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Abstract

In this article, the homotopy analysis method (HAM)s been
applied to obtain the analytical approach for olsti;ig approximate
series solutions to some initial value problemsiag in heat transfer
in a quiescent medium. This method does not needrlzation, weak
nonlinearity assumptions or perturbation theory.eTValidity of this
method has successfully been accomplished by agplyito some
examples. The results show that the method is &#gective and
convenient for solving such equations.
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1 Introduction

Partial differential equations arise in engineergplied mathematics and several
branches of physics, and have attracted much mitertiowever, it is usually
difficult to obtain closed-form solutions for suokquations, especially for
nonlinear ones. In most cases, only approximatetisok (either numerical
solutions or analytical solutions) can be expecg&ame numerical methods such
as finite difference method [1], finite element hrad [2] have been developed for
obtaining approximate solutions to partial diffefah equations. Perturbation
method [3] is one of the well-known analytical nedk for solving such
nonlinear problems. However, it strongly dependshenexistence of small/large
parameters. Traditional non-perturbation methodschsuas Adomian’s
decomposition method [4] and Homotopy perturbatiathod [5] have been
developed for solving nonlinear differential eqoas. However, these methods
cannot provide a mechanism to adjust and conteottimvergence region and rate
of the series solutions.

The rest of present contribution is organized oilews.

In Section 2 of this paper, based on the Homotalyasis method [6-8] (HAM)
we propose an analytical approach for solving thiewing type of PDEs

1)

aﬂ:ai(e”w a—Wj+ f(w), (x, H0Q.
ot 16)4 0Xx

subject to the initial condition

w(x,0)=g(x)
wherew (x,0) = g(x) is a known functions.
This equation is often encountered in nonlineablenms of unsteady heat transfer
in a quiescent medium in the case where the thediffakivity is exponentially
dependent on temperature [9].
To demonstrate its effectiveness, the approaclppsieal to solve two cases of
f (w)in Section 3. It is shown that the series solutbtained via this approach

is good agreement with exact ones. The succedsofpproach lies in the fact
that the HAM provides a convenient way to adjusd aontrol the convergence
region and rate of the series solutions obtainedallly in Section 4, some
concluding remarks are given.
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2 TheHAM-based Approach

In order to obtain a convergent series solutioth® nonlinear problem (1), we
first construct the zeroth order deformation ecprati

(1= p)L[a(X,t; p) ~Wo (X € PI= @ el % £ Pl, (2)
where pD[O,]] is an embedding parametérz0 is a convergence-control

parameter, andxx,t; p) is an unknown function, respectively.
According to (1) the nonlinear operathr is given by

N[, t; p)] :‘Z—j’—aaix(e"“g—‘x"j— ().

The initial guesawv,(x,t) of the solutionw (x,t) can be determined by the rule

of solution expression as follows.
We now focus on how to obtain higher order appr@tions to the problem (1).
From (2), whenp =0and p =1,

(X, 1;0) =W, (x,)=w(x,0) and w(x, tl)= w(x t (3)
both hold. Therefore, ap increases fron® to 1, the solutiona(x,t; p) varies
from the initial guessv,(x,t) to the solutiorw (x,t). Expandingexx,t; p) in
Taylor series with respect tp, one has

w(X,t;p)=Wo(x,t)+in(x, Q. (4)
where
Wk(x,t):i_amw(x .t p)
m! op" oo

Now the convergence of the series (4) dependsepdrametef: .
Assuming thati is chosen so properly that the series (4) is cwerdg atp =1,

we have the solution series

W (X, 1) = (X, 1,1)= W, (X, )+ > W (X, t).
k=1
which must be one of the solutions of the origimablem (1), as proved by Liao
in [7].
Our next goal is to determine the higher order sanm (X,t)(m=1). Define the
vector
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W (X, t) ={wy(x 9,..., wy( x D}
Differentiating the zeroth order deformation eqolat{2) m times with respect to
p, then settingp =0, finally dividing them bym!, we obtain themth order

deformation equation

L[Wm(X’t)_Xme—l(X’ 1:)]:hRm( Wml( XC())’ (5)
and its initial conditions

w.(x,0)=0,
where

- _ 1 9"™NJ[awx,t,p)
R,(W(x,1)= (-1 op

|p=0

and

10, m<l,
K = 1, m>1.

