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Abstract
In this study, we examined the ruled surfaces in Euclidean 3-space with the

Bishop frame of the base curve in two cases and obtained some characteri-
zations on the ruled surfaces by using its directrix, Bishop curvatures, shape
operator and Gauss curvature. Furthermore, we calculated Bishop Steiner rota-
tion, Bishop tranlation vectors, the pitch and angle of pitch of the ruled surfaces
and gave some sufficient and necessary conditions for developable ruled surface
with respect to the Bishop frame of the base curve by using Bishop curvatures
and curvatures of the ruled surface along the generating lines.

Keywords: Ruled surface, Bishop frame, Gauss curvature.

1 Preliminaries

The Bishop frame or parallel transport frame is an alternative approach to
defining a moving frame that is well defined even when the curve has vanish-
ing second derivative. we can parallel transport an orthonormal frame along a
curve simply by parallel transporting each component of the frame. The par-
allel transport frame is based on the observation that, while T (s) for a given
curve model is unique, we may choose any convenient arbitrary basis (N1 (s)
and N2 (s)) for the remainder of the frame, so long as it is in the normal plane
perpendicular to T (s) at each point. If the derivatives of (N1 (s) and N2 (s))
depend only on T (s) and not each other we can make and N1 (s) vary N2 (s)
smoothly throughout the path regardless of the curvature. Therefore, we have
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the alternative frame equations T ′ (s)
N ′1 (s)
N ′2 (s)

 =

 0 k1 (s) k2 (s)
−k1 (s) 0 0
−k2 (s) 0 0


 T (s)
N1 (s)
N2 (s)

 (1)

where

κ (s) =
√
k2

1 + k2
2, θ (s) = arctan

(
k2
k1

)
, τ (s) = −dθ(s)

ds

[1,2,3], so that k1 (s) and k2 (s) effectively correspond to a Cartesian coordinate
system for the polar coordinates (κ (s),θ (s)), with θ (s) = −

∫
τ (s) ds. The

orientation of the parallel transport frame includes the arbitrary choice of
integration constant θ0, which disappears from τ (and hence from the Frenet
frame) due to the differentiation.

2 Introduction

A straight line X in IR3, such that it is strictly connected to Frenet frame the
curve α(s), is represented uniquely with respect to this frame, in the form

X(s) = f1(s)T (s) + f2(s)N1(s) + f3(s)N2(s) (2)

As X move along α(s), it generates a ruled surface given by the regular
parametrization

ϕ(s, v) = α(s) + vX(s) (3)

where the components fi(s), i = 1, 2, 3 are scalar functions of the arc-length
parameter of the curve α(s). This surface will be denoted by M . the curve
α(s) is called a base curve and the various positions of the generating line
X are called the rulings of the surface M . If consecutive rulings of ruled
surface in IR3 intersect, then the surface is to be developable. All the other
ruled surfaces are called skew surfaces. If there exists a common perpendicular
to two constructive rulings in the skew surface, then the foot of the common
perpendicular on the main ruling is called a striction point. The set of striction
points on the ruled surface defines the striction curve[6]. The striction curve
of M can be written in terms of the base curve α(s) as

α(s) = α(s)− 〈T,DTX〉
‖DTX‖2 X(s) (4)

If ‖DTX‖ = 0 then the ruled surface doesn’t have any striction curve. This
case characterizes the ruled surface is cyclindirical. Thus the base curve can
take as a striction curve. Let Px be distribution parameter of M , then

PX =
det(T,X,DTX)

‖DTX‖2 (5)
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where D is Levi-Civita connection on E3 [4]. If the base curve is periodic then
M is closed ruled surface. Let M be a closed ruled surface and W be Darboux
vector then the Steiner rotation vector and Steiner translation vector are

D =
∮

(α)

Wdα, V =
∮

(α)

dα (6)

respectively. Furthermore, the pitch and angle of pitch of M are

LX = 〈V,X〉 , λX = 〈D,X〉 (7)

respectively.

Theorem 2.1 A ruled surface is a developable surface if and only if the
distribution parameter of the ruled surface is zero [4].

