order derivative of (48) for
𝑥
𝑖
, 𝑥
𝑗
and making inner product with 𝜕

𝑥𝑖𝑥𝑗
𝑢̃ and 𝐴𝜕

𝑥𝑖𝑥𝑗
𝑣,

respectively, on both sides then adding the two equations
together, we have

1

2

𝑑

𝑑𝑡
∫
2T𝑑

{
󵄨󵄨󵄨󵄨󵄨󵄨
𝜕
𝑥𝑖𝑥𝑗

𝑢̃
󵄨󵄨󵄨󵄨󵄨󵄨

2

+ 𝐴
󵄨󵄨󵄨󵄨󵄨󵄨
𝜕
𝑥𝑖𝑥𝑗

𝑣
󵄨󵄨󵄨󵄨󵄨󵄨

2

} dx

+ ∫
2T𝑑

{𝐷
𝑢

󵄨󵄨󵄨󵄨󵄨󵄨
∇𝜕
𝑥𝑖𝑥𝑗

𝑢̃
󵄨󵄨󵄨󵄨󵄨󵄨

2

+ 𝐴𝐷
𝑣

󵄨󵄨󵄨󵄨󵄨󵄨
∇𝜕
𝑥𝑖𝑥𝑗

𝑣
󵄨󵄨󵄨󵄨󵄨󵄨

2

− 𝜒𝑈∇𝜕
𝑥𝑖𝑥𝑗

𝑢̃

⋅∇𝜕
𝑥𝑖𝑥𝑗

𝑣} dx + 𝐴𝛽∫
2T𝑑

󵄨󵄨󵄨󵄨󵄨󵄨
𝜕
𝑥𝑖𝑥𝑗

𝑣
󵄨󵄨󵄨󵄨󵄨󵄨

2

dx

+ (3𝑏
3
𝑈
3

− 2𝑏
2
𝑈 − 𝑏

1
)∫
2T𝑑

󵄨󵄨󵄨󵄨󵄨󵄨
𝜕
𝑥𝑖𝑥𝑗

𝑢̃
󵄨󵄨󵄨󵄨󵄨󵄨

2

dx

= 𝜒∫
2T𝑑

∇𝜕
𝑥𝑖𝑥𝑗

𝑢̃ ⋅ 𝜕
𝑥𝑖𝑥𝑗

(𝑢̃ ⋅ ∇𝑣) dx

+ 𝐴𝛼∫
2T𝑑

𝜕
𝑥𝑖𝑥𝑗

𝑢̃ ⋅ 𝜕
𝑥𝑖𝑥𝑗

𝑣dx + 2 (𝑏
2
− 3𝑏

3
𝑈)

× ∫
2T𝑑

𝜕
𝑥𝑖𝑥𝑗

𝑢̃ (𝜕
𝑥𝑖
𝑢̃ ⋅ 𝜕

𝑥𝑗
𝑢̃ + 𝑢̃ ⋅ 𝜕

𝑥𝑖𝑥𝑗
𝑢̃) dx

− 3𝑏
3
∫
2T𝑑

𝜕
𝑥𝑖𝑥𝑗

𝑢̃ (2𝑢̃ ⋅ 𝜕
𝑥𝑖
𝑢̃ ⋅ 𝜕

𝑥𝑗
𝑢̃ + 𝑢̃

2
⋅ 𝜕
𝑥𝑖𝑥𝑗

𝑢̃) dx

≡ 𝐼
1
+ 𝐼
2
+ 𝐼
3
+ 𝐼
4
.

(49)

Clearly

𝐷
𝑢

󵄨󵄨󵄨󵄨󵄨
∇𝜕
𝑥𝑖,𝑥𝑗

𝑢̃
󵄨󵄨󵄨󵄨󵄨

2

+ 𝐴𝐷
𝑣

󵄨󵄨󵄨󵄨󵄨
∇𝜕
𝑥𝑖,𝑥𝑗

𝑣
󵄨󵄨󵄨󵄨󵄨

2

− 𝜒𝑈∇𝜕
𝑥𝑖𝑥𝑗

𝑢̃ ⋅ ∇𝜕
𝑥𝑖𝑥𝑗

𝑣

≥
𝐷
𝑢

2

󵄨󵄨󵄨󵄨󵄨󵄨
∇𝜕
𝑥𝑖𝑥𝑗

𝑢̃
󵄨󵄨󵄨󵄨󵄨󵄨

2

+
(𝜒𝑈)

2

2𝐷
𝑢

󵄨󵄨󵄨󵄨󵄨󵄨
∇𝜕
𝑥𝑖𝑥𝑗

𝑣
󵄨󵄨󵄨󵄨󵄨󵄨

2

.

(50)

The nonlinear term 𝐼
1
is bounded by

𝐼
1
≤ 𝜒{‖∇𝑣‖

𝐿
∞

󵄩󵄩󵄩󵄩󵄩󵄩
∇𝜕
𝑥𝑖𝑥𝑗

𝑢̃
󵄩󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩󵄩
𝜕
𝑥𝑖𝑥𝑗

𝑢̃
󵄩󵄩󵄩󵄩󵄩󵄩
+ 2

𝑑

∑
𝑖=1

‖∇𝑢̃‖
𝐿
∞

󵄩󵄩󵄩󵄩󵄩󵄩
𝜕
𝑥𝑖𝑥𝑗

𝑣
󵄩󵄩󵄩󵄩󵄩󵄩

×
󵄩󵄩󵄩󵄩󵄩󵄩
∇𝜕
𝑥𝑖𝑥𝑗

𝑢̃
󵄩󵄩󵄩󵄩󵄩󵄩
+ ‖𝑢̃‖

𝐿
∞

󵄩󵄩󵄩󵄩󵄩󵄩
∇𝜕
𝑥𝑖𝑥𝑗

𝑢̃
󵄩󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩󵄩
∇𝜕
𝑥𝑖𝑥𝑗

𝑣
󵄩󵄩󵄩󵄩󵄩󵄩
} .

