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The purpose of the present paper is to establish some new criteria for the classification of the
sublinear differential equation as of the nonlinear limit circle type or of the nonlinear limit point
type. The criteria presented here generalize some known results in the literature.

1. Introduction

In 1910, Weyl [1] published his now classical paper on eigenvalue problems for second-order
linear differential equations of the form

(
a(t)y′)′ + r(t)y = θy, θ ∈ C. (1.1)

He classified this equation to be of the limit circle type if each solution y(t) is square integrable
(denoted by y(t) ∈ L2), that is,

∫∞

0
y2(t)dt < ∞, (1.2)

and to be of the limit point type if at least one solution y(t) does not belong to L2, that is,

∫∞

0
y2(t)dt = ∞. (1.3)
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Weyl showed that the linear equation (1.1) always has at least one square integrable
solution if Im θ /= 0. Thus, for second-order linear equations with Im θ /= 0, the problem
reduces to whether (1.1) has one (limit point type) or two (limit circle type) linearly
independent square integrable solutions. This is known as the Weyl Alternative. Weyl also
proved that if (1.1) is of the limit circle type for some θ0 ∈ C, then it is of the limit circle type
for all θ ∈ C. In particular, this is true for θ = 0, that is, if we can show the following equation

(
a(t)y′)′ + r(t)y = 0, (1.4)

is of limit circle type, then (1.1) is of the limit circle type for all values of θ. There has been
considerable interest in this problem over the years (see [1–10] and references cited therein).
The analogous problem for nonlinear equations is relatively new and not as extensively
studied as the linear cases. For a survey of known results on the linear and nonlinear
problems as well as their relationships to other properties of solutions such as boundedness,
oscillation, and convergence to zero, we refer the reader to the recent monograph [10]. In this
paper, we will discuss the equation with damping term

(
a(t)y′)′ + b(t)y′ + r(t)yγ = 0, (1.5)

where a, r : R+ �→ R and b : R+ �→ R+ are continuous, a′, r ′εACloc(R+), a′′, r ′′εL2
loc(R+),

a(t) > 0, r(t) > 0, and 0 < γ ≤ 1, γ = odd/odd, say γ = (2M − 1)/(2N − 1), M and N are
positive integers, we can write γ = 2k − 1, where k = (M +N − 1)/(2N − 1). When b(t) ≡ 0,
then (1.5) turns into the following equation

(
a(t)y′)′ + r(t)yγ = 0, (1.6)

which is widely researched by many authors (see [10] and references cited therein).

Definition 1.1 (see [2]). A nontrivial solution y(t) of (1.5) is said to be of the nonlinear limit
circle type if

∫∞

0
yγ+1(t)dt < ∞, (1.7)

and it is of the nonlinear limit point type otherwise, that is, there exists a nontrivial solution
y(t) satisfying

∫∞

0
yγ+1(t)dt = ∞. (1.8)

Equation (1.5) is said to be of the nonlinear limit circle type if all its solutions satisfy (1.7),
and it is said to be of the nonlinear limit point type if there is at least one solution satisfying
(1.8).

In this paper, we will give sufficient and necessary conditions to guarantee the
nonlinear limit circle type or nonlinear limit point type for (1.5).
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2. Main Results

To simplify notations, let α = 1/2(k + 1) and β = (2k + 1)/2(k + 1). We define

s =
∫ t

0

[
rα(u)
aβ(u)

]
du, x(s) = y(t). (2.1)

Then (1.5) becomes

ẍ +A(t)ẋ + B(t)xγ = 0, (2.2)

where

A(t) =
b(t)rα(t)
aβ(t)

+
α(a(t)r(t))′

aα(t)rα+1(t)′
, B(t) = (a(t)r(t))β−α. (2.3)

Note that in the transformation (2.1), k is no longer an integer here. In fact, 1/2 < k ≤ 1.
We begin with a boundedness result.

