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Abstract 

     In this article, the homotopy analysis method (HAM) has been 
applied to obtain the analytical approach for obtaining approximate 
series solutions to some initial value problems arising in heat transfer 
in a quiescent medium. This method does not need linearization, weak 
nonlinearity assumptions or perturbation theory. The validity of this 
method has successfully been accomplished by applying it to some 
examples. The results show that the method is very effective and 
convenient for solving such equations. 

     Keywords: Heat transfer; Series solution; Homotopy analysis method; 
Symbolic computation; Analytical solution. 
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1      Introduction 

Partial differential equations arise in engineering, applied mathematics and several 
branches of physics, and have attracted much attention. However, it is usually 
difficult to obtain closed-form solutions for such equations, especially for 
nonlinear ones. In most cases, only approximate solutions (either numerical 
solutions or analytical solutions) can be expected. Some numerical methods such 
as finite difference method [1], finite element method [2] have been developed for 
obtaining approximate solutions to partial differential equations. Perturbation 
method [3] is one of the well-known analytical methods for solving such 
nonlinear problems. However, it strongly depends on the existence of small/large 
parameters. Traditional non-perturbation methods such as Adomian’s 
decomposition method [4] and Homotopy perturbation method [5] have been 
developed for solving nonlinear differential equations. However, these methods 
cannot provide a mechanism to adjust and control the convergence region and rate 
of the series solutions. 
The rest of present contribution is organized, as follows. 
In Section 2 of this paper, based on the Homotopy analysis method [6-8] (HAM) 
we propose an analytical approach for solving the following type of PDEs 

subject to the initial condition 

where ( ,0) ( )w x g x=  is a known functions. 

This equation is often encountered in nonlinear problems of unsteady heat transfer 
in a quiescent medium in the case where the thermal diffusivity is exponentially 
dependent on temperature [9]. 
To demonstrate its effectiveness, the approach is applied to solve two cases of 

( )f w in Section 3. It is shown that the series solution obtained via this approach 

is good agreement with exact ones. The success of this approach lies in the fact 
that the HAM provides a convenient way to adjust and control the convergence 
region and rate of the series solutions obtained. Finally in Section 4, some 
concluding remarks are given. 
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2      The HAM-based  Approach 

In order to obtain a convergent series solution to the nonlinear problem (1), we 
first construct the zeroth order deformation equation 

where [ ]0,1p ∈ is an embedding parameter, 0h ≠  is a convergence-control 

parameter, and ( , ; )x t pω is an unknown function, respectively.  

According to (1) the nonlinear operator N  is given by 

 The initial guess 0( , )w x t  of the solution ( , )w x t can be determined by the rule 

of solution expression as follows. 
We now focus on how to obtain higher order approximations to the problem (1). 
From (2), when 0p = and 1p = , 

both hold. Therefore, as p  increases from 0  to 1, the solution ( , ; )x t pω varies 

from the initial guess 0( , )w x t  to the solution ( , ).w x t  Expanding ( , ; )x t pω  in 

Taylor series with respect to p , one has 

where 

Now the convergence of the series (4) depends on the parameter h . 
Assuming that h  is chosen so properly that the series (4) is convergent at

 
1,p =  

we have the solution series 

which must be one of the solutions of the original problem (1), as proved by Liao 
in [7].  

Our next goal is to determine the higher order terms ( , )( 1)mw x t m≥ . Define the 

vector 
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Differentiating the zeroth order deformation equation (2) m  times with respect to 
p , then setting 0p = , finally dividing them by !m , we obtain the m th order 

deformation equation 

and its initial conditions 

where 

and 

Note that the m th order deformation equation (5) becomes 

In view of the ( ,0) 0,mw x =  the coefficients mc can be determined. 

In this way, we can obtain ( , )kw x t ’s recursively. 

The m th order approximation to the problem (1) can be generally expressed by 

Such equation is a family of solutions to the problem (1) expressed in terms of the 
parameter .h  
To obtain an accurate approximation to the problem (1), a proper value of hmust 
be found. First, the valid region of h can be obtained via theh -curve as follows. 

Let 0 0 0( , )c x t= ∈Ω . Then 0( , )hu c  is a function of h , and the curve 

0( , )hu c versus h  contains a horizontal line segment which corresponds to the 

valid region of h . The reason is that all convergent series given by different 
values of h converge to its exact value. So, if the solution is unique, then all of 
these series converge to the same value and therefore there exists a horizontal line 
segment in the curve. We call such kind of curve the h -curve. 
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Although the solution series given by different values in the valid region of 
converge to the exact solution, the convergence rates of these solution series are 
usually different. A more accurate approximation can be obtained by assigning h

 a proper value. By substituting the m th order approximation into the original 
governing equation (1) and then integrating the square residual error over the 
whole domain of problem, one gets a function of h , denoted ( )hF . Minimizing 

( )hF  gives the best value of h which corresponds to the best approximation. 