Note that them th order deformation equation (5) becomes

W (1) = YW s (6 D+ 2] R (W0 (X6)) d + 6,

In view of thew _ (x,0)= 0, the coefficients, can be determined.
In this way, we can obtaiw, (x,t)’s recursively.
The mth order approximation to the problem (1) can beegally expressed by

W(x,t)=iwk(x,t).

Such equation is a family of solutions to the peobl(1) expressed in terms of the
parameter.

To obtain an accurate approximation to the probl&ma proper value ok must
be found. First, the valid region défcan be obtained via thiecurve as follows.

Let ¢, =(Xqt,)HQ . Then u(c,,7) is a function ofz , and the curve

u(c,,n) versus# contains a horizontal line segment which corregpoto the

valid region ofh. The reason is that all convergent series giverdiffgrent
values of7iconverge to its exact value. So, if the solutioumgque, then all of
these series converge to the same value and thetbire exists a horizontal line
segment in the curve. We call such kind of cuneefthcurve.
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Although the solution series given by differentued in the valid region of

converge to the exact solution, the convergenas rat these solution series are
usually different. A more accurate approximation ba obtained by assignirig

a proper value. By substituting tmeth order approximation into the original
governing equation (1) and then integrating theasguesidual error over the
whole domain of problem, one gets a functionzofdenotedF () . Minimizing

F (n) gives the best value df which corresponds to the best approximation.
However, it is usually difficult to minimize (%) . Alternatively, one can obtain a
proper value of: just by observation.

3 Applications

In this section, the approach proposed in Sectios &plied to following two
cases off (w)in (1), which are taken from [9].

Example 1. If we také (W) =0in Eq. (1). Thus the equation becomes

ow _ a(mawj (6)
—=-a—|e" —|.
ot 0x 0X

Exact solution of this equation with the initialncbtion

W(X,O)z%ln(/wx2 + AX+ B).

2 7
et aeo) <>

where A, B,C and y are arbitrary constants.
For simplicity, let us takéd = B =0,4 = ¢ =1.anda = -1in (7). Thus, one has

x 2 j (8)

+2
Now Eq. (6) is solved with the consideration of thidal condition

W(x,t)=ln(1

W, (X,t)=w(x,0)= In( xz).
In this example, we consider the auxiliary lineperatorL as
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LUMXIPH———+M

and the nonlinear operatd given by

N[alx, & P :‘Z—f’{e‘*’(‘;—f)“ é’)gX‘;’}

In view of such linear operator, the solutwr{x,t) can be expressed by a set of
base functions

{t"In=0,1,2,...}
in the form

W(x,t):idn(x)t”.

whered ,(m=0,1,2,.. )are functions irx to be determined later. This provides
us with the rule of solution expression.

To obtain higher order terms_(X,t), the mth order deformation equation and
its boundary conditions are calculated:

(K01 = X2 W (%, 07 R (W XE).

ot ot
w.(x,0)=0.
where
m-1 i L aW m-1 a?\N
R ——W + 1-i—j I 4+ m-1-i
( —l) Z —~ AI ax IZ:; A aXZ
and
k
Ak 10 2 (ew(x -t p))‘
k! op

Here, some first few terms &, ‘s have been calculated
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— AWo(X,t)
A, =e"

A =w, (X, t)gexD

A, =0 w042 w(x ¥

A, =gt (Ws( X O+ w(x dw( x D+% w( X )3)-

It should be noted that the notationAf have used throughout. In this way, we
can calculatev, (x,t),(k=0,1,2,.. ) recursively.
The mth order approximation can be expressed by

Wm(x,t):iwk(x, t).