Theorem 2.1. If the condition

∫∞

0

(a(t)r(t))′−
a(t)r(t)

dt < ∞ (2.4)

holds, then each solution of (1.5) is bounded.

Proof. We rewrite (1.5) as the system

y′ = w, w′ =
−a′(t)w − r(t)yγ − b(t)w

a(t)
, (2.5)

and we define

V (t) =
a(t)w2

2r(t)
+
yγ+1(t)
γ + 1

, (2.6)

then we have

V ′(t) =
a(t)w
r(t)

w′ +
[
a(t)
2r(t)

]′
w2 + yγ(t)w

= −a
′(t)
r(t)

w2 − b(t)
r(t)

w2 +
[
a(t)
2r(t)

]′
w2

= −a
′(t)
r(t)

w2 − b(t)
r(t)

w2 +
a′(t)
2r(t)

w2 − a(t)r ′(t)
2r2(t)

w2
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= −
[
a′(t)
2r(t)

+
a(t)r ′(t)
2r2(t)

]
w2 − b(t)

r(t)
w2

= − (a(t)r(t))
′

2r2(t)
w2 − b(t)

r(t)
w2

≤ − (a(t)r(t))
′

2r2(t)
w2 ≤ (a(t)r(t))′−

2r2(t)
w2

≤ (a(t)r(t))′−
2r2(t)

w2 +
(a(t)r(t))′−
a(t)r(t)

yγ+1(t)
γ + 1

=
(a(t)r(t))′−
a(t)r(t)

V (t).

(2.7)

Gronwall’ inequality and condition (2.4) imply that V (t) is bounded, so y(t) is bounded.

To prove our main limit-circle result, we write (2.2) as the system

ẋ = z −A(t)x, ż = Ȧ(t)x − B(t)xγ . (2.8)

Theorem 2.2. Assume that condition (2.4) holds and

∫∞

0

∣∣∣∣∣

[
α(a(t)r(t))′

a1/2(t)r3/2(t)

]′
+
(α
2
− α2

) [(a(t)r(t))′
]2

a3/2(t)r5/2(t)
+

(
b(t)rα(t)/aβ(t)

)′

(a(t)r(t))k/(2(k+1))

∣∣∣∣∣
dt < ∞, (2.9)

and condition

B′(t) ≤ (
γ + 1

)
A(t)B(t), (2.10)

is satisfied. If

∫∞

0

1
B(t)

dt < ∞, (2.11)

then (1.5) is of the nonlinear limit circle type, that is, each solution y(t) of (1.5) satisfies

∫∞

0
yγ+1(t)dt < ∞. (2.12)

Proof. Define

V (x, z, s) =
z2

2
+ B(t)

xγ+1

γ + 1
+
∫ t

0

[
A(ξ)B(ξ) − Ḃ(ξ)

γ + 1

]
rα(ξ)
aβ(ξ)

yγ+1(ξ)dξ. (2.13)
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By direct calculation, we have

V̇ = zż + Ḃ(t)
xγ+1

γ + 1
+ B(t)xγ ẋ +

[
A(t)B(t) − Ḃ(t)

γ + 1

]
yγ+1(t)

= z
(
Ȧ(t)x − B(t)xγ) + Ḃ(t)

xγ+1

γ + 1
+ B(t)xγ(z −A(t)x)

+
[
A(t)B(t) − Ḃ(t)

γ + 1

]
yγ+1(t) = Ȧ(t)xz.

