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Abstract
In this paper, we study involute curve of the bihanic curve in the special
three-dimensional Kenmotsu manifoll with 7 -parallel ricci tensor. We
characterize involute curve by means of biharmanioves in the special three-
dimensional Kenmotsu manifold with 77 -parallel ricci tensor.
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1 Introduction

The idea of a string involute is due to C. Huyg€b858), who is also
known for his work in optics. He discovered inva@sitwhile trying to build a
more accurate clock (see [2]). The involute of @egi curve is a well-known
concept in Euclidean-3 spa&g.

An evolute and its involute, are defined in mutpalrs. The evolute of
any curve is defined as the locus of the centersuofature of the curve. The
original curve is then defined as the involute lié evolute. The simplest case is
that of a circle, which has only one center of atuve (its center), which is a
degenerate evolute. The circle itself is the intelf this point.

In recent years, the theory of degenerate subnidsiftas been treated by
researchers and some classical differential gegnigpics have been extended to
Lorentz manifolds. For instance, in [16], the auwsh@xtended and studied
spacelike involute-evolute curves in Minkowski spditne.

A smooth mapz: N — M is said to be biharmonic if it is a critical point

of the bienergy functional:
1
E,(4)= [ ST dv,

where T(¢) := trJ’dg is the tension field o
The Euler--Lagrange equation of the bienergy i®giby T, (@) =0. Here
the sectionT,(¢) is defined by
T,(®) = -8,T(9) +trR(T (), dg)dg (1.1)
and called the bitension field @f. Non-harmonic biharmonic maps are called

proper biharmonic maps.
In this paper, we study involute curve of the brhanic curve in the
special three-dimensional Kenmotsu manifildwith 77 -parallel ricci tensor. We

characterize involute curve by means of biharmanic/es in thespecial three-
dimensional Kenmotsu manifold with 77 -parallel ricci tensor.

2 Preliminaries

Let M 2””((0,5,/7,9) be an almost contact Riemannian manifold with 1-
form 17, the associated vector fielfl, (1,1) -tensor fieldg and the associated
Riemannian metriq@ . It is well known that [1]

¢ =0,7(¢) =1,n(gx) =0, (2.1)
7 (X)=-X+n(x)¢, (2.2)
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g(X,&)=n(x), (2.3)
g(ex.@r)=g(X.,Y)=n(X)(v) (2.4)
for any vector fieldsX, Y on M . Moreover,
(Ox@)Y = -n(Y)AX)-a(X, @0)é, X, YOx(M), (2.5)
0,& =X -n(X)é, (2.6)

where ] denotes the Riemannian connectiongofthen (M ,go,f,q,g) is called

an almost Kenmotsu manifold [1].
In Kenmotsu manifolds the following relations héiq:

(Own)Y = g(ex, ),

n(R(X,Y)z)=n(v)g(X,2)-n(x)g(Y,2)

R(E XY =n(Y)X - g(X,Y)¢,

R(&, X)E = X -n(X)¢,

S, 9r) = S(X,Y)+2np(X Jy(Y),

(OLR)(X,Y)E=g(z,X)Y -g(z,Y)X -R(X,Y)z,
where R is the Riemannian curvature tensor &ds the Ricci tensor. In a
Riemannian manifold we also have

a(RW, X)¥,z)+g(RW, X)z,Y) =0,

for every vector fieldsX Y, Z .

3  Special Three-Dimensional Kenmotsu Manifold
with n-Parallel Ricci Tensor

Definition 3.1 The Ricci tensoiS of a Kenmotsu manifold is callegl-
parallel if it satisfies

(O,S)(gr, ) =o0.

We consider the three-dimensional manifold
K :{(xl,xz,XS)D R®: (xl,xz,x3)¢ (OOO)}
where (xl, X, x3) are the standard coordinatesRh. The vector fields
e = XS%,e2 = x3%, e, = —x3%
are linearly independent at each pointkof Let g be the Riemannian metric
defined by

(3.1)

g(el’el) = g(ez’ez) = g(es’es) =1, (3.2)
gle.e)=gle, &)=gle.e) =0.
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The characterising properties gf(K) are the following commutation
relations:
[e.6,]=0.[¢g.e]=e.[6 6]=6,. (3.3)

Let 7 be the 1-form defined by
n(2) = 9(Z,&,)foranyZ 0 (M)

Let be the (1,1) tensor field defined by
Ae)=-e, ¢e,) =&, ¢e;)=0.

Then using the linearity of ang we have

n(e,) =1, (3.4)
#(2)=-Z+n(2)e,, (3.5)
g(ez. o) = 9(Z.W)-n(2)nW), (3.6)

for any ZW0Ox(M ). Thus fore,=¢, (4’?,5,/7,9) defines an almost contact

metric structure oM .
The Riemannian connectidn of the metricg is given by

29(0,Y,2)= Xg(Y,Z)+YdZz, X)-zg(X,Y)
-g(X.[v.z])-glv.[x.z])+ o(z.[x.Y])
which is known as Koszul's formula.
Koszul's formula yields
Y =0, Oe & :O,Dele3 =e
O.e =0, U, e, =0,0. e =¢, (3.7)
0. =0,0.¢e,=0,0,¢e; =0.

Moreover we put
Ry = R(eilej)ek’ R = R(e g & &)
where the indices, j,k andl take the values 1,2 ar&l
R121 :0’ R131 = R232 = e3

and

R, =0, Rgi3= Rygps =1. (3.8)
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4  Biharmonic Curves in the Special Three-Dimesional
Kenmotsu Manifold k with n-Parallel Ricci Tensor

Biharmonic equation for the curve reduces to
03T -R(T,0,T)T =0, (4.1)
that is, y is called a biharmonic curve if it is a solutidintloe equation (4.1).

