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Abstract 

           
        In the present paper, we study the entire functions represented by vector     
        valued Dirichlet series of several complex variables. The characterizations  
        of their order and type have been obtained. For the sake of simplicity, 
        we have considered the functions of two variables only. 
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1      Introduction 

 Consider  

                         1 2( )
1 2

, 1

( , ) , ( , 1,2)m ns s
mn j j j

m n

f s s a e s it jλ µ σ
∞

+

=
= = + =∑                 (1) 

 
where , 'm na s belong to the Banach space 1( ,|| . ||) ;0 ... as m ,mE λ λ< < < → ∞ → ∞

                                                        
10 ... as n ,nµ µ< < < → ∞ → ∞   

log( )
and lim sup

m n
m n

m n
D

λ µ+ →∞

+ = < +∞
+

.                                       (2) 

 
Such a series is called a vector valued Dirichlet series in two complex variables. 
The concepts of order and type of an entire function (also for analytic function) 
represented by vector valued Dirichlet series of one complex variable were first 
introduced in 1983 by O.P.Juneja and B.L.Srivastava.They also obtained the 
coefficient characterizations of order and type. In this paper we have extended the 
results to the entire functions represented by vector valued Dirichlet series of 
several complex variables. For simplicity, we consider here functions of two 
variables only, though these results can easily be extended to functions of several 
complex variables.  
 
Let 1 2( , )f s s  defined by (1) represent an entire function. We define                   

                  1 2 1 1 2 2( , ) sup{|| ( , ) ||; , 1,2}jM f it it t jσ σ σ σ= + + − ∞ < < ∞ =
                                

 

to be the maximum modulus of 1 2 1 2 1 2( , ).Then ( , ) as , .f s s M σ σ σ σ→ ∞ → ∞ We 

define the order (0 )ρ ρ≤ ≤ ∞ of 1 2( , )f s s as follows. 

 
Class A: An entire function 1 2( , )f s s defined by vector valued Dirichlet series of 

finite order  belongs to class A, if there exist positive constants 1 1 2, ,K Kγ and 2γ  

such that 
(i) For any fixed value of 2 0σ > , there exists a number (1) (1)

1 1 2( , , )Kσ σ γ σ= such 

that 
                                  (1)

1 2 1 1 1 1( , ) exp{ exp( )} for .M Kσ σ σ γ σ σ< ≥                                  

(ii) For any fixed value of 1 0σ > , there exists a number 
(2) (2)

2 2 1( , , )Kσ σ γ σ= such that 

                                  (2)
1 2 2 2 2 2( , ) exp{ exp( )} for .M Kσ σ σ γ σ σ< ≥                                 

Therefore, there exists a number 1 2 1 2( , , , )K Kσ σ γ γ= such that 

              1 2 1 1 1 2 2 2 1 2( , ) exp{ exp( ) exp( )} for , .M K Kσ σ σ γ σ γ σ σ σ< + ≥                       
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Definition 1.1 An entire function 1 2( , )f s s defined by the vector valued Dirichlet 

series (1.1) has  finite orders 1ρ  and 2ρ  with respect to 1s and 2s  respectively if 

(i) For any arbitrarily small 0ε > , and any 2 0σ > ,there exists a number (1)σ =  
(1)

2( , )σ ε σ  such that                         

                    (1)
1 2 1 1 1( , ) exp[exp{ ( )}] for .M σ σ σ ρ ε σ σ< + ≥                         

In addition, there exists at least one value of 2σ , say 0
2 ( )σ ε and correspondingly  

arbitrary large values of 1 1:{ }iσ σ such that 

                             0
1 2 1 1( , ( )) expexp{ ( )}i iM σ σ ε σ ρ ε> − . 

Hence, (i) is equivalent to 
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1

log log ( , )
lim sup lim sup .
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σ σ ρ
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(ii) For any arbitrarily small 0ε > , and any 1 0σ > ,there exists a number 

( ) ( )2 2
1( , )σ σ ε σ=  

such that                           
                     (2)

1 2 2 2 2( , ) exp[exp{ ( )}] for .M σ σ σ ρ ε σ σ< + ≥                           

 
In addition, there exists at least one value of 1σ , say 0

1 ( )σ ε and correspondingly 

arbitrarily large values of 2 2:{ }jσ σ such that 

                           0
1 2 2 2( ( ), ) expexp{ ( )}j jM σ ε σ σ ρ ε> − . 

So, (ii) is equivalent to 
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log log ( , )
lim sup lim sup .