(51)

We know that
󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩𝐿∞(2T𝑑) ≤ 𝐸6

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩𝐻2(2T𝑑),

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩𝐿4(2T𝑑) ≤ 𝐸7

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩𝐻2(2T𝑑).

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩𝐿6(2T𝑑) ≤ 𝐸8

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩𝐻2(2T𝑑),

(52)

for 𝑑 ≤ 3, and

∫
2T𝑑

∇𝑢̃dx = ∫
2T𝑑

∇𝑣dx = 0,

∫
2T𝑑

𝜕
𝑥𝑖𝑥𝑗

𝑢̃dx = ∫
2T𝑑

𝜕
𝑥𝑖𝑥𝑗

𝑣dx = 0.
(53)

Applying the Poincaré inequality, we have

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩 ≤ 𝐸9

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩𝐿4(2T𝑑) ≤ 𝐸10

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩𝐻1 ≤ 𝐸11

󵄩󵄩󵄩󵄩∇𝑔
󵄩󵄩󵄩󵄩 , 𝑑 ≤ 3. (54)

It follows from (53) and (54) that ‖𝜕
𝑥𝑖
𝑔‖ ≤ 𝐸

11
‖∇𝜕

𝑥𝑖
𝑔‖. Thus

󵄩󵄩󵄩󵄩∇𝑔
󵄩󵄩󵄩󵄩 ≤ 𝐸11(

𝑑

∑
𝑖,𝑗=1

󵄩󵄩󵄩󵄩󵄩󵄩
𝜕
𝑥𝑖𝑥𝑗

𝑔
󵄩󵄩󵄩󵄩󵄩󵄩

2

)

1/2

. (55)

Furthermore,

1

𝑑2

𝑑

∑
𝑖,𝑗=1

󵄩󵄩󵄩󵄩󵄩󵄩
𝜕
𝑥𝑖𝑥𝑗

𝑔
󵄩󵄩󵄩󵄩󵄩󵄩

2

≤ ∑
|𝛼|=2

󵄩󵄩󵄩󵄩𝐷
𝛼
𝑔
󵄩󵄩󵄩󵄩
2

≤

𝑑

∑
𝑖,𝑗=1

󵄩󵄩󵄩󵄩󵄩󵄩
𝜕
𝑥𝑖𝑥𝑗

𝑔
󵄩󵄩󵄩󵄩󵄩󵄩

2

. (56)
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This implies that (∑
𝑑

𝑖,𝑗=1
‖𝜕
𝑥𝑖𝑥𝑗

𝑔‖2)
1/2

is equivalent to

(∑
|𝛼|=2

‖𝐷𝛼𝑔‖2)
1/2. From (53)–(56), we have

󵄩󵄩󵄩󵄩󵄩󵄩
𝜕
𝑥𝑖𝑥𝑗

𝑔
󵄩󵄩󵄩󵄩󵄩󵄩
≤ 𝐸

11

󵄩󵄩󵄩󵄩󵄩󵄩
∇𝜕
𝑥𝑖𝑥𝑗

𝑔
󵄩󵄩󵄩󵄩󵄩󵄩
,

󵄩󵄩󵄩󵄩∇𝑔
󵄩󵄩󵄩󵄩 ≤ 𝐸11𝑑( ∑

|𝛼|=2

󵄩󵄩󵄩󵄩𝐷
𝛼
𝑔
󵄩󵄩󵄩󵄩
2

)

1/2

≤ 𝐸
2

11
𝑑( ∑

|𝛼|=2

󵄩󵄩󵄩󵄩∇𝐷
𝛼
𝑔
󵄩󵄩󵄩󵄩
2

)

1/2

.

(57)

It follows from (56) and (57) that

󵄩󵄩󵄩󵄩∇𝑔
󵄩󵄩󵄩󵄩𝐻2 ≤ 𝐸12( ∑

|𝛼|=2

󵄩󵄩󵄩󵄩∇𝐷
𝛼
𝑔
󵄩󵄩󵄩󵄩
2

)

1/2

,

𝐸
12
= (𝐸

4

11
𝑑
2
+ 𝐸

2

11
𝑑
2
+ 1)

1/2

.

(58)

By (51), (52), (57), and (58), we have

∑
|𝛼|=2

𝐼
1
≤ 𝜒𝐸

13
‖w̃‖

𝐻
2

󵄩󵄩󵄩󵄩󵄩
∇
3w̃󵄩󵄩󵄩󵄩󵄩

2

. (59)

Now we consider 𝐼
2
. From Gagliardo-Nirenberg inequality

and Young inequality, we obtain

󵄩󵄩󵄩󵄩󵄩󵄩
𝜕
𝑥𝑖𝑥𝑗

𝑢̃
󵄩󵄩󵄩󵄩󵄩󵄩

2

≤
8𝐸2
14

9
(𝑎

󵄩󵄩󵄩󵄩󵄩󵄩
∇𝜕
𝑥𝑖𝑥𝑗

𝑢̃
󵄩󵄩󵄩󵄩󵄩󵄩

2

+
‖𝑢̃‖

2

4𝑎2
) . (60)

