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Abstract
The subject of this article is to present adgtof first-order disturbance of

second-order approximation of a vectorial functiam the presence of
measurement and numerical computation errors, apf#lications in engineering
and other sciences. The study can be used in f@xamations of functions of
one or more variables from any other domain ofvégti

Keywords measurement errors, errors in numerical computat&rrors of
propagation.
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1 Introduction

Any experimental measurement is affected by srrétfter the cause that
produces them, they can be divided into three ocaiegy systematic errors,
random errors and trivial errors.

1. Systematic errorshave three possible sourcefiserver errors,
instrument errors and errors of methgd]. Whatever are the causes of
systematic errors, they have a common characterists assumed that the value
of an individual measurement is the same wheneeerepeat the measurement,
and hence the error is the same.

The absolute errod, of a measured siz& represents the
module of the maximum difference possible betwienmeasured value and the
true one, and the relative errgy is the ratio between the absolute error and the
module of the true value, being given by the ragtween the absolute error and
the module of the measured value (obviously, witle tondition that the

denominator to be nonzero).
Then, if a measure indirect determined is given by

Z=Xxzty :
1)
its absolute error is
(2
and if the measure is given by:

7= Xyﬂ ’

3
its relative error is

(4)

2. Random errors are determined by statistical considerations.
Experience shows that the directly measured questitre of two possible types:
discreet (eg number of impulses recorded by a ttedeand continous.

The theoretical analysis of statistics of the dite measures
proves that their values are distributed accordtogsson probability distribution
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[1]. According this, the probability to obtain a mbher N of impulses at a
measurement is

__.—aa
p(n)-e " '
)
where
a= Y np(n)
n=0
(6)

is the "true" value of the number of impulses (andyeneral, it is a real number),
and the error with which was determined the nuntbdthe standard error or the
root mean square deviation) is

0= | E0-a25l0) = a

n=0
(7)
If we make a numbeN of measurements in identical conditions,
obtaining the vaIueSl(l), n(Z), . n(N), then the estimated true value is given
by the mean value:

(8)
The error that affects an individual measurem’e@ﬁ would be then
In(i) =/n(i)

(9)

and that of the mean value would be
_ /N
In N

Regarding to the case of continuous measurestistgts show
that the values of these measures are distribuidearding to normal distribution

(10)
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(Gauss)[1]. Let's consider first the case of a EngeasureX. Its probability
density will then

P(x)= dplxx+dx) 1 exp{——(x_a")z}, (11)

dx \ 2o 205
where
ay = [xP(x)dx
(12)

is its "true" value, and

oy :\/ Ofo(x—ax)z P (x)dx

—o0
(13)

is its standard error. In the case in which we makeimberN of measurements
in identical conditions, obtaining the valua€l), x(2), ... , x(N), then the
estimated true value is given by the mean value:

~_ 13,
X = N;x(l)
(14)
the error which affect an individual measuremK(it) will be

oxi) J S (cf)-%)

N-15

(15)
and that of the mean value will be

(16)
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3. Trivial errors are caused by careless or accidental damage and
should be removed from the calculations. In gendhna is easily done, because
these values differ from other very much.

Also, influence on the interpretation of some hssiavethe
numerical computation errors.