(2.14)

Since condition (2.4) and Theorem 2.1 are satisfied, the solution of (1.5) y(t) = x(s) is
bounded, that is, there exists a constant K1 ≥ 0 such that |x(t)| ≤ K1. So

∣∣Ȧ(t)xz
∣∣ =

[ ∣∣Ȧ(t)
∣∣|x|(1−γ)/2

[a(t)r(t)](β−α)/2

]

×
[
(a(t)r(t))(β−α)/2|x|(1+γ)/2|z|

]

≤ K
(1−γ)/2
1

[ ∣∣Ȧ(t)
∣∣

[a(t)r(t)](β−α)/2

]

×

[
(a(t)r(t))β−αx1+γ + z2

]

2

≤ K
(1−γ)/2
1

[ ∣∣Ȧ(t)
∣∣

[a(t)r(t)](β−α)/2

]

×
[
Bx1+γ

1 + γ
+
z2

2

]

≤ K
(1−γ)/2
1

[ ∣∣Ȧ(t)
∣∣

[a(t)r(t)](β−α)/2

]

× V (t).

(2.15)

Now

Ȧ(t) = A′(t)
dt

ds
= A′(t)

aβ(t)
rα(t)

,

A′(t)

[a(t)r(t)](β−α)/2
=

[(
b(t)rα(t)/aβ(t)

)
+
(
α(a(t)r(t))′/aα(t)rα+1(t)

)]

[a(t)r(t)](β−α)/2

=
α(a(t)r(t))′′

a1/2(t)r3/2(t)

−

[(
α2a′(t)(a(t)r(t))′/(a(t)r(t))1+α

)
+(1+α)

(
αr ′(t)(a(t)r(t))′/aα(t)rα+2(t)

)]

[a(t)r(t)](β−α)/2

+

[
b(t)rα(t)/aβ(t)

]′

[a(t)r(t)](β−α)/2
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=
α(a(t)r(t))′′

a1/2(t)r3/2(t)
− α2a′(t)(a(t)r(t))′

(a(t)r(t))3/2
− (1 + α)α

r ′(t)(a(t)r(t))′

a1/2(t)r5/2(t)

+

[
b(t)rα(t)/aβ(t)

]′

[a(t)r(t)](β−α)/2

=

[
α(a(t)r(t))′

a1/2(t)r3/2(t)

]′
+
α

2
(a(t)r(t))′(a′(t)r(t) + a(t)r ′(t))

a3/2(t)r5/2(t)
− α2[(a(t)r(t))′

]2

a3/2(t)r5/2(t)

+

[
b(t)rα(t)/aβ(t)

]′

[a(t)r(t)](β−α)/2

=

[
α(a(t)r(t))′

a1/2(t)r3/2(t)

]′
+
α

2

[
(a(t)r(t))′

]2

a3/2(t)r5/2(t)
− α2[(a(t)r(t))′

]2

a3/2(t)r5/2(t)
+

[
b(t)rα(t)/aβ(t)

]′

[a(t)r(t)](β−α)/2

=

[
α(a(t)r(t))′

a1/2(t)r3/2(t)

]′
+
(α
2
− α2

) [(a(t)r(t))′
]2

a3/2(t)r5/2(t)
+

[
b(t)rα(t)/aβ(t)

]′

[a(t)r(t)](β−α)/2
.

(2.16)

Let τ(s) denote the inverse function of s(t), we obtain that

∫ s

0

∣∣Ȧ(τ(v))
∣∣

B1/2(τ(v))
dv =

∫s

0

∣∣A′(τ(v))aβ(τ(v))/rα(τ(v))
∣∣

B1/2(τ(v))
dv

=
∫ t

0

∣∣∣∣∣

[
α(a(u)r(u))′

a1/2(u)r3/2(u)

]′
+
(α
2
− α2

) [(a(u)r(u))′
]2

a3/2(u)r5/2(u)
+

(
b(u)rα(u)/aβ(u)

)′

(a(u)r(u))k/(2(k+1))

∣∣∣∣∣
du

(2.17)

is convergent by condition (2.9). Hence, integrating V̇ (s), applying Gronwall’s inequality,
and using condition (2.9), we obtain that V (s) is bounded, so

B(t)
yγ+1

γ + 1
= (a(t)r(t))β−α

yγ+1

γ + 1
≤ K2 (2.18)

for some constant K2 > 0. Condition (2.11) then implies that y(t) is of the nonlinear limit
circle type.