Let 𝑎 = 9𝐷3
𝑢
𝐷2
𝑣
𝛽2(3𝑏

3
𝑈
2

− 2𝑏
2
𝑈 − 𝑏

1
)/4𝐸2

14
𝜒4𝑈

4

𝛼4. Then

∑
|𝛼|=2

𝐼
2
≤
3𝑏
3
𝑈
2

− 2𝑏
2
𝑈 − 𝑏

1

2
∑
|𝛼|=2

󵄩󵄩󵄩󵄩𝐷
𝛼
𝑢̃
󵄩󵄩󵄩󵄩
2

+
𝐴𝛽

2
∑
|𝛼|=2

󵄩󵄩󵄩󵄩𝐷
𝛼
𝑣
󵄩󵄩󵄩󵄩
2

+
𝐷
𝑢

4
∑
|𝛼|=2

󵄩󵄩󵄩󵄩∇𝐷
𝛼
𝑢̃
󵄩󵄩󵄩󵄩
2

+
𝐸
15
𝜒12𝑈

12

𝛼12

𝐷8
𝑢
𝐷6
𝑣
𝛽6(3𝑏

3
𝑈
2

− 2𝑏
2
𝑈 − 𝑏

1
)
3
‖𝑢̃‖

2
.

(61)

It follows from (52), (57), and (58) that

∑
|𝛼|=2

𝐼
3
≤ 2

󵄨󵄨󵄨󵄨󵄨
𝑏
2
− 3𝑏

3
𝑈
󵄨󵄨󵄨󵄨󵄨
𝐸
16
‖w̃‖

𝐻
2

󵄩󵄩󵄩󵄩󵄩
∇
3w̃󵄩󵄩󵄩󵄩󵄩

2

,

∑
|𝛼|=2

𝐼
4
≤ 3𝑏

3
𝐸
17
‖w̃‖2 󵄩󵄩󵄩󵄩󵄩∇

3w̃󵄩󵄩󵄩󵄩󵄩 .
(62)

Combining (49), (50), (59), (61), and (62), we have

1

2

𝑑

𝑑𝑡
∑
|𝛼|=2

∫
T𝑑

{

{

{

󵄨󵄨󵄨󵄨𝐷
𝛼
𝑢
󵄨󵄨󵄨󵄨
2

+
(𝜒𝑈)

2

𝐷
𝑢
𝐷
𝑣

󵄨󵄨󵄨󵄨𝐷
𝛼
𝑣
󵄨󵄨󵄨󵄨
2
}

}

}

dx

+ ∑
|𝛼|=2

∫
T𝑑

{

{

{

𝐷
𝑢

4

󵄨󵄨󵄨󵄨∇𝐷
𝛼
𝑢
󵄨󵄨󵄨󵄨
2

+
(𝜒𝑈)

2

2𝐷
𝑢

󵄨󵄨󵄨󵄨∇𝐷
𝛼
𝑣
󵄨󵄨󵄨󵄨
2
}

}

}

dx

+
𝐴𝛽

2
∑
|𝛼|=2

∫
T𝑑

󵄨󵄨󵄨󵄨𝐷
𝛼
𝑣
󵄨󵄨󵄨󵄨
2dx + 3𝑏

3
𝑈
2

− 2𝑏
2
𝑈 − 𝑏

1

2

× ∑
|𝛼|=2

∫
T𝑑

󵄨󵄨󵄨󵄨𝐷
𝛼
𝑢
󵄨󵄨󵄨󵄨
2dx ≤ 𝐶

0

𝜒 + 2
󵄨󵄨󵄨󵄨󵄨
𝑏
2
− 3𝑏

3
𝑈
󵄨󵄨󵄨󵄨󵄨
+ 3𝑏

3

2

× (‖w‖
𝐻
2 + ‖w‖2

𝐻
2)
󵄩󵄩󵄩󵄩󵄩
∇
3w󵄩󵄩󵄩󵄩󵄩

2

+ 𝐶
2
‖𝑢‖

2
,

(63)

where 𝐶
0
= max{𝐸

13
, 𝐸
16
, 𝐸
17
}, 𝐶

2
= 𝐸

15
𝜒12𝑈

12

𝛼12/2𝐷8
𝑢
𝐷6
𝑣

𝛽6(3𝑏
3
𝑈
2

− 2𝑏
2
𝑈 − 𝑏

1
)
3.

Lemma 6. Let w(x, 𝑡) be a solution of (18) such that for 0 ≤

𝑡 ≤ 𝑇 < 𝑇
0

‖w (⋅, 𝑡)‖
𝐻
2 + ‖w (⋅, 𝑡)‖

2

𝐻
2

≤
1

𝐶
0

min{
𝐷
𝑢

2 (𝜒 + 2
󵄨󵄨󵄨󵄨󵄨
𝑏
2
− 3𝑏

3
𝑈
󵄨󵄨󵄨󵄨󵄨
+ 3𝑏

3
)
,

(𝜒𝑈)
2

𝐷
𝑢
(𝜒 + 2

󵄨󵄨󵄨󵄨󵄨
𝑏
2
− 3𝑏

3
𝑈
󵄨󵄨󵄨󵄨󵄨
+ 3𝑏

3
)

}

}

}

,

(64)

‖w (⋅, 𝑡)‖ ≤ 2𝐶
1
exp (𝜆max𝑡) ‖w (⋅, 0)‖ . (65)

Then

‖w (⋅, 𝑡)‖
2

𝐻
2 ≤ 𝐶

3
{‖w (⋅, 0)‖

2

𝐻
2

+ exp (2𝜆max𝑡) ‖w (⋅, 0)‖
2
} , 0 ≤ 𝑡 ≤ 𝑇,

(66)

where 𝐶
3

= max{(𝐸2
11
𝑑2 + 1)((𝜒𝑈)

2

/𝐷
𝑢
𝐷
𝑣
), 4𝐶2

1
{1 +

(𝐸2
11
𝑑2 + 1)(𝐶

2
/𝜆max)}} if (𝜒𝑈)

2
/𝐷
𝑢
𝐷
𝑣

≥ 1, 𝐶
3

=

max{(𝐸2
11
𝑑2 + 1)(𝐷

𝑢
𝐷
𝑣
/(𝜒𝑈)

2

), 4𝐶2
1
{1 + (𝐸2

11
𝑑2 + 1)

(𝐶
2
𝐷
𝑢
𝐷
𝑣
/𝜆max(𝜒𝑈)

2

)}} if (𝜒𝑈)2/𝐷
𝑢
𝐷
𝑣
< 1.

