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Abstract
We prove an Omitting Types Theorem for the extension of first order logic

studied by Németi, Sain and others as a solution to the so-called Finitization
Problem in Algebraic Logic. A new omitting types theorem for first order logic
is obtained.
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1 Introduction

We follow the terminology of [11]. Let α be a countably infinite ordinal, and
G ⊆ αα. Then the class of G polyadic set algebras, or GPSAα for short,
is defined in [11, 1.1]. The class of abstract G polyadic algebras, or GPAα

for short, is defined (by a finite schema of equations) in [11, 2.2]. The notion
of rich and strongly rich semigroups is defined in [11, 1.4]. One of the the
main Theorems in [9], cf. Theorem 1.8 therein, is that when G is a rich
semigroup then the abstract and concrete G algebras coincide, i.e. GPSAα =
GPAα. When further G happens to be finitely presented, then GPSAα is
(term equivalent to a variety that is) finitely axiomatizable [11]. This provides
a solution to the so- called Finitization Problem (FP ) in algebraic logic. The
research direction represented by the FP is underlined by a striving of making
all syntactical entities involved in the axiomatization of the validities of the
logic in question (a variant of first order logic) thoroughly finite.
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The FP , a central classic problem in algebraic logic, is extensively discussed
in the introduction of [9] and elaborated upon in the reference [14]. It is worth
noting that the dissertation [10] is devoted to this problem alone.

The main result in [11], cf. Theorem 1.5 therein, is that when G happens
to be a strongly rich semigroup then G polyadic (set) algebras have the super
amalgamation property. The results of [9] and [11] combined provide a finitiz-
able extension of first order logic without equality that is complete and enjoys
the definability properties of Beth and Craig. Here we show - using a Baire
Category approach - that this logic further enjoys an Omitting Types Theo-
rem. Our result applies to ordinary first order logic, giving a new omitting
types theorem.

2 The Main Result

We use standard notation adopted in [11]. In what follows
∏

and
∑

denote
infimum and supremum respectively.

Definition 2.1 Let A be an algebra with a boolean reduct. X ⊆ A is non-
principal if

∏
X = 0.

We shall need the following form of the Baire Category Theorem for compact
Hausdorff spaces [2]. Let covK be the least cardinal such that the real line
can be covered by covK many nowhere dense sets. Then ω < covK ≤ 2Aleph0 .

Lemma 2.2 Let κ < covK. Let X be a compact Hausdorff space and
{Xi : i ∈ κ} be a family of nowhere dense sets in X. Then X \ ⋃

i∈κ Xi is
dense in X.

We formulate and prove our main Theorem:

Theorem 2.3 Let G be a countable strongly rich sub-semigroup of ωω. Let
A ∈ GPAω be countable. Let κ < covK. Let {Xi : i ∈ κ} be a family of
non-principal types of A. Then for all non-zero a ∈ A, there exists a countable
C ∈ GPSAω, and a homomorphism f : A → C such that f(a) 6= 0, and C
omits the given non-principal types in the sense that

⋂
f(Xi) = ∅ for all i ∈ κ.

Proof Let A ∈ GPAω be countable. Then the following hold cf. [9, 2.15]
or [11, 2.9, 2.10]: There exist B ∈ ḠPAω+ω and an embedding of G algebras
e : A → NrωB. Here Ḡ denotes the subsemigroup of ω+ωω + ω generated by
the set {τ̄ : τ ∈ G}, where τ̄ is the transformation that agrees with τ on ω
and otherwise is the identity, together with all transpositions and replacements
on ω + ω. NrωB, on the other hand, is the algebra whose universe is the set
of ω dimensional elements of B, i.e those elements for which cix = x for all
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i ∈ ω + ω ∼ ω. The booleans and cylindrifications in NrωB are those induced
by B. For τ ∈ G and x ∈ NrωB, sNrωB

τ x is defined by sB
τ̄ x. Assume further

that G is strongly rich. For an algebra D and X ⊆ D, let SgDX denote the
subalgebra of D generated by X. Then in [11, 2.10] it is shown that B and e
can be chosen to satisfy

(a) For all X ⊆ A, e(SgAX) = NrωSgB(e(X).)
(b) B is dimension-complemented, in the sense that

(∀x ∈ B)(|∆x ∼ ω| < ω.)