M
σ σ
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Definition 1.2 An entire function 1 2( , )f s s defined by vector valued Dirichlet 

series has a finite order 1 2( , )ρ ρ  if                        

(i) 1 2( , )f s s A∈  
(ii) 1 2( , )f s s has  finite orders      and       with respect to 1s and 2s respectively as 

above. 
(iii) For 0ε > , there exists a number ( )σ σ ε= such that 
                                                                                                              
              { }1 2 1 1 2 2 1 2( , ) exp exp ( ) exp ( ) for , .M σ σ σ ρ ε σ ρ ε σ σ σ< + + + ≥                                     

 
Thus, we define the order of vector valued Dirichlet series as 
 

2ρ1ρ
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Similarly, if 0 ,ρ< < ∞  then the type (0 )T T≤ ≤ ∞  of 1 2( , )f s s is defined as: 

 

                                       1 2
1 2

1 2

,

log ( , )
lim sup .

( )

M
T

e eρσ ρσσ σ

σ σ
→∞

=
+                                   

2. Basic Results. 
 
     We now prove 
Theorem 2.1 The necessary and sufficient condition for the series (1) satisfying 
the condition (2) to be entire is that  

                                     ,log(|| ||)
lim sup .m n

m n
m n

a

λ µ+ →∞
= − ∞

+
                                          (3) 

For proving our result, we need the following result: 
 
Lemma 2.2. The following conditions are equivalent: 
 

(i)  
log( )

lim sup
m n

m n

m n
D

λ µ+ →∞

+ = < +∞
+

 

(ii) 1 2

log log
lim sup , limsup
m n

m n

m n
D D

λ µ→∞ →∞
= < +∞ = < +∞ , 

(iii)There exists ,0 ,α α< < ∞ such that the series
, 0

exp[ ( )]m n
m n

α λ µ
∞

=

− +∑ converges. 

 For the proof of this Lemma we refer to [2]. 
 
Proof of Theorem 2.1 We suppose that (1) defines an entire function.Then it 
converges absolutely for all 1 2( , )s s .Now take the points with coordinates 

( , )p p with 0p > .Then it follows that    ,
, 0

|| ||exp( )m n m n
m n

a pλ µ
∞

=

+ < ∞∑  

,Therefore || || exp( ) ( , )m n m na p M p pλ µ+ ≤
 

and                               ,log || ||
lim sup .m n

m n
m n

a
p

λ µ+ →∞
< −

+
 

Since 0p >  is arbitrary, the necessity part of the theorem is proved. 
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              Conversely, let the given condition (3) be satisfied. It suffices to prove 
that (1) converges absolutely for all 1 2( , )s s .Let us consider 2

1 2( , )s s C∈ , 0σ >  

such that 1 2Re ,Re .s sσ σ< <  Then by (3) and for some 0δ > , 

                                                       

                                           ,
0

log || ||
for ( )m n

m n

a
m n Nσ δ δ

λ µ
< − − + ≥

+
 

 

,and so  || || exp{( ) } exp( ( ))m n m n m na λ µ σ δ λ µ+ < − +  .                        (4) 

        

But the double series 
, 0

exp[ ( )]m n
m n

δ λ µ
∞

=

− +∑  being convergent in view of Lemma 

2.2, it follows from (4) that the series (1) converges absolutely for all 1 2( , )s s , 

given by 1Res σ< , 2Re .s σ< Now, when the series (1) converges at 1 2( , )s s it 

also converges at ' '
1 2( , )s s where '

1 1Re Res s< , '
2 2Re Res s< , hence the result 

follows.    
Next we prove 
 
Theorem 2.3 If  
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=
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is an entire function of order 1 2 1 2( , ) , (0 , ) ,ρ ρ ρ ρ< < ∞  then  
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Proof. The proof of this theorem follows on the lines of the proof of Theorem1 in 
[2]. 
 
3   Main Results 
 
Theorem 3.1  If  1 2( , )f s s  is an entire function of order (0 ),ρ ρ< < ∞  then 
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Proof. Let 
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1,

log( )
lim sup

log || ||

m n
m n

m n
mna

λ µλ µµ −→∞
=  

 
First we show that .ρ µ≥ Let us assume that 0,µ > for otherwise the result is 

trivially true.Then for a given 0,ε >  we have two sequences { }
pMλ  and 

qN{ }with pMµ → ∞  as and as such thatqp N q→ ∞ → ∞ → ∞  

        1
.log || || ( ) ( log log ) for andmn m m n n p qa m M n Nµ ε λ λ µ µ−> − − + = =  

Since the inequality: 
               1 2 1 2( , ) || || exp( )mn m nM aσ σ σ λ σ µ≥ + holds for all 1 2, and ,m nσ σ ,it 

follows that for all 1 2,and and andp qm M n Nσ σ = =  

                   1 1
1 2 1 2log ( , ) { ( ) log } { ( ) log }m m n nM σ σ λ σ µ ε λ µ σ µ ε µ− −> − − + − − . 