Proof. It is clear from (57) that

‖∇w (⋅, 𝑡)‖
2
≤ 𝐸

2

11
𝑑
2
∑
|𝛼|=2

󵄩󵄩󵄩󵄩𝐷
𝛼w (⋅, 𝑡)

󵄩󵄩󵄩󵄩
2

. (67)

It follows from (67) that

‖w (⋅, 𝑡)‖
2

𝐻
2 ≤ ‖w (⋅, 𝑡)‖

2
+ (𝐸

2

11
𝑑
2
+ 1) ∑

|𝛼|=2

󵄩󵄩󵄩󵄩𝐷
𝛼w (⋅, 𝑡)

󵄩󵄩󵄩󵄩
2

.

(68)
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Now we estimate the second-order derivatives of w(⋅, 𝑡). By
(65) and Lemma 5, we immediately see that

1

2

𝑑

𝑑𝑡
∑
|𝛼|=2

∫
T𝑑

{

{

{

󵄨󵄨󵄨󵄨𝐷
𝛼
𝑢
󵄨󵄨󵄨󵄨
2

+
(𝜒𝑈)

2

𝐷
𝑢
𝐷
𝑣

󵄨󵄨󵄨󵄨𝐷
𝛼
𝑣
󵄨󵄨󵄨󵄨
2
}

}

}

dx

≤ 𝐶
2
‖𝑢‖

2
≤ 𝐶

2
‖w (⋅, 𝑡)‖

2
.

(69)

Integrating on both sides of (69) from 0 to 𝑡 and from (65),
we have

∑
|𝛼|=2

∫
T𝑑

{

{

{

󵄨󵄨󵄨󵄨𝐷
𝛼
𝑢 (⋅, 𝑡)

󵄨󵄨󵄨󵄨
2

+
(𝜒𝑈)

2

𝐷
𝑢
𝐷
𝑣

󵄨󵄨󵄨󵄨𝐷
𝛼
𝑣 (x, 𝑡)󵄨󵄨󵄨󵄨

2
}

}

}

dx

≤ ∑
|𝛼|=2

∫
T𝑑

{

{

{

󵄨󵄨󵄨󵄨𝐷
𝛼
𝑢 (⋅, 0)

󵄨󵄨󵄨󵄨
2

+
(𝜒𝑈)

2

𝐷
𝑢
𝐷
𝑣

󵄨󵄨󵄨󵄨𝐷
𝛼
𝑣 (⋅, 0)

󵄨󵄨󵄨󵄨
2
}

}

}

dx

+
4𝐶2
1
𝐶
2

𝜆max
‖w (⋅, 0)‖

2 exp (2𝜆max𝑡) .

(70)

We will proceed in the following two cases: (𝜒𝑈)2/𝐷
𝑢
𝐷
𝑣
≥ 1,

(𝜒𝑈)
2
/𝐷
𝑢
𝐷
𝑣
< 1.

(1) If (𝜒𝑈)2/𝐷
𝑢
𝐷
𝑣
≥ 1, it follows from (70) that

∑
|𝛼|=2

󵄩󵄩󵄩󵄩𝐷
𝛼w (⋅, 𝑡)

󵄩󵄩󵄩󵄩
2

≤
(𝜒𝑈)

2

𝐷
𝑢
𝐷
𝑣

∑
|𝛼|=2

󵄩󵄩󵄩󵄩𝐷
𝛼w (⋅, 0)

󵄩󵄩󵄩󵄩
2

+
4𝐶2
1
𝐶
2

𝜆max
‖w (⋅, 0)‖

2 exp (2𝜆max𝑡) .

(71)

By (68) and (71), we have

‖w (⋅, 𝑡)‖
2

𝐻
2 ≤ 𝐶3 {‖w (⋅, 0)‖

2

𝐻
2 + ‖w (⋅, 0)‖

2 exp (2𝜆max𝑡)} ,

(72)

where𝐶
3
= max{(𝐸2

11
𝑑2 +1)((𝜒𝑈)

2
/𝐷
𝑢
𝐷
𝑣
), 4𝐶2

1
{1+ (𝐸2

11
𝑑2 +

1)(𝐶
2
/𝜆max)}}.

(2) If (𝜒𝑈)2/𝐷
𝑢
𝐷
𝑣
< 1, it follows from (71) that

∑
|𝛼|=2

󵄩󵄩󵄩󵄩𝐷
𝛼w (⋅, 𝑡)

󵄩󵄩󵄩󵄩
2

≤
𝐷
𝑢
𝐷
𝑣

(𝜒𝑈)
2
∑
|𝛼|=2

󵄩󵄩󵄩󵄩𝐷
𝛼w (⋅, 0)

󵄩󵄩󵄩󵄩
2

+
𝐷
𝑢
𝐷
𝑣

(𝜒𝑈)
2
⋅
4𝐶2
1
𝐶
2

𝜆max
‖w (⋅, 0)‖

2 exp (2𝜆max𝑡) .