(c) For all X ⊆ A, if
∏A X = 0, and σ ∈ Ḡ, then

∏
sB
σ e(X) = 0.

Let β = ω+ω. Upon identifying e with the identity function let B ∈ ḠPAβ

be as in (a), (b) and (c) above, i.e A = NrωB, A is a generating set for B and∏
sB
σ Xi = 0 for each i < κ and σ ∈ Ḡ. Recall that Ḡ contains all replacements.

For i, j ∈ β, we write, following the convention of [5], si
j for the substitution

corresponding to the replacement [i|j]. Since B is dimension complemented, it
follows from [5, 1.11.6] that

(1) (∀j < β)(∀x ∈ B)(cjx =
∑

i∈β∼∆x

sj
ix.)

Let V be the generalized ω-dimensional weak space
⋃

τ∈G
ωβ(τ). Here ωβ(τ) =

{s ∈ ωβ : |{i ∈ ω : si 6= τi}| < ω}. For each τ ∈ V and for each i ∈ κ, let

Xi,τ = {sB
τ̄ x : x ∈ Xi}.

Here we are using that for any τ ∈ V , τ̄ ∈ Ḡ. This is straightforward, and is
proved in [9, 3.19]. It follows that

(2) (∀τ ∈ V )(∀i ∈ κ)
∏

BXi,τ = 0.

Let S denote the Stone space of the boolean part of B. For a ∈ B, let Na

be the clopen set of S consisting of all ultrafilters of the boolean part of B
containing a. Then form (1) and (2) it follows that for x ∈ B, j < β, i < κ
and τ ∈ V , the sets

Gj,x = Ncjx ∼
⋃

i/∈∆x

Nsj
i xandHi,τ =

⋂

x∈Xi

Nsτ̄ x

are closed nowhere dense sets in S. Indeed, the set Gj,x is closed since it is the
diference of a closed and an open set. Now, suppose seeking a contradiction,
that Gj,x is not nowhere dense. Then it necessarily contains an open set Na

say, for some non-zero element a. Since Na ⊆ Ncjx we have a ≤ cjx thus
cjx− a < cjx. On the other hand

Na ⊆ Ncjx \Nsj
i x
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i.e
Nsj

i x ⊆ Ncjx \Na = Ncjx−a

hence
Nsj

i x ≤ Ncjx−a.

It thus follows that
sj
ix ≤ cjx− a

for every j, which is a contradiction. Similarly it can be proved that each Hi,τ

is closed and nowhere dense. Let

G =
⋃

j∈β

⋃

x∈B

Gj,x, H =
⋃

i∈κ

⋃

τ∈V

Hi,τ.

Then X = S ∼ H ∪G is dense in S. Accordingly, let F be an ultrafilter in
Na ∩X. Then, by the very choice of F , we have the following

(3) For j < β and x ∈ B, if cjx ∈ F then there exists j /∈ ∆x such that
si
jx ∈ F and

(4) for each i < κ and τ ∈ V, there exists x ∈ Xi such that sτ̄x /∈ F.
Let ℘(V ) be the full boolean set algebra with unit V . Let f be the function

with domain A such that

f(a) = {τ ∈ V : sB
τ̄ a ∈ F}.

Then, following the notation of [11, 2.21], f is the desired homorphism from
A into the set algebra

〈℘(V ), ci, sτ 〉i∈ω,τ∈G.

Indeed, that h is a homomorphism follows from (3), cf. [9] Claim 3.22 p.536,
that f(a) 6= 0 follows from that Id, the identity function on β, is in f(a) since
sIda = a ∈ F , and finally, that C omits the non-principal Xi’s all i < covK,
follows directly from (4).