It is known that a numerical computation formulausually applied repeatedly.
Consequently, it is not only important the errotraduced in one stage, but its
tendency to increase, or conversely, to mitigatersrpreviously introduced,
namely the stability of the numerical method used.
Numerical error sources are:
1. inherent errors — errors related to the approximate knowledge ofeswaiues
derived from measurements or by the fact that vee dmaling with irrational
numbers (algebraic or transcendental). Obvious$lg, results of any calculation
depends also on the accuracy of the initial in@iadAs inherent errors can also
be regarded the converting errors made in the itramgo the second base of
some numbers that are placed in the memory of mudigital computers. For
example, number 0.1 represented by a finite nurobeligits in the 10th base,
becomes a decimal periodic ratio in the second £a%&0 = 0.0(0011)2).
2. method errors or truncation errors that come from the approximations made
in the deduction of the calculation formulas. Exé&msp the rest RN(x) in the
polynomial interpolation, distance from root, frothe iterative methods of
calculation, the error introduced by the formulairgégration of the trapezes on
an interval equal to h step, the error introducedhie truncation of the series at a
certain rank, etc. Unlike the inherent errors, imgple, method errors can be
reduced as much as possible.
3. rounding errors are related to the limited possibilities of repreagon of
numbers in numerical computers. In general, anypuder can represent the
numbers using a reduced number of significant sligiepending on word length
(number of bits) used to store a number. Curreittlys working with an
equivalent of about 7 significant digits in singleecision and about 15 significant
digits in double precision. As is known, the in@rmemory of current computers
use floating point representation, in normalizedrfoThus, any real number x is
written:

x =f . U, Ifl < 1
17)
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where f is a real number namedantissa b > 0 (b#1) is the base of the
numeration system used, and n (integer) ise¢lponentin normalized form, the
mantissa is in the rangb T, 1)
) < If] < 1
(18)

The only exception to this rule is the number zeqresentation. Consequently, a
real number with more significant digits is "roudtdé¢o the maximum number of
digits. This is done by rounding the mantissa. Otleeindings are performed
during operations. Let t be the number of signiftcdigits. For convenience, let's
suppose that we are working under the tenth base 1B). Then, a numbet
whose initial value is supposed to be accuratebwkm will be written:

x = f . 10+ g - 107 [fl , lg] 0 [0.1, 1),
(19)
whereg contains the digits that cannot be included inrttaatissa f. Rounding is
usually made symmetrical, that is replaced

g = Haa |g| >0.5, |g] = O if |g] < 0.5 .

(20)
In this way, the bound of the relative error is

el = g - 10 |ff - 10 < 5 - 10
(21)

The errors with the edge given by (21) are madaerintroduction of real
numbers in the numerical computer memory. Theycatfee results depending on
the operations to which are undergone the inputesl

2 Main Results

2.1. First-order perturbation of the second order @proximation of a function

Both measurement errors and the numerical computatie propagated
in calculations, leading to disruption of the vauabtained. In the followings we
will calculate the first order perturbation of sadoorder approximation of a
function of several variables. Also we will shovatlihe method is applicable for
functions involved in shaping technical problemssues in engineering or
functions that occur in other areas.

Let the function b R™ — R, of classC?si x® = (x7,... ,x%) € R"
fixed. By applying the Taylor formula with the rastthe Lagrange form in the
neighborhood of the calculation poitft results that there exists’] (0,1) so that
noting withx = (1 — 8)x" + 8x we have:
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flx)=Ff(x")+ % df(x®)(x— x®) + %a‘:f{rn)(r{— x%x —x%) + %daf{'_xcj[f.f} =

Fa+ (L L) (= x0) + 2 =) HFGO) =) + R,
(22)
We note the sum of the first three terms on thetrad the previous formula with
f=).
Note that functiorf (x) is hipersquared, having degree less or equal Thén, if
the degree off is at his turn less or equal to 2, the followirguality will take

placef = f.
Let’'s consider:

(23)
a disruption of f. arguments.
Then:

flx+6)= f(x° ]— (e e S 2l I)I[t—-:’i -1,;)——(1—5 - xOTHf(x*)(x+6_-

afix" &',fla ]

‘*‘J\fUJ*( s T )Lu}~
(x — 27 Hf(x'}}c:
(24)

if you neglect the term (8, )THf(x,)8,

Definition. We call the first order perturbation second ord@peoximation of the
function f the expression

E[.l’.a_r_}: (ﬂf'xn_llm L':'"x I)

. dxy
(25)

Observation. If the degree off is less or equal to 2, the¢fn= f and the point®
is not involved in the calculations. It can be dmequal to 0.
As examples of functions of several variables onctvho apply first-order

disturbance model presented above we can choose:

Example 1.f(x,,x,) = xix.+ 5x,x; (for which it is created the first program
in section 11.2 of this article).