(73)

By (68) and (73), we have

‖w (⋅, 𝑡)‖
2

𝐻
2 ≤ 𝐶3 {‖w (⋅, 0)‖

2

𝐻
2 + ‖w (⋅, 0)‖

2 exp (2𝜆max𝑡)} ,

(74)

where𝐶
3
= max{(𝐸2

11
𝑑2 +1)(𝐷

𝑢
𝐷
𝑣
/(𝜒𝑈)

2
), 4𝐶2

1
{1+ (𝐸2

11
𝑑2 +

1)(𝐶
2
𝐷
𝑢
𝐷
𝑣
/𝜆max(𝜒𝑈)

2
)}}.

5. Main Result

Let 𝜃 be a small fixed constant, and 𝜆max be the dominant
eigenvalue which is the maximal growth rate. We also denote
the gap between the largest growth rate 𝜆max and the rest by
𝜈 > 0. Then for 𝛿 > 0 arbitrary small, we define the escape
time 𝑇𝛿 by

𝜃 = 𝛿 exp (𝜆max𝑇
𝛿
) , (75)

or equivalently

𝑇
𝛿
=

1

𝜆max
ln 𝜃
𝛿
. (76)

Our main result is as follows.

Theorem 7. Assume that the set of 𝑞2 = ∑
𝑑

𝑖=1
𝑞2
𝑖
satisfying

instability criterion (22) is not empty for given parameters𝐷
𝑢
,

𝜒, 𝑈, 𝑏
1
, 𝑏
2
, 𝑏
3
,𝐷

𝑣
, 𝛼, 𝛽. Let

w
0
(x) = ∑

q∈Ω
{𝑤
−

q r− (q) + 𝑤
+

q r+ (q)} 𝑒q (x) ∈ 𝐻
2
, (77)

such that ‖w
0
‖ = 1. Then there exist constants 𝛿

0
> 0, 𝐶 > 0

and 𝜃 > 0 depending on 𝐷
𝑢
, 𝜒, 𝑈, 𝑏

1
, 𝑏
2
, 𝑏
3
, 𝐷

𝑣
, 𝛼, and 𝛽,

such that for all 0 < 𝛿 ≤ 𝛿
0
, if the initial perturbation of

the steady state [𝑈, 𝑉] is w𝛿(⋅, 0) = 𝛿w
0
, then its nonlinear

evolution w𝛿(⋅, 𝑡) satisfies

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

w𝛿 (⋅, 𝑡) − 𝛿𝑒𝜆max𝑡 ∑
𝑞∈Ωmax

𝑤
+

q r+ (q) 𝑒q (x)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ 𝐶 {𝑒
−𝜈𝑡

+ 𝛿
󵄩󵄩󵄩󵄩w0

󵄩󵄩󵄩󵄩
2

𝐻
2 + 𝛿

2󵄩󵄩󵄩󵄩w0
󵄩󵄩󵄩󵄩
3

𝐻
2 + 𝛿𝑒

𝜆max𝑡

+𝛿
2
𝑒
2𝜆max𝑡 } 𝛿𝑒

𝜆max𝑡

(78)

for 0 ≤ 𝑡 ≤ 𝑇𝛿, and 𝜈 > 0 is the gap between 𝜆max and the rest
of 𝜆q in (21).

Proof. Let w𝛿(x, 𝑡) be the solutions to (18) with initial data
w𝛿(⋅, 0) = 𝛿w

0
. We define

𝑇
∗
= sup {𝑡 | 󵄩󵄩󵄩󵄩󵄩w

𝛿
(⋅, 𝑡) − 𝛿𝑒

L𝑡w
0

󵄩󵄩󵄩󵄩󵄩
≤
𝐶
1

2
𝛿 exp (𝜆max𝑡)} .

(79)

We also define

𝑇
∗∗

= sup

×

{{{

{{{

{

𝑡 |

󵄩󵄩󵄩󵄩󵄩
w𝛿 (⋅, 𝑡)󵄩󵄩󵄩󵄩󵄩𝐻2+

󵄩󵄩󵄩󵄩󵄩
w𝛿 (⋅, 𝑡)󵄩󵄩󵄩󵄩󵄩

2

𝐻
2

≤
1

𝐶
∗

0

min
{

{

{

𝐷
𝑢

2 (𝜒+2
󵄨󵄨󵄨󵄨󵄨
𝑏
2
−3𝑏

3
𝑈
󵄨󵄨󵄨󵄨󵄨
+3𝑏

3
)

,

(𝜒𝑈)
2

𝐷
𝑢
(𝜒+2

󵄨󵄨󵄨󵄨󵄨
𝑏
2
−3𝑏

3
𝑈
󵄨󵄨󵄨󵄨󵄨
+3𝑏

3
)

}

}

}

}}}

}}}

}

.

(80)
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Choose 𝜃 such that

𝐶
∗

0
𝐶
3
𝜃 (1 + 2𝐶

1/2

3
𝜃)

< min
{

{

{

𝜆max

4 (𝜒 +
󵄨󵄨󵄨󵄨󵄨
𝑏
2
− 3𝑏

3
𝑈
󵄨󵄨󵄨󵄨󵄨
+ 𝑏

3
)
,

𝐷
𝑢

4 (𝜒 + 2
󵄨󵄨󵄨󵄨󵄨
𝑏
2
− 3𝑏

3
𝑈
󵄨󵄨󵄨󵄨󵄨
+ 3𝑏

3
)
,

(𝜒𝑈)
2

2𝐷
𝑢
(𝜒 + 2

󵄨󵄨󵄨󵄨󵄨
𝑏
2
− 3𝑏

3
𝑈
󵄨󵄨󵄨󵄨󵄨
+ 3𝑏

3
)

}

}

}

.