Let us consider biharmonicity of curves in theecial three-dimensional
Kenmotsu manifold< with 77 -parallel ricci tensor. LefT,N,B} be the Frenet
frame field alongy . Then, the Frenet frame satisfies the followingrét--Serret
equations:

O, T = &N,
0,N = =T + 1B, (4.2)
0,B = -N,

where k =[T(y)| =|0;T| is the curvature of andr its torsion and
(T, T) =1,9(N,N) =1,9(B,B) =1,
g(T,N)=g(T,B)=g(N,B) =0.

With respect to the orthonormal ba§ig ,e, ,e, wg can write
T = Tlel +T262 +TSe3’
N =N,e +N,e, + N,e,, (4.3)
B=TxN=Bg +B,, +Bsg,.

Theorem 4.1(see [11])y:1 - K is a biharmonic curve if and only if
Kk =constantz 0,
K*+1°? =1-BZ, (4.4)
T =N,B,.

Theorem 4.2 ( see [11]) Lety:l — K be a non-geodesic curve on the
special three-dimensional Kenmotsu manif&ldwith 7 -parallel ricci tensor
parametrized by arc length. Ik is constant andN,B,#0 , theny is not
biharmonic.
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5 Involute Curves in the Special Three-
Dimensional Kenmotsu Manifold k with n-Parallel Ricci
Tensor

Definition 5.1 Let unit speed curvg:|l — K and the curveS:1 - K be
given For UOs[I1, then the curves is called the involute of the curye if the
tangent at the poiny(s) to the curvey passes through the tangent at the point
£(s) to the curvel and

o(T(s). T(s) =o. (5.1)

Let the Frenet-Serret frames of the curyesand S be {T,N,B} and
{T°N",B}, respectively.

Theorem 5.2Let the curve be involute of the the curye and let o be
a constant real number. Then, the parametric equatif involute curves are

x5(s)=C, —le(—w &% cods+C]-cosgsinfs+C])
+(0-s)Ce ™ singsin[s+C],
CySin'd o -coss cospcogds+C|-sins+C])  (5.2)

K2

X3(s)=Cy +

+(0-5s)Ce ™ singcogds+C],
x*(s)= Ge™* - (o~ 9G¥ cosp,

2
whereC, C,, C,, C, are constants of integration arxd\/—co§¢+ _K2¢.
sin
Proof. The curves § )may be given as
B(S) = p(9) + US)T(s) (5.3)

On the other hand, singe is biharmonic,y is a helix. So, without loss of
generality, we take the axis ¢fis parallel to the vectog,. Then,
o(T.e,) =T, =cosp, (5.4)
where ¢ is constant angle.
If we take the derivative (5.3), then we have

B (s) = [1+u (9)T(s)+ ux(sN(s).
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Since the curves is involute of the curver, g(T(s), T(s))=0. Then, we
get
1+u (8)=0oru(s)= po-s, (5.5)
where p is constant of integration.
Substituting (5.5) into (5.3), we get
B(s)= () +(p-9)T(s). (5.6)

The tangent vector can be written in the followiogn
T=Te +Te,+Tge,. (5.7)

On the other hand the tangent veciois a unit vector, so the following
condition is satisfied
T2+T} =1-co$¢. (5.8)

Noting thatcog¢ +sin’¢ =1,we have

T2 +T; =sin’ . (5.9)
The general solution of (5.9) can be written infilleowing form
T, =singsiny, (5.10)
T, =sing cosy,

where 4 is an arbitrary function of.
So, substituting the componeriis T, andT, in the equation (5.3), we
have the following equation
T =singsin e, +sing cosye, + cosge,. (5.11)

Since|U; T |=«, we obtain

2
/J=\/—cosz¢+ X_s+c, (5.12)
sin
whereCOR .
Thus (5.11) and (5.12), imply
T= sin¢sin[s+ C]e1 +sing cos[s+ C]e2 +Cosge,, (5.13)
KZ
= |- +
where \/ cog ¢ oy
Using (3.1) in (5.13), we obtain
T = (singsin[s+C], x* sing cods + C|,~x° cosg). (5.14)

From third component of, we have
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x*(s) = Ce™™*, (5.15)

where C, is constant of integration.
By direct calculations we have
. 3
x'(s)=C, —Cls—'zmpe‘COS¢S cods+C]-cosgsins+C]), (5.16)

x%(s)=C, +C1ls(—i2ns¢e‘°°s¢s cospcogds+C|-sin[s+C]). (5.17)

Next, we substitute (5.15), (5.16), (5.17) and4%ibto (5.6), we get (5.2).

The proof is completed.
We can use Mathematica in Theorem 5.2, yields

cos¢=sin¢:g,p:C:Q:Cz:C3:K:1.

Corollary 5.3 Let y:1 - K be a unit speed non-geodesic curve with

constant curvature. Then, the parametric equatioing are
. 3
x(s)=C, —Cls—w e cods+C]|-cosgsinfs+C]),

x2(s)=C, - Cls—'?w e % (- cosg cogs + C| +sinfs+ C]), (5.18)

K2

sin’ @

X3 (S) - Cle—cos¢s ’

whereC, C,, C,, C, are constants of integration ar;d\/—co§¢+

We can use Mathematica in Corollary 5.3, yields
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2

cos¢:sin¢:72,czclzc2 =C, =« =1.

Similarly, if we use Mathematica both involute ceirand biharmonic
curve, we have
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