Example 2.f(x,,x,) = 583,2 + 264,75 x, — 195,25x, (function used in the
calculation of the theoretical decomposition tireeg [3])

(6,)+ (x— xT HfF(x°)4,
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Example

3.f(xy,x,) =5573+ 15793x, + 83122 x, — 2,1629x; — 3,1744 x;
(function used in the study dependence of the lmgaktrength of steel in relation
to its chemical composition , see [3])

Example

4.f(xy,....x,) = 1,0431—0,2316x, + 0,1097x, — 0,0837x; +0,2323x,
(function used in the study of laser engravingndtsis steel, see [3])

Example

5.f(xy,...,x,) = 11,866 + 0,832x, + 1,829x, — 2,218x; + 1,353x,x, —
1,508x %3 — 2,0722x,%; — 2,728x; — 1,717x5 — 1,619x3 — 1,407« (function
used in the study electrical erosion, see [3])

(for which it is created the second program inisech.2 of this article).

For applying the first order disturbance model ie functions chosen in these
examples and
making programs by this model, we observe tharallof the form

flag, o x,) = €og + 2€p3%y + -+ 2¢p,x, + €49%5 + -+ €, x5 + 2¢5,x,%, + -+
7 .
SCn—1CnXn_1Xy

(26)
hence,

E[.l’. ar} = Ezz::]. Coi {‘?I[ = 2 E?": 1 Z:-;:-]_ c'._." Xy d

(27)

2.2.Programs in C + +
We present below a C + + program that | createdgutsie method of section Il of
this article, for the previously proposed functemexample 1:
# include<iostream.h>
# include <conio.h>
float f(float x,float y)
{return x*x*x*x*x*y+5*x*y*y*y:}
float dfdx(float x,float y)
{return S5**x*x*x*y+5*y*y*y:}
float dfdy(float x,float y)
{return x*x*x*x*x+15*x*y*y;}
float d2fdx2(float x,float y)
{return 20*x*x*x*y;}
float d2fdxdy(float x,float y)
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{return 5*x*x*x*x+15*y*y;}

float d2fdydx(float x,float y)

{return 5*x*x*x*x+15*y*y;}

float d2fdy2(float x,float y)

{return 30*x*y;}

float e,x,y,x0,y0,deltax,deltay,Deltax,Deltay;

void main()

{clrscr();

cout<<"x0=";cin>>x0;cout<<"y0=";cin>>Yy0;

cout<<"Delta x=";cin>>Deltax;cout<<"Delta y=";cin>> Deltay;
cout<<"delta x=";cin>>deltax;cout<<"delta y=";cin>> deltay;
x=x0+Deltax;y=y0+Deltay;
e=dfdx(x0,y0)*deltax+dfdy(x0,y0)*deltay;
e=e+d2fdx2(x0,y0)*Deltax*deltax;
e=e+d2fdxdy(x0,y0)*Deltax*deltay;
e=e+d2fdydx(x0,y0)*Deltay*deltax;
e=e+d2fdy2(x0,y0)*Deltay*deltay;

cout<<"e="<<e<<endl;

getch();

}

In the followings it is presented a @G program that | created using the
method of section Il of this article, for the prewsly proposed functions as
examples 2,3,4,5:

# include<iostream.h>
# include <conio.h>
float c[10][10],x[10],x0[1],Deltax[10],deltax[10],&
int self,n,i,j,k;
char dorescfunctie,dorescx0,dorescx;
void main()
{clrscr();
do
{cout<<endI<<"The functions aret:"<<endl;
cout<<"1. f(x1,x2)=583.2+264.75*x1-195.25*x2"<<elf
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cout<<"2. f(x1,x2)=55.73+15.793*x1+8.3122*x2-2.28*x1"2-
3.1744*x2"2"<<endl;

cout<<"3. f(x1,x2,x3,x4)=1.0431-0.2316*x1+0.109%2*
0.0837*x3+0.2323*x4"