(81)

We now establish a sharper 𝐿2 estimate of w𝛿(⋅, 𝑡) for 0 ≤

𝑡 ≤ min{𝑇𝛿, 𝑇∗, 𝑇∗∗}. First of all, by the definition of 𝑇∗ and
Lemma 2, for 0 < 𝑡 ≤ 𝑇∗, it is not hard to see that

󵄩󵄩󵄩󵄩󵄩
w𝛿 (⋅, 𝑡)󵄩󵄩󵄩󵄩󵄩 ≤

3

2
𝐶
1
𝛿 exp (𝜆max𝑡) . (82)

Applying Lemma 6 and the bootstrap argument, one can
prove

󵄩󵄩󵄩󵄩󵄩
w𝛿 (⋅, 𝑡)󵄩󵄩󵄩󵄩󵄩𝐻2 ≤ √𝐶3 {𝛿

󵄩󵄩󵄩󵄩w0
󵄩󵄩󵄩󵄩𝐻2 + 𝛿 exp (𝜆max𝑡)} . (83)

From this and (𝑎 + 𝑏)𝑝 ≤ 2𝑝−1(𝑎𝑝 + 𝑏𝑝) (𝑎 ≥ 0, 𝑏 ≥ 0, 𝑝 ≥ 1),
it follows that

󵄩󵄩󵄩󵄩󵄩
w𝛿 (⋅, 𝑡)󵄩󵄩󵄩󵄩󵄩

3

𝐻
2
≤ 4𝐶

3/2

3
{𝛿
3󵄩󵄩󵄩󵄩w0

󵄩󵄩󵄩󵄩
3

𝐻
2 + 𝛿

3 exp (3𝜆max𝑡)} . (84)

Applying Duhamel’s principle, we can obtain

w𝛿 (⋅, 𝑡) = 𝛿𝑒
L𝑡w

0

− ∫
𝑡

0

𝑒
L(𝑡−𝜏)

[𝜒∇ (𝑢
𝛿
(𝜏) ∇𝑣

𝛿
(𝜏))

− (𝑏
2
− 3𝑏

3
𝑈) (𝑢

𝛿
(𝜏))

2

+𝑏
3
(𝑢
𝛿
(𝜏))

3

, 0] 𝑑𝜏.

(85)

By Lemma 2, (52), (54), and Lemma 6, for 0 ≤ 𝑡 ≤

min{𝑇𝛿, 𝑇∗, 𝑇∗∗}, we deduce that

󵄩󵄩󵄩󵄩󵄩
w𝛿 (⋅, 𝑡) − 𝛿𝑒L𝑡w

0

󵄩󵄩󵄩󵄩󵄩
≤ 𝐶

1
𝐶
∗

0
{𝜒 +

󵄨󵄨󵄨󵄨󵄨
𝑏
2
− 3𝑏

3
𝑈
󵄨󵄨󵄨󵄨󵄨
+ 𝑏

3
}

× ∫
𝑡

0

𝑒
𝜆max(𝑡−𝜏) {

󵄩󵄩󵄩󵄩󵄩
w𝛿 (𝜏)󵄩󵄩󵄩󵄩󵄩

2

𝐻
2
+
󵄩󵄩󵄩󵄩󵄩
w𝛿 (𝜏)󵄩󵄩󵄩󵄩󵄩

3

𝐻
2
} 𝑑𝜏,

(86)

where 𝐶∗
0
= max{𝐸2

7
, (𝐸2

11
/𝐸2
9
) + 𝐸

6
, 𝐸3
8
}. By our choice of 𝑡 ≤

min{𝑇𝛿, 𝑇∗, 𝑇∗∗}, it is further bounded by

󵄩󵄩󵄩󵄩󵄩
w𝛿 (𝑡) − 𝛿𝑒L𝑡w

0

󵄩󵄩󵄩󵄩󵄩

≤ 𝐶
1
𝐶
∗

0
𝐶
3
(𝜒 +

󵄨󵄨󵄨󵄨󵄨
𝑏
2
− 3𝑏

3
𝑈
󵄨󵄨󵄨󵄨󵄨
+ 𝑏
3
)

× {
𝛿
󵄩󵄩󵄩󵄩w0

󵄩󵄩󵄩󵄩
2

𝐻
2 + 4𝐶

1/2

3
𝛿2
󵄩󵄩󵄩󵄩w0

󵄩󵄩󵄩󵄩
3

𝐻
2

𝜆max

+
𝛿𝑒
𝜆max𝑡 + 2𝐶

1/2

3
𝛿2𝑒2𝜆max𝑡

𝜆max
}𝛿𝑒

𝜆max𝑡.