Bearing in mind that theories are represented by abstract algebras, models
by set algebras, and satisfiability by homomorphisms, we arrive at the following
metalogical reading of our main Theorem 4. In the non-degenerate case, the
algebra A corresponds to a countable consistent theory – in the algebraizable
extensions of first order logic without equality studied in [9, §4] – the Xi’s
correspond to non-principal types over this theory, and the set algebra C,
having a countable base, corresponds to a countable model uniformly omitting
these types. Furthermore, in this model the formula corresponding to the
non-zero element a is satisfiable.

An important difference from first order logic is that, in our present context,
we do not assume an upper bound on the number of (free) variables occuring in
the types omitted, i.e. these types need not be finitary, they can have infinitely
many free variables. But there is a price we pay for this improvement. The
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model omitting these types is not a standard model, since it corresponds to
a a union of weak cartesian spaces, i.e sets of the form ωU (p) and not a set
algebra whose unit is a union of cartesian square, i.e. sets of the form ωU . The
classical proof (by forcing) of omitting types for first order logic breaks down
when types consisting of formulas having infinitely many free variables are
considered because there are uncountably many assignments to free variables,
but only countably many stages of the forcing construction to consider them in.
When we consider only those assignments that are eventually constant (which
we do), this problem of cardinality disappeas. But let us now concentrate on
finitary types.

Let A be a G algebra. Then NrnA = {x ∈ A : cix = x,∀i ∈ ω ∼ n}. A
finitary type is a set Γ ⊆ NrnA for some n ∈ ω. Γ is isolated or principal if
there exists a ∈ A such that a ≤ x for all x ∈ Γ. Γ is omitted by A if there
exists B ∈ GPSAω and an isomorphism f : A → B such that

⋂
f(Γ) = ∅. It

seems likely that if we consider only < covK many finitary non-principal types
then we can square the unit in our Theorem, obtaining a standard model. But
in any case if a finitary type Γ is non-principal then it can be omitted by a
non-standard model as shown in our theorem. It is easy to construct examples
where principal types are omitted. We now give a necessary and sufficient
condition for when a single finitary type can be omitted.

Notation: <ωω stands for the set of finite sequences of ω into ω. For
A ∈ GPAω and n ∈ ω, c(n) abbreviates c0c1..cn−1.

Definition 2.4 Let A ∈ GPAω and X ⊆ NrnA. Fix 〈xi : i ∈ ω〉 an
enumeration of X. By a principal tree for X in A we understand a mapping
a : <ωω → A such that:

(i) c(n)a∅ = 1

(ii) −c(n)as∧<i> ∧ as ≤ xi∀s ∈ <ωω, i ∈ ω.

(iii) ∀f ∈ ωω∃n ∈ ω, af |n ≤ x

Theorem 2.5 Let A ∈ GPAω be countable. Let X ⊆ NrnA. Then X is
omitted if and only if there exists no principal tree for X (relative to any fixed
enumeration of X) in A

Let everything be as in the hypothesis. If we can find a principal tree of
X, then it is easy to see following the branches of the tree that X cannot be
omitted. Condition (iii) entails that this procedure come to an end. Conversely
assume that X cannot be omitted. We construct a principal tree for X in A.
Let F be a filter in A. As usual, a filter is the equivalence class of 1 under a
congruence relation on A. Write a ≤ b(modF ) if a ∨ −b ∈ F.

For Y ⊆ A, write a ≤ Y (modF ) if a ≤ y(modF ) for every y ∈ Y.
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Now set:
I(F,X) = {a ∈ A : a ≤ X(modF )}

and
F [X] = F ∪ {−c(n)a : a ∈ A, a ≤ X(modF )} =

{−c(n)a : a ∈ A, a ∈ I(F,X)}.
We now define an increasing sequence of filters {Fα}α∈Ord as follows:

F0 = {1}

Fα+1 = Fα[X],

and if α is a limit ordinal
Fα =

⋃

β<α

Fβ

By definition it is clear that

I(Fβ, X) ⊆ I(Fα, X), β ≤ α

and
Fα =

⋃{−c(n)a : a ∈ ⋃

β<α

I(Fβ, X)}.