However, it is usually difficult to minimize ( )hF . Alternatively, one can obtain a 

proper value of h
 
just by observation.

  
 

3      Applications  

In this section, the approach proposed in Section 2 is applied to following two 
cases of ( )f w in (1), which are taken from [9]. 

Example 1. If we take ( ) 0f w = in Eq. (1). Thus the equation becomes 

 
Exact solution of this equation with the initial condition  

is 

where , ,A B C and µ  are arbitrary constants.  
For simplicity, let us take 0, 1.A B λ µ= = = = and 1a = − in (7). Thus, one has 

Now Eq. (6) is solved with the consideration of the initial condition 

In this example, we consider the auxiliary linear operator L as 
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and the nonlinear operator N given by 

In view of such linear operator, the solution ( , )w x t can be expressed by a set of 

base functions 

in the form  

where ( 0,1,2, )Kmd m = are functions in x to be determined later. This provides 

us with the rule of solution expression.  

To obtain higher order terms ( , )mw x t , the m th order deformation equation and 

its boundary conditions are calculated: 

 
where 

and 

Here, some first few terms of kA ‘s have been calculated  
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It should be noted that the notation of kA have used throughout. In this way, we 

can calculate ( , ), ( 0,1,2, )Kkw x t k =  recursively. 

The m th order approximation can be expressed by 

To find the valid region of h , the h -curve given by the 5th order approximation  
at ( ) ( )0 0, 1,1x t = is drawn in Fig. 1, which clearly indicates that the valid region of 

h  is about 0.65 0.3h− < < − . 
When 0.52h = − , we obtain an approximate solution which is good agreement 
with exact solution as shown in Fig 2, where the absolute errors of the shooting 
method approximation, the 5th order HAM approximations are depicted. 
 

 
Fig. 1. h -curve for the 5th order of HAM approximation ( 5(1,1)%w versush ) 
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Fig. 2. Absolute errors of 5th order of HAM approximations at 0.52h = −  

 
 

Example 2. For ( ) wf w b ce λ−= + , (1) becomes 

 
In [9], the authors give an exact solution to (9), as follows: 

where 1C and 2C  are arbitrary constants. 

For the sake of simplicity, let 1, 2, 1, 1a b c λ= − = = = and 1 20, 5C C= = . Using 

such values in the solution (10), it becomes 

Now (10) is solved with the consideration of the initial condition 

For the zeroth order deformation equation, following linear and nonlinear 
operators are respectively used 
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According to (12), following set of base functions is suggested  

Therefore the solution ( , )w x t can be expressed in the form  

where ( 0,1,2, )Kmd m = are functions in x to be determined later. 

To obtain higher order terms ( , )mw x t , the m th order deformation equation are 

calculated: 

where  

In this way, one can calculate ( , )kw x t for 0,1,2,Kk = recursively.  

To find the valid region of h  , theh  -curve given by the 5th order approximation 
at h  is drawn in Fig. 3, which clearly indicates that the valid region of is about 

1.3 0.4h− < < − . 
When 1h = − , we obtain an approximate series solution which agrees very well 
with the exact solution given (11), as shown in Table 1 where the absolute errors 
of the 5th order HAM approximations for 1h = − at different points are calculated. 
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Fig. 3. h -curve for the 5th order of HAM approximation ( 5(1,1)%w versush ) 

4    Conclusions 

In this paper, we obtained the HAM series solution of a problem in heat transfer in 
a quiescent medium.  It can be seen that the series solution of the problem by 
using HAM is very close to the exact solution of the problem which is given in 
Examples 1 and 2.  This shows us that no matter how many nonlinear terms the 
partial differential equations have; we can find series solution of the partial 
differential equation without linearization of them. 

We got some tables and figures to show that the series solution converges very 
rapidly to the exact solution. The success of this approach lies in the fact that the 
HAM provides a convergence-control parameter which can be used to adjust and 
control the convergence region and rate of the series solutions obtained. 

 
Table 1 
The comparisons between HAM and HPM for various values of x and t  in 
Example 2. 
 

x  t  HAM Exact 
1 1.945909703 1.945910149 
3 2.197874312 2.197224578 

 
1 

5 2.197224578 2.397895273 
 1 2.302585066 2.302585093 
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3 2.484856037 2.484906650 2 
5 2.637484331 2.639057330 
1 2.708050200 2.708050201 
3 2.833210848 2.833213344 

 
3 

5 2.944358236 2.944438979 
1 3.091042454 3.091042453 
3 3.178053676 3.178053830 

 
4 

5 3.258091408 3.258096538 
1 3.433987205 3.433987204 
3 3.496507549 3.496507561 

 
5 

5 3.555347616 3.555348061 
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