(87)

We now prove by contradiction that for 𝛿 sufficiently small,
𝑇𝛿 = min{𝑇𝛿, 𝑇∗, 𝑇∗∗}. If 𝑇∗∗ is the smallest, we can let 𝑡 =
𝑇∗∗ ≤ 𝑇𝛿 in (83) and (84). If 𝜃 satisfies (81) with 𝐶

3
≥ 1 and

𝛿 is sufficiently small such that 𝐶
3
𝛿2‖w

0
‖2
𝐻
2 +√𝐶3𝛿‖w0‖𝐻2 ≤

(1/2𝐶∗
0
)min{𝐷

𝑢
/(2(𝜒 + 2|𝑏

2
− 3𝑏

3
𝑈| + 3𝑏

3
)), (𝜒𝑈)

2
/𝐷
𝑢
(𝜒 +

2|𝑏
2
− 3𝑏

3
𝑈| + 3𝑏

3
)}, we immediately see that

󵄩󵄩󵄩󵄩󵄩
w𝛿 (𝑇∗∗)󵄩󵄩󵄩󵄩󵄩𝐻2 +

󵄩󵄩󵄩󵄩󵄩
w𝛿 (𝑇∗∗)󵄩󵄩󵄩󵄩󵄩

2

𝐻
2

≤ 𝐶
3
𝛿
2󵄩󵄩󵄩󵄩w0

󵄩󵄩󵄩󵄩
2

𝐻
2 + √𝐶3𝛿

󵄩󵄩󵄩󵄩w0
󵄩󵄩󵄩󵄩𝐻2 + 𝐶

1/2

3
𝜃 (1 + 𝐶

1/2

3
𝜃)

<
1

𝐶∗
0

min
{

{

{

𝐷
𝑢

2 (𝜒 + 2
󵄨󵄨󵄨󵄨󵄨
𝑏
2
− 3𝑏

3
𝑈
󵄨󵄨󵄨󵄨󵄨
+ 3𝑏

3
)
,

(𝜒𝑈)
2

𝐷
𝑢
(𝜒 + 2

󵄨󵄨󵄨󵄨󵄨
𝑏
2
− 3𝑏

3
𝑈
󵄨󵄨󵄨󵄨󵄨
+ 3𝑏

3
)

}

}

}

.

(88)

This is a contradiction to the definition of 𝑇∗∗. On the other
hand, if 𝑇∗ is the smallest, we can let 𝑡 = 𝑇∗ in (87). If 𝜃
satisfies (81) and 𝛿 is sufficiently small such that 𝐶∗

0
𝐶
3
(𝜒 +

|𝑏
2
− 3𝑏

3
𝑈| + 𝑏

3
)(𝛿‖w

0
‖2
𝐻
2 + 4𝐶

1/2

3
𝛿2‖w

0
‖3
𝐻
2/𝜆max) < 1/4, we

also can see that

󵄩󵄩󵄩󵄩󵄩󵄩
w𝛿 (⋅, 𝑇∗) − 𝛿𝑒L𝑇

∗

w
0

󵄩󵄩󵄩󵄩󵄩󵄩

≤ 𝐶
1
𝐶
∗

0
𝐶
3
(𝜒 +

󵄨󵄨󵄨󵄨󵄨
𝑏
2
− 3𝑏

3
𝑈
󵄨󵄨󵄨󵄨󵄨
+ 𝑏

3
)

× {
𝛿
󵄩󵄩󵄩󵄩w0

󵄩󵄩󵄩󵄩
2

𝐻
2 + 4𝐶

1/2

3
𝛿2
󵄩󵄩󵄩󵄩w0

󵄩󵄩󵄩󵄩
3

𝐻
2

𝜆max

+
𝜃 (1 + 2𝐶

1/2

3
𝜃)

𝜆max
}𝛿𝑒

𝜆max𝑇
∗

<
𝐶
1

2
𝛿𝑒
𝜆max𝑇

∗

.

(89)

This again contradicts the definition of 𝑇∗. Hence, if 𝛿 is
sufficiently small, we have

𝑇
𝛿
= min {𝑇𝛿, 𝑇∗, 𝑇∗∗} . (90)
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From (28), we have
󵄩󵄩󵄩󵄩󵄩
w𝛿 (⋅, 𝑡) − 𝛿𝑒L𝑡w

0

󵄩󵄩󵄩󵄩󵄩

≥

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

w𝛿 (⋅, 𝑡) − 𝛿𝑒𝜆max𝑡 ∑
q∈Ωmax

𝑤
+

q r+ (q) 𝑒q (x)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

−

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝛿 ∑
q∈Ωmax

𝑤
−

q r− (q) exp (𝜆
−

q𝑡) 𝑒q (x)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

−

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝛿 ∑
q∈Ω\Ωmax

{𝑤
−

q r− (q) exp (𝜆
−

q𝑡)

+𝑤
+

qr+ (q) exp (𝜆
+

q𝑡)} 𝑒q (x)
󵄩󵄩󵄩󵄩󵄩

≡

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

w𝛿 (⋅, 𝑡) − 𝛿𝑒𝜆max𝑡 ∑
q∈Ωmax

𝑤
+

q r+ (q) 𝑒q (x)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

− 𝐼
1
− 𝐼
2
;

(91)

that is,
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

w𝛿 (⋅, 𝑡) − 𝛿𝑒𝜆max𝑡 ∑
q∈Ωmax

𝑤
+

q r+ (q) 𝑒q (x)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩
w𝛿 (⋅, 𝑡) − 𝛿𝑒L𝑡w

0

󵄩󵄩󵄩󵄩󵄩
+ 𝐼
1
+ 𝐼
2
.