Since the sequence of filters is increasing it follows that it eventually stops, so
for some α we have

Fα = Fα+1 = Fα[X].

It follows that X is not isolated in Fα, that is

∏
(X/Fα) =

∏{x/Fα : x ∈ X} = 0

in A/Fα. By the our omitting types Theorem-upon noting that A/Fα is a G
algebra - and the assumption that X is not omitted by A, hence it it is not
omitted by A/Fα, it follows that Fα is inconsistent i.e.

0 ∈ Fα+1,

so that Fα+1 = A. Then there is some

β∅ < α

and
a∅ ∈ I(Fβ∅ , X)c(n)a∅ = 1

Now
a∅ ∈ I(Fβ∅ , X)
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implies that
a∅ ≤ X(modFβ∅)

where
Fβ∅ =

⋃{−c(n)a : a ∈ ⋃

µ<β∅

I(Fµ, X)}.

and thus for any i ∈ ω there is some β<i> < β∅ and a<i> ∈ I(Fβ<i>
, X) such

that
c(n)a<i> ∨ −a∅ ∨ xi

holds in A. We abbreviate the above by

A |= −c(n)a<i> ∧ a∅ ≤ xi

For any i ∈ ω, applying again that

a<i> ∈ I(Fβ<i>
, X)

we can find β<i,j> < β<i> and a<i,j> ∈ I(Fβ(i,j)
, X) such that

A |= −c(n)a<i,j> ∧ a<i> ≤ xj.

Repeating this procedure we find

as, s ∈ <ωω.

Now the sequence of ordinals

β∅ > β<i> > β<i,j> · · ·

cannot go on for ever. So for any f ∈ ωω there is some n ∈ ω such that
af |n = ∅. Define a : <ωω → A as follows:

s 7→ as.

Then it is easy to see that f defines a principal tree of X in A.
It is easy to see that our characterization first for (ordinary) first order logic,

by replacing G algebras by (countable) locally finite cylindric algebras. By the
same token it is easy to characterize omitting < covK many types for first
order logic. We write φ → Γ if φ → ψ for all ψ ∈ Γ. Let P = {Γα(x̄α) : i < α}
be a family of types, where for each i < λ, Γα(x̄α) = {σα

i (x̄α) : i ∈ ω}. A
family of formulas φs s ∈ <ωω is a principal tree of P in T iff there are natural
numbers ns (s ∈ <ωω) and finite sequences of ordinals ᾱs s ∈ <ωω such that
for every s ∈ <ωω ᾱs = (α1

s, . . . α
ns
s ) with αi

s < λ, φs = (φ1
s, . . . φ

ns
s ) with

φi
s = φi

s(x̄αi
s
) and the following conditions (where ȳs = (x̄α1

s
, . . . x̄αsns )) are

satisfied.
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(i) T |= ∃ȳ∅φ∅(ȳ∅)

(ii) T |= ∀ȳs∧<j>¬φs∧<j> ∧ φi
s(x̄αi

s
) → σ

αi
s

j (x̄αi
s
). for all s ∈ <ωω j ∈ ω and

every i (1 ≤ i ≤ ns.)

(iii) For all f ∈ ωω there is some m ∈ ω such that for every i (1 ≤ i ≤ nf |m),
T |= φi

f |m(x̄αi
f|m

) → Γα
f|mi

(x̄α
f |mi

)

The proof of the following (new) Omitting Types Theorem for first order logic
can be destilled from our proofs so far [4].

Theorem 2.6 Let T be a countable first order theory. Let P = {Γα(x̄α) :
α < λ} and λ < covK. There is a model omitting P iff there is no principal
tree of P in T.

3 Conclusion

The main results of the paper gives a new omitting types theorem for certain
extensions of first order logic, that are important in algebraic logic. The study
of these logics was initiated by Tarski, Henkin and Monk, and later was further
investigated by Andréka, Németi and Sain among others. Our result applied
to the classical case of first order logic gives the omitting types theorem proved
in [4]. Our results in this paper contrast negative results on omitting types
(for finite variable fragments of first order logic) proved in [1] and [13].
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