To find the valid region of:, the 71-curve given by the 5th order approximation
at (Xo.t,) =(L,3) is drawn in Fig. 1, which clearly indicates that tralid region of

h is about-0.65< 7 <-0.%

When7i =-0.52, we obtain an approximate solution which is goggeament
with exact solution as shown in Fig 2, where theadhltte errors of the shooting
method approximation, the 5th order HAM approximas are depicted.

[

r-0.8

/

08 W07 496 D5 04 03 02 01 -16

h
Fig. 1. 7-curve for the 5 order of HAM approximationw (1, 1)versusi)
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Fig. 2. Absolute errors of'5order of HAM approximations &t = —0.52

Example 2For f W) =b+ce™, (1) becomes

ow =ai(e’“” 6_wj+ b+ ce™.
ot 0X 0X

In [9], the authors give an exact solution to €3 follows:

W(x,t)=%ln(c/1t—% X*+ C x+ Qj

whereC,andC, are arbitrary constants.

228

(9)

(10)

For the sake of simplicity, lea=-1,b=2,c=14= JandC, =0,C, = 5. Using

such values in the solution (10), it becomes

W(x,t):ln(t+x2+5).

Now (10) is solved with the consideration of thi¢i@th condition

W (X,t) =w(x,0)= In( X2 +5) .

(11)

For the zeroth order deformation equation, follayviinear and nonlinear

operators are respectively used
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LLatx,t =22, (12)

ow ow, 0%w
N t =+ D)+ — |-2- €.
[aX,1; p)] P +( (ax) + axzj

According to (12), following set of base functiaasuggested
{exp(—kt)| k > 0}.
Therefore the solutiow (x,t) can be expressed in the form

W(x,t):ioldk(x)e‘kt

whered ,(m=0,1,2,.. )are functions irx to be determined later.
To obtain higher order terms_ (X,t), the mth order deformation equation are
calculated:

0 _, 0 @
EWm(X,t) —Xmawm—l(x’ t)+h Rm(Wnﬂ( Xif))
W, (x,0)=0.

where

T m-1-i-j 62\N _1_

Ry () =W,y ZZA ‘+ZA

i 0X
In this way, one can calculate, (x,t)for k =0,1,2,.. recurswely.

— 52X~ D- A

To find the valid region of: , then -curve given by the 5th order approximation
at 7 is drawn in Fig. 3, which clearly indicates thhé tvalid region of is about
-1.3<hn<-0.4

When7 =-1, we obtain an approximate series solution whicieeg very well
with the exact solution given (11), as shown in[€abwhere the absolute errors
of the 5th order HAM approximations fdr=—1at different points are calculated.
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Fig. 3. 1-curve for the % order of HAM approximationw . (1,1)versusi)

4 Conclusions

230

In this paper, we obtained the HAM series solutiba problem in heat transfer in
a quiescent medium. It can be seen that the ssoiesion of the problem by
using HAM is very close to the exact solution o goroblem which is given in
Examples 1 and 2. This shows us that no matter thawy nonlinear terms the
partial differential equations have; we can findies solution of the partial

differential equation without linearization of them

We got some tables and figures to show that thiesseplution converges very
rapidly to the exact solution. The success of éipiproach lies in the fact that the
HAM provides a convergence-control parameter witigh be used to adjust and
control the convergence region and rate of thesewlutions obtained.

Table 1
The comparisons between HAM and HPM for variousueslofx andt in
Example 2.
X t HAM Exact
1 1.945909703 1.945910149
1 3 2.197874312 2.197224578
5 2.197224578 2.397895273
1 2.302585066 2.302585093
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3 2.484856037 2.484906650
5 2.637484331 2.639057330
1 2.708050200 2.708050201
3 2.833210848 2.833213344
5 2.944358236 2.944438979
1 3.091042454 3.091042453
3 3.178053676 3.178053830
5 3.258091408 3.258096538
1 3.433987205 3.433987204
3 3.496507549 3.496507561
5 3.555347616 3.555348061
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