(92)

Using (33) and (34), we have

𝐼
2

1
≤ 𝛿

2
𝑒
2(𝜆max−𝜈)𝑡(

𝜋

2
)
𝑑

∑
q∈Ωmax

𝐸
2

2
𝐸
2

3
𝑞
6󵄨󵄨󵄨󵄨󵄨
w
𝑞

󵄨󵄨󵄨󵄨󵄨

2

. (93)

We know that there is one (or two) 𝑞2 satisfying 𝜆+(𝑞2) =

𝜆max. If there is only one 𝑞2 satisfying 𝜆+(𝑞2) = 𝜆max, we
denote it by 𝑞2max. If there are 𝑞

2

1
and 𝑞2

2
satisfying 𝜆+(𝑞2) =

𝜆max, we let 𝑞
2

max = max{𝑞2
1
, 𝑞2
2
}. From (93), we have

𝐼
1
≤ 𝐸

2
𝐸
3
𝑞
3

max𝛿𝑒
(𝜆max−𝜈)𝑡 = 𝐶

∗
𝛿𝑒
(𝜆max−𝜈)𝑡, (94)

where 𝐶∗ = 𝐸
2
𝐸
3
𝑞3max. Now we consider 𝐼

2
. By (38), we have

𝐼
2
≤ 𝛿𝑒

(𝜆max−𝜈)𝑡. (95)

From (87), (92), (94), and (95), it follows that
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

w𝛿 (⋅, 𝑡) − 𝛿𝑒𝜆max𝑡 ∑
q∈Ωmax

𝑤
+

q r+ (q) 𝑒q (x)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ 𝐶 {𝑒
−𝜈𝑡

+ 𝛿
󵄩󵄩󵄩󵄩w0

󵄩󵄩󵄩󵄩
2

𝐻
2 + 𝛿

2󵄩󵄩󵄩󵄩w0
󵄩󵄩󵄩󵄩
3

𝐻
2

+𝛿𝑒
𝜆max𝑡 + 𝛿

2
𝑒
2𝜆max𝑡} 𝛿𝑒

𝜆max𝑡,

(96)

where 𝐶 = max{𝐶∗ + 1, (4𝐶
1
𝐶
∗

0
𝐶
3/2

3
/𝜆max)(𝜒 + |𝑏2 − 3𝑏3𝑈| +

𝑏
3
)}. Notice that for 0 ≤ 𝑡 ≤ 𝑇

𝛿, 𝛿𝑒𝜆max𝑡 ≤ 𝜃 is sufficiently
small. As long as 𝑤+q0 ̸= 0 for at least one q

0
∈ Ωmax, which is

generic for perturbations, the corresponding fastest growing
modes
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝛿𝑒
𝜆max𝑡 ∑

q∈Ωmax

𝑤
+

q r+ (q) 𝑒q (x)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≥ 𝛿𝑒
𝜆max𝑡 󵄨󵄨󵄨󵄨󵄨

𝑤
+

q0
󵄨󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨r+ (q0)

󵄨󵄨󵄨󵄨 (97)

have the dominant leading order of 𝛿𝑒𝜆max𝑡.

Our Theorem 7 implies that the dynamics of a general
perturbation is characterized by such linear dynamics over
a long time period of 𝜀𝑇𝛿 ≤ 𝑡 ≤ 𝑇𝛿, for any 𝜀 > 0. In
particular, choose a fixed q

0
= (𝑞

01
, 𝑞
02
, . . . , 𝑞

0𝑑
) ∈ Ωmax and

let w
0
(x) = r

+
(q
0
)/|r

+
(q
0
)|𝑒q0(x); then

󵄩󵄩󵄩󵄩w0 (x)
󵄩󵄩󵄩󵄩𝐻2 = {(

𝜋

2
)
𝑑

(1 +
󵄨󵄨󵄨󵄨q0

󵄨󵄨󵄨󵄨
2

+
󵄨󵄨󵄨󵄨q0

󵄨󵄨󵄨󵄨
4

)}

1/2

. (98)

Note that 𝛿 ≤ 𝜃, 𝜃, and 𝜈 are fixed constants and q
0
is a fixed

vector. From (96) and (98), if 𝑡 ≤ 𝑇𝛿, we have
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
w𝛿 (⋅, 𝑡) − 𝛿𝑒𝜆max𝑇

𝛿 r
+
(q
0
)

󵄨󵄨󵄨󵄨r+ (q0)
󵄨󵄨󵄨󵄨
𝑒q0 (x)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ 𝐶
∗∗
{𝛿
𝜈/𝜆max + 𝜃

2
+ 𝜃

3
} ,

(99)

where 𝐶∗∗ = 𝐶𝐶
4
, 𝐶
4
= max{𝜃1−(𝜈/𝜆max), (𝜋/2)

3𝑑/2
(1 + |q

0
|2 +

|q
0
|4)
3/2

+ 1}. Moreover,

󵄩󵄩󵄩󵄩󵄩
w𝛿 (⋅, 𝑡)󵄩󵄩󵄩󵄩󵄩 ≥ 𝜃 − 𝐶

∗∗
{𝛿
𝜈/𝜆max + 𝜃

2
+ 𝜃

3
} . (100)

Let 0 < 𝜃 < (√1 + (2/𝐶∗∗) − 1)/2, and 𝛿
0

=

((𝜃/2𝐶∗∗) − 𝜃2 − 𝜃3)
𝜆max/𝜈. Then

󵄩󵄩󵄩󵄩󵄩
w𝛿 (⋅, 𝑡)󵄩󵄩󵄩󵄩󵄩≥𝜃 − 𝐶

∗∗
{𝛿
𝜈/𝜆max+𝜃

2
+𝜃
3
}≥

𝜃

2
>0, 0<𝛿≤𝛿

0
.

(101)

This implies nonlinear instability as 𝛿 → 0. In particular,
instability occurs before the possible blow-up time.

Let us point out that although our proof is based on Guo-
Strauss’ bootstrap argument, the adaptation to the procedure
to our problem is not trivial at all, since the appearance
of a growth restriction of a cubic type, we need more
delicate estimates. Notice in our theorem that each initial
perturbation can be drastically different from another, which
gives rise to the richness of the pattern; on the other hand,
the finite number maximal growing modes determines the
common characteristics of the pattern, over the time scale of
ln(1/𝛿).Therefore, our result indeed provides amathematical
description for the pattern formation in the Keller-Segel
model with a cubic source term.
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