When a(t) ≡ 1, the (1.5) becomes

y′′ + b(t)y′ + r(t)yγ = 0. (2.19)

In this case,A(t) = b(t)rα(t)+αr ′(t)/rα+1(t), B(t) = rβ−α(t). We get the following corollary.
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Corollary 2.3. Assume condition (2.4) and

∫∞

0

∣
∣
∣
∣
∣

[
αr(t)′

r3/2(t)

]′
+
(α
2
− α2

)[r(t)′
]2

r5/2(t)
+

(b(t)rα(t))′

r(t)k/(2(k+1))

∣
∣
∣
∣
∣
dt < ∞, (2.20)

and condition

Ḃ(t) ≤ (
γ + 1

)
A(t)B(t) (2.21)

is satisfied. If

∫∞

0

1
B(t)

dt < ∞, (2.22)

then (2.19) is of the nonlinear limit circle type, that is, each solution y(t) of (2.19) satisfies

∫∞

0
yγ+1(t)dt < ∞. (2.23)

Example 2.4. Consider the following second-order nonlinear differential equation

y′′ +
(
1 + t2

)1/4
y′ +

(
1 + t2

)5/2
y1/3 = 0, (2.24)

here b(t) = (1 + t2)1/4, r(t) = (1 + t2)5/2, γ = 1/3. We can easily verify that all the conditions
in Corollary 2.3 are fulfilled, so each solution of (2.24) is of the nonlinear limit circle type. We
note further that the type of (2.24) cannot be determined since b(t)/= 0.

Next, we give a necessary condition for the sublinear (1.5) to be of the nonlinear limit
circle type.

Theorem 2.5. Suppose condition (2.4),

∫∞

0

b2(t)
a(t)r(t)

dt < ∞,

∫∞

0

a(t)[r ′(t)]2

r3(t)
dt < ∞

(2.25)

hold. If y(t) is a nonlinear limit circle type solution of (1.5), then

∫∞

0

a(t)
[
y′(t)

]2

r(t)
dt < ∞. (2.26)
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Proof. Let y(t) be a nonlinear limit circle type solution of (1.5), then y(t) is bounded by
Theorem 2.1. Multiplying (1.5) by y(t)/r(t), noting that

(
a(t)y′)′ =

(
a(t)y′y

)′ − a(t)
[
y′]2, (2.27)

and integrating by parts, we obtain

a(t)y′(t)y(t)
r(t)

− a(t1)y′(t1)y(t1)
r(t1)

+
∫ t

t1

a(u)y′(u)y(u)r ′(u)
r2(u)

du

−
∫ t

t1

[
a(u)y′(u)

]′
y(u)

r(u)
du −

∫ t

t1

a(u)
[
y′(u)

]2

r(u)
du = 0.

(2.28)

Using (1.5), we have

a(t)y′(t)y(t)
r(t)

− a(t1)y′(t1)y(t1)
r(t1)

+
∫ t

t1

a(u)y′(u)y(u)r ′(u)
r2(u)

du

∫ t

t1

b(u)y′(u)y(u)
r(u)

du

+
∫ t

t1

yγ+1(u) −
∫ t

t1

a(u)
[
y′(u)

]2

r(u)
du = 0.

(2.29)

Denote

H(t) =
∫ t

t1

a(u)
[
y′(u)

]2

r(u)
du, (2.30)

by Schwartz inequality, the boundedness of y(t), and condition (2.14), we obtain

∫ t

t1

a(u)y′(u)y(u)r ′(u)
r2(u)

du ≤ H1/2(t)

[∫ t

t1

a(u)[r ′(u)]2y2(u)
r3(u)

du

]1/2

< M1H
1/2(t) (2.31)

for some constant M1 > 0. By Schwartz inequality, the boundedness of y(t), and condition
(2.25),