 
Taking 
                          1 1

1, 2,( ) log( ) and ( ) log( )
p qp M q Ne eσ µ ε λ σ µ ε µ− −= − = −  

in the above we find that 
 

                             1 2
1 2

exp( ( )) exp( ( ))
log ( , )

( )
M

e

σ µ ε σ µ εσ σ
µ ε

− + −>
−

 

 

1 1, 2 2,for and .p qσ σ σ σ= = Proceeding to limits as 1 2, , weget .σ σ ρ µ→ ∞ ≥  

Further, to prove the converse part, we suppose that ,µ < ∞  for otherwise the 
result is obviously true, so that 
                      ( ) ( )

0 0|| || . , and .m n
mn m na m m n nλ µ ε µ µ ελ µ− + − +< > >        (5) 

Now, 

     
0 0 0 0

0 0 0 0

1 2 1 2
1 1 1 1 1 1 1 1

( , ) || || exp( )
m n n m

mn m n
m n m m n n n m m m n n

M aσ σ σ λ σ µ
∞ ∞ ∞ ∞

= = = + = = + = = + = +

 
≤ + + + + 
 
∑∑ ∑ ∑ ∑ ∑ ∑ ∑  

                              
1 2 3 4

.= + + +∑ ∑ ∑ ∑                                                              (6) 

Now we estimate the four parts of (6). Clearly      
                    

0 01 2
1

(exp( )).m nO σ λ σ µ= +∑  

In view of (5), we get 
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The series on the right hand side of the above inequality is convergent and the 
maximum of the expression 
                         1

1 2exp( ( 2 ) ( log log )m n m m n nσ λ σ µ µ ε λ λ µ µ−+ − + +  

is attained at 1 1
1 2exp( ( 2 )) and exp( ( 2 ))m ne eλ σ µ ε µ σ µ ε− −= + = + , we find that 

 
                       1 2( 2 ) ( 2 )1 1

4

exp{ ( 2 ) ( )}A e e eσ µ ε σ µ εµ ε + +− −≤ + +∑  

whereA  is an absolute constant.  Further, to estimate 
2

,µ∑ being finite, we have 

for all values of mand n  
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But the 1

1max.exp( ( ) log )m m mσ λ ς ε λ λ−− + is attained at  

                                              1
1exp( ( )).m eλ σ ς ε−= +  

Hence, 
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Similarly      
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Substituting these estimates of , (1 4),
i

i≤ ≤∑ in (6), we have 

               1 2 1 2log log ( , ) log{exp( ( 2 ) exp( ( 2 )} (1) ,M Oσ σ σ µ ε σ µ ε≤ + + + +  

which gives ρ µ≤  on proceeding to limits as1 2, .σ σ → ∞  Hence the theorem 

follows. 
 
Theorem 3.2. Let 1 2( , )f s s  be an entire function of order (0 )ρ ρ< < ∞ and type 

(0 ).T T≤ ≤ ∞ Then 

                           1 ( )

,
lim sup( . || || ) .m n m n

m n mn
m n

a e Tλ µ λ µρλ µ ρ+

→∞
=  

 
Proof. We shall only sketch the proof, since it follows on the lines of proof of 
Theorem1. 
For a given 0 we get sequences and ,p qm M n Nε > = = such that 

           1 1
1 2 1 2log ( , ) log logm n

m n

M
α ε α εσ σ λ σ ρ µ σ ρ

λ µ
− −   − −> + + +   

   
        (7) 

 
where α is assumed to be positive and is given by 
                             1 ( )

,
lim sup( . || || )m n m n

m n mn
m n

aλ µ λ µρα λ µ +

→∞
=  . 

Choosing in (7) the sequences of the values of 1 2and given byσ σ  

                               1 1
1 2log , logp qm ne eλ µ

σ ρ σ ρ
α ε α ε

− −   
= =      − −   

   

it follows that  .e Tρ α≥ This assertion is trivially true for the case when 0.α =  

The converse part follows by using the following estimations of '
i

s∑ in (6): 

                                    
0 01 2

1

(exp( )),m nO σ λ σ µ≤ +∑  

                                    2

01
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(exp( )exp . ,mO e
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                                   1 2
1

4

2
exp .( ) .A e e

e
ρσ ρσα ε
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 +≤ + 
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∑  

where 1A  is an absolute constant. Hence 

                                 
1 2

1 2

1 2

1 2

( , ) exp( ) (1) ,

or log ( , ) ( ) (1)

M e e O

M e e o

ρσ ρσ

ρσ ρσ

σ σ
σ σ

≤ + +

≤ + +
 

which gives e Tρ α≤  on proceeding to limits as1 2, .σ σ → ∞ This proves the result. 
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