<<endl;

cout<<"4. f(x1,x2,x3,x4)=11.866+0.832*x1+1.829*x2

2.218*x3+1.353*x1x2-"<<endl;
cout<<"-1.508*x1*x3-2.0722*x2*x3-2.728*x1"2-1.7R2"2-
1.619*x3"2-1.407*x4"2"
<<endl;

cout<<endl<<"select the function (1,2,3,4,0):"in>>self;

if((self<1)||(self>4))return;

if(self==1)

{n=2;for(i=0;i<=n;i++)for(j=0;j<=n;j++)c]i][j]=0;
c[0][0]=583.2;c[0][1]=264.75/2;c[0][2]=-195.25/2;
c[1][0]=264.75/2;c[2][1]=-195.25/2;

}

if(self==2)

{n=2;for(i=0;i<=n;i++)for(j=0;j<=n;j++)c]i] []]=0;
c[0][0]=55.73;c[0][1]=15.793/2;c[0][2]=8.3122/2;
c[1][1]=-2.1629;c[2][2]=-3.1744;

}

if(self==3)

{n=4;for(i=0;i<=n;i++)for(j=0;j<=n;j++)c]i][j]=0;
c[0][0]=1.0431;c[0][1]=-0.2316/2;c[0][2]=0.1097/ 2;
c[0][3]=-0.0837/2;c[0][4]=0.2323/2;c[1][0]=-0.23 16/2;
c[2][0]=0.1097/2;c[3][0]=-0.0837/2;c[4][0]=0.232 3/2;

}

if(self==4)

{n=4;for(i=0;i<=n;i++)for(j=0;j<=n;j++)c]i][j]=0;
c[0][0]=11.866;c[0][1]=0.832/2;c[0][2]=1.829/2;c [0][3]=-2.218/2;
c[1][0]=0.832/2;c[1][1]=-2.728;c[1][2]=1.353/2;c [1][3]=-1.508/2;
c[2][0]=1.829/2;c[2][1]=1.353/2;c[2][2]=-1.717;c [2][3]=-2.0722/2;
c[3][0]=-2.218/2;c[3][1]=-1.508/2;c[3][2]=-2.072 2/2;c[3][3]=-1.619;
c[4][4]=-1.407,
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}
do

{cout<<endI<<"enter the base point"<<endl;
for(k=1;k<=n;k++)

{cout<<"x0["<<k<<"]=";cin>>x0[K];

}

do

{cout<<endl<<"enter the calculation point"<<engl
for(k=1;k<=n;k++)
{cout<<"x["<<k<<"]=";cin>>x0[K];Deltax[K]=x[k]-  xO[K];
}

cout<<'enter thedisturbances from the point of calculatitx<endl;
for(k=1;k<=n;k++)

{cout<<"deltax["<<k<<"]=";cin>>deltax[K];
}
e=0;
for(k=1;k<=n;k++) e=e+(c[0][k]+c[K][0])*deltax[ K];
for(i=1;i<=n;i++) for(j=1;j<=n;j++)
{e=e+c[i][j]]*X[i]*deltax[j];
if(i==j) e=e+c[i][i]*x[i]*deltax]i];
}
cout<<"e="<<e<<endl<<end|,
cout<<"Do you want another calculation pointA¢y?:";cin>>dorescx;
}
while((dorescx=="y")||(dorescx=="Y"));
cout<<" Do you want another current point?(y/hEin>>dorescx0;
}
while((dorescx0=="y")||(dorescx0=="Y"));
cout<<" Do you want another function?(y/n):";cimelorescfunctie;

}

while ((dorescfunctie=="y")||(dorescfunctie=="Y;))

}
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