3 One-Parameter Spatial Bishop Motion in E3

Let α : I → E3 be a regular curve and {T,N1, N2} be Bishop Frame. The
two coordinate systems {O, T,N1, N2} and {0′;~e1, ~e2, ~e3} are orthogonal coor-
dinate systems in E3 which represent the moving space H and the fixed space
H ′, respectively. Let us express the displacements of H with respect to H ′ as
(H/H ′). In generally, during the one parameter spatial motion (H/H ′), each
line X of the moving space H, generates a ruled surface in the fixed space H ′.
We assume that X be fixed unit vector such that the coefficients f1, f2 and f3

in (2.1) are constant. We can obtain the distribution parameter of the ruled
surface generated by line X of the moving space H. From (2) we obtain,

DTX = f1DTT + f2DTN1 + f3DTN2 (8)

and substituting (1) into (8), we obtain

DTX = (−k1f2 − k2f3)T + k1f1N1 + k2f1N2 (9)

Thus distribution parameter of the ruled surface generated by line X is

PX =
f1f2k2 − f1f3k1

‖DTX‖2 (10)

We can state PX = 0 if and only if following equation satisfies.

k1

k2

=
f2

f3

On the other side, (6) and (7) brings us to definition of the Bishop Steiner
rotation and Bishop tranlation vectors for constant f1, f2 and f3 are

D = −N1

∮
(α)

k2ds+N2

∮
(α)

k1ds, V =
∮

(α)

Tds (11)
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respectively. After rutin calculations we obtain the pitch and angle of pitch of
M are

LX = f1LT , λX = f3

∮
(α)

k1ds− f2

∮
(α)

k2ds (12)

respectively. In the special cases that X = T , X = N1 and X = N2 we can
obtained following equations by using (7), (11) and (12).

LT =
∮

(α)

ds, LN1 = LN2 = 0, LX = f1LT

and

λT = 0, λN1 = −
∮

(α)

k2ds, λN2 =
∮

(α)

k1ds, λX = f3

∮
(α)

k1ds− f2

∮
(α)

k2ds

For the rest of our study, we assume that X be unit vector such that the
coefficients f1 = 0, f2 and f3 in (2) are nonconstant differentiable functions
and ξ be unit normal vector field of M . Thus we can set up the orthonormal
system {T,X, ξ}. Since ξ normal to T then ξ lies in the plane Sp {N1, N2}
and ξ can be choose as ξ = TΛX along the line X depending orientation of
M . Therefore, in this case we shall use the special functions f2 and f3.Thus ξ
and X can be written as

ξ = cosψN1 + sinψN2 , X = sinψN1 − cosψN2 (13)

where ψ = ψ (s) is the angle between ξ and N1 along α and f2(s) = sinψ(s),
f3(s) = − cosψ(s) . We obtained the distribution parameter of the ruled
surface M by using (1) and (5). From (13)

DTX = −λT + ψ′ ξ (14)

and putting this equation in (5), we obtained by direct computation that the
distribution parameter is

PX =
ψ′

λ2 + ψ′2
(15)

which we need to determine the conditions of the ruled surface is developable.
We know that the ruled surface developable if and only if PX is zero so we can
state the following theorem.

Theorem 3.1 A ruled surface M is a developable if and only if its gener-
ating lines has to be constant with respect to the Bishop frame along the base
curve.

Corollary 3.2 A ruled surface is a developable if and only if the angle
between the vector fields ξ and N1 is constant along the base curve.
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We can give the following remark for the special cases that X = T , X = N1

and X = N2.

Corollary 3.3 Ruled surfaces which has the generating line is T , N1 or N2,
are developable. This implies that PT = PN1 = PN2 = 0.

Proof: It is easly see that from (2) and (10), we obtain PT = PN1 = PN2 = 0
then the ruled surface which has the generating line is one of T , N1 or N2, are
developable.

On the other hand, from (4) the striction curve of M is

α(s) = α(s) +
λ

λ2 + (ψ′)2X(s)

where λ = k1 sinψ − k2 cosψ. In the case of M is a cylindirical ruled surface,
we can give the following theorem.

Corollary 3.4 If M is a cylindirical ruled surface then λ = 0 . In this
case, the base and striction curves are coincide.

In the case ψ 6= (2k + 1)π
2
, k ∈ Z then we can write following equation by

using corollary 3
k2

k1

= tanψ.

Thus we proved the following corollary.

Corollary 3.5 A cylindirical ruled surface is developable if and only if k2
k1

is constant. In this case the base curve is the planar.