∫ t

t1

b(u)y′(u)y(u)
r(u)

du ≤
[∫ t

t1

b2(u)y2(u)
a(u)r(u)

du

]1/2

H1/2(t) ≤ M2H
1/2(t), (2.32)

for some constant M2 > 0.
If y(t) is not eventually monotonic, let {tj} → ∞ be an increasing sequence of zeros of

y′(t). Then, by (2.28), there exists some constant M3 > 0, such that

(M1 +M2)H1/2(tj
)
+M3 ≥ H

(
tj
)
. (2.33)

This implies H(tj) ≤ M4 < ∞ for all j and some M4 > 0, so (2.26) holds.
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If y(t) is eventually monotonic, then y(t)y′(t) ≤ 0 for all t ≥ t1 (t1 ≥ 0 large enough).
Using (2.28), we can repeat the type of argument used above to obtain that (2.26) holds. This
completes the proof of Theorem 2.5.

The following theorem gives sufficient conditions to ensure that (1.5) being of the
nonlinear limit point type.

Theorem 2.6. Suppose condition (2.4), (2.9), (2.10), (2.25) hold. If

∫∞

0

[
(a(t)r(t))′

]2

a(t)r3(t)
dt < ∞, (2.34)

∫∞

0

b2(t)r3α−β(t)
a3β−α(t)

dt < ∞,

∫∞

0

∫ t

0

[
A(ξ)B(ξ) − (

Ȧ(ξ)/γ + 1
)](

rα(ξ)/aβ(ξ)
)

B(t)
dξdt < ∞,

(2.35)

∫∞

0

1
B(u)

du = ∞, (2.36)

then (1.5) is of the nonlinear limit point type.

Proof. As in the proof of Theorem 2.2, we define

V (x, z, s) =
z2

2
+ B(t)

xγ+1

γ + 1
+
∫ t

0

[
A(ξ)B(ξ) − Ȧ(ξ)

γ + 1

]
rα(ξ)
aβ(ξ)

yγ+1(ξ)dξ, (2.37)

we differentiate it to obtain

V̇ = zż + Ḃ(t)
xγ+1

γ + 1
+ B(t)xγ ẋ +

[
A(t)B(t) − Ḃ(t)

γ + 1

]
yγ+1(t)

= z
(
Ȧ(t)x − B(t)xγ) + Ḃ(t)

xγ+1

γ + 1
+ B(t)xγ(z −A(t)x)

+
[
A(t)B(t) − Ḃ(t)

γ + 1

]
yγ+1(t) = Ȧ(t)xz.

(2.38)
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Let y(t) = x(s) be any nontrivial solution of (1.5) with y(t1) = x(s(t1)) = x(s1)/= 0.
Theorem 2.1 implies that y(t) = x(s) is bounded, so |x(s)|(1−γ)/2 ≤ K1 for some constant
K1 > 0. Hence

V̇ (s) ≥ −∣∣Ȧ(t)
∣
∣|x(s)|(1−γ)/2|x(s)|(1+γ)/2|z(s)|

≥ −K1

∣
∣Ȧ(t)

∣
∣

[a(t)r(t)](β−α)/2
×
[
z2

2
+
B(t)xγ+1(t)

2

]

≥ −K1

∣
∣Ȧ(t)

∣
∣

[a(t)r(t)](β−α)/2
×
[
z2

2
+
B(t)xγ+1(t)

γ + 1

]

≥ −K1

∣
∣Ȧ(t)

∣
∣

[a(t)r(t)](β−α)/2
× V (t).