Corollary 3.6 Let α(s) be striction curve of M then following equation

satisfies
λ

λ2 + (ψ′)2 = constant.

Proof: Since the tangent vector field of the striction curve is normal to X
then

〈
X, dα

ds

〉
= 0.〈

X,
dα

ds

〉
=

〈
X,T +

λ

λ2 + (ψ′)2DTX +
d

ds

(
λ

λ2 + (ψ′)2

)
X

〉

= 〈X,T 〉+
λ

λ2 + (ψ′)2 〈X,DTX〉+
d

ds

(
λ

λ2 + (ψ′)2

)
〈X,X〉

then 〈
X,

dα

ds

〉
=

d

ds

(
λ

λ2 + (ψ′)2

)
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thus we get
d

ds

(
λ

λ2 + (ψ′)2

)
= 0

and we obtain
λ

λ2 + (ψ′)2 = constant.

Corollary 3.7 Let M be a ruled surface given in the form (3) then ϕ (t, vo)
is a striction point if and only if DTX is normal to tangent plane at that point
on M , where vo is

vo =
λ

λ2 + (ψ′)2

Proof: Let suppose that ϕ (t, vo) be a striction point on the base curve α (t)
of M then we must show that 〈DTX,X〉 = 0 and 〈DTX,A〉 = 0. Since the
vector field X is unit vector then T [〈X,X〉] = 0 and we get 〈DTX,X〉 = 0.
On the other side, from (13) and (14) we obtain,

〈DTX,A〉 =
{
λ2 + (ψ′)

2
}
vo − λ.

Now, by making the substitution

vo =
λ

λ2 + ψ′2

we have that the last equation reduces to 〈DTX,A〉 = 0. This means that
DTX is normal to tangent plane at the striction point ϕ (t, vo) on M.

Conversely, since DTX is normal to tangent plane at the point ϕ (t, vo) on
M then 〈DTX,A〉 = 0 and so we obtain

〈DTX,A〉 =
{
λ2 + (ψ′)

2
}
vo − λ = 0

thus we get

vo =
λ

λ2 + (ψ′)2

so we proved that ϕ (t, vo) is a striction point on M.

Theorem 3.8 Absolute value of the Gauss curvature of M is maximum at
the striction points on the generating line X and

|K|max =
{λ2 + (ψ′) 2}2

(ψ′) 2
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Proof: Let M be a ruled surface that given in the form (3) and let Φ be
base of the tangent space which is spanning by the unit vectors Ao and X
where Ao is the tanget vector of the curve ϕ (s, v = const.) with the arc-lengh
parameter s∗. Hence we write

Ao =
dϕ

ds∗
=
dϕ

ds

ds

ds∗

where dϕ
ds

= A , Ao = 1
‖A‖A and ds

ds∗
= 1
‖A‖ . Thus we obtain the following

equations after the routine calculations.

DAoT =
1

‖A‖
{λX + µξ} (16)

DAoξ =
1

‖A‖
{−µT − ψ′X} (17)

DAoA =
1

‖A‖


{

(1− vλ)′ − vψ′µ
}
T +

{
(1− vλ)λ− v (ψ′)2

}
X

+
{

(1− vλ)µ+ (vψ′)′
}
ξ

 (18)

where λ = k1 sinψ − k2 cosψ and µ = k1 cosψ + k2 sinψ. On the other hand,
we denote ξϕ(s,v) as the unit normal vector at the points ϕ (s, v) then from (2)
and (13) we get

ξϕ(s,v) =
1

‖A‖
{(−vψ′)T + (1− vλ) ξ} (19)

By differentiating both side of (19) with respect to the parameter s we get

dξϕ(s,v)

ds
= −

{(
(vψ′)

′
+ µ (1− vλ)

) 1

‖A‖
+ vψ′

(
1

‖A‖

)′}
T

+

{
(1− vλ)

(
1

‖A‖

)′
+
(
(1− vλ)′ − vµψ′

) 1

‖A‖

}
ξ

−ψ′ 1

‖A‖
X

Let S be shape operator of M at the points ϕ (s, v) then we can easly
obtained that the matrix SΦ is following with respect to base Φ.

SΦ =

[
〈S (Ao) , Ao〉 〈S (Ao) , X〉
〈S (X) , Ao〉 〈S (X) , X〉

]

Since 〈S (X) , X〉 = 0 and 〈S (Ao) , X〉 = 〈S (X) , Ao〉 then the Gauss cur-
vature is

K(s, v) = detSΦ = − (〈S (Ao) , X〉)2 (20)
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Suppose that s∗ is arc-length parameter of Ao then we can get

S (Ao) = DAoξϕ(s,v) =
dξϕ(s,v)

ds∗
=
dξϕ(s,v)

ds

ds

ds∗
=

1

‖A‖
dξϕ(s,v)

ds

From (17) and (19) we obtained

S (Ao) = − 1

‖A‖

{(
(vψ′)

′
+ µ (1− vλ)

) 1

‖A‖
+ vψ′

(
1

‖A‖

)′}
T

+

{
(1− vλ)

(
1

‖A‖

)′
+
(
(1− vλ)′ − vµψ′

) 1

‖A‖

}
ξ

−ψ′ 1

‖A‖
X

Hence the Gauss curvature is

K(s, v) = − (ψ′)2

‖A‖4 . (21)

We differentiated both side of (21) with respect to v for find the maximum
value of the Gauss curvature along the X on M . Thus we obtain

∂K(s, v)

∂v
=

2 (ψ′)2
{
v
(
λ2 + (ψ′)2

)
− λ

}
{
v2
(
λ2 + (ψ′)2

)
− 2vλ+ 1

}3 = 0

and we get the value of v is

v =
λ

λ2 + (ψ′)2 . (22)

It is easly to see that, ϕ (s, v) is the striction point and we can say that the
Gauss curvature of M is minimum at the striction points on the directrix X.
Finally, by substuting (21) in (22) then we get

|K|max =
{λ2 + (ψ′) 2}2

(ψ′) 2
. (23)

We can write the relation between the Gauss curvature and the distribution
parameter by using (15) and (23) is following

|K|max =
1

(PX) 2
.

Thus we give the following remark.
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Corollary 3.9 Distribution parameter of the ruled surface is depent only
generating lines.

Morover, the Darboux frame of the surface along base curve is DTT
DTX
DT ξ

 =

 0 λ µ
−λ 0 ψ′

−µ −ψ′ 0


 T
X
ξ


and the Bishop Darboux vector is

W = (ψ′)T − µX + λξ

where λ = k1 sinψ − k2 cosψ and µ = k1 cosψ + k2 sinψ. If ψ = 0 then we
obtain the same Bishop Darboux vector as in [3]. Thus we obtain geodesic
curvature, geodesic torsion and normal curvature of the ruled surface along its
generating lines as follows

κg = λ, τg = ψ′, κξ = µ (24)

respectively. Note also that if the ruled surface is constant curvature surface
with nonzero geodesic curvature then PX is constant and from (15) and (24)
we obtain τg

κg
is constant. Hence we can give the following theorem.

Theorem 3.10 A ruled surface is constant curvature surface with nonzero
geodesic curvature if and only if τg

κg
is constant.

In the case that the base curve is the geodesic of the ruled surface then
τg = 0 and ψ =constant. In this case, the ruled surface is developable. On the
other side, the Bishop Steiner rotation and Bishop tranlation vectors are

D = ψT −
( ∮

(α)

λds

)
X +

( ∮
(α)

µds

)
ξ, V =

∮
(α)

Tds (25)

respectively, furthermore, from (7) the pitch and angle of pitch of M are

LX = 0, λX = −
∮

(α)

λds (26)

respectively. From (13) and (26), we can obtained following equations in the
special cases that X = T , X = N1 and X = N2

LT = LN1 = LN2 = 0

and
λT = ψ
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λN1 =

∮
(α)

µds

 cosψ −

∮
(α)

λds

 sinψ

λN2 =

∮
(α)

µds

 sinψ +

∮
(α)

λds

 cosψ.

Thus we conclude that if the ruled surface is developable then following equa-
tion

(λN1)
2 + (λN2)

2 =

∮
(α)

k1ds


2

+

∮
(α)

k2ds


2

is satisfies.
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[3] B. Bükçü and M.K. Karacan, Special Bishop motion and Bishop dar-
boux rotation axis of the space curve, Journal of Dynamical Systems and
Geometric Theories, 6(1) (2008), 27-34.
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