(2.39)

Let H(t) = K1|Ȧ(t)|/B1/2(t), then we can write V̇ +H(t)V ≥ 0. So

d

ds

(

V (s) exp
∫s

s1

H(τ(ξ))dξ

)

≥ 0. (2.40)

Integrating the above inequality, we obtain

V (s) exp
∫ s

s1

H(τ(ξ) ≥ V (s1)). (2.41)

Condition (2.9) implies

∫ s

s1

H(τ(ξ))dξ < ∞, (2.42)

and since V (s1) > 0, we have

V (s) ≥ K2 > 0 for s ≥ s1. (2.43)

Rewriting V (x, z, s) in terms of y and t and dividing (2.42) by B(t), we obtain

[
y′(t)

]2
a(t)

2r(t)
+
yγ+1(t)
γ + 1

+

[
b(t)

[a(t)r(t)]β−α
+ α

[a(t)r(t)]′

r2(t)

]

y(t)y′(t)

+

[
b2(t)r3α−β(t)
2a3β−α(t)

+ α2

[
(a(t)r(t))′

]2

2a(t)r3(t)
+ α

b(t)[a(t)r(t)]′

[a(t)r(t)]2β

]

y2(t)

+
∫ t

0

[
A(ξ)B(ξ) − (

Ḃ(ξ)/
(
γ + 1

))](
rα(ξ)/aβ(ξ)

)
yγ+1(ξ)

B(t)
dξ ≥ K2

B(t)
.

(2.44)
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If y(t) is a limit circle type solution, then y(t) is bounded,
∫∞
t1
yγ+1(t)dt < ∞, and by condition

(2.4) and (2.25), we get

∫∞

t1

[
y′(t)

]2
a(t)

2r(t)
dt < ∞, (2.45)

according to Theorem 2.5. By condition (2.34), we get

∫∞

t1

α2

[
(a(t)r(t))′

]2

2a(t)r3(t)
y2(t)dt < ∞. (2.46)

By the Schwartz inequality,

∫∞

t1

α
[a(t)r(t)]′

r2(t)
y(t)y′(t)dt ≤

(∫∞

t1

α2

[
(a(t)r(t))′

]2
y2(t)

a(t)r3(t)
dt

)1/2

×
(∫∞

t1

[
y′(t)

]2
a(t)

r(t)
dt

)1/2

< ∞.

(2.47)

Noticing condition (2.35) and y(t) being bounded, we get

∫∞

t1

b2(t)r3α−β(t)
a3β−α(t)

y2(t)dt < ∞, (2.48)

so, by the Schwartz inequality, we have

∫∞

t1

b(t)[a(t)r(t)]′

[a(t)r(t)]2β
y2(t)dt ≤

(∫∞

t1

b2(t)r3α−β(t)
a3β−α(t)

y2(t)dt

)1/2

×
(∫∞

t1

[
(a(t)r(t))′

]2

a(t)r3(t)
y2(t)dt

)1/2

< ∞,

∫∞

t1

b(t)

[a(t)r(t)]β−α
y(t)y′(t)dt ≤

(∫∞

t1

b2(t)r3α−β(t)y2(t)
a3β−α(t)

dt

)1/2

×
(∫∞

t1

[
y′(t)

]2
a(t)

r(t)
dt

)1/2

< ∞,

(2.49)

Consequently, integrating both sides of (2.44), we see that the integrand of the left side of
(2.44) is bounded, but the integrand of the right side of (2.44) tends to infinity according to
condition (2.36). This leads to a contradiction, so y(t) is a limit point case solution of (1.5),
and (1.5) is of the nonlinear limit point type.
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Similarly, when a(t) ≡ 1, (1.5) becomes (2.19) and we get the following corollary.

Corollary 2.7. Suppose condition (2.4), (2.10), (2.20) hold. If

∫∞

0

b2(t)
r(t)

dt < ∞,

∫∞

0

[
(r(t))′

]2

r3(t)
dt < ∞,

∫∞

0
b2(t)r3α−β(t)dt < ∞,

∫∞

0

∫ t

0

[
A(ξ)B(ξ) − (

Ȧ(ξ)/
(
γ + 1

))]
rα(ξ)

B(t)
dξdt < ∞,

∫∞

0

1
rβ−α(u)

du = ∞,

(2.50)

then (2.19) is of the nonlinear limit point type.
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