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Abstract

The nonlinear hydrodynamic Rayleigh-Taylor instiyi(RTI) bounded above
by porous layer using Saffman [1] slip conditiontla¢ interface and below by a
rigid surface using no-slip condition has been gdd The nonlinear problem is
studied numerically in the present paper using Asi&ashforth predictor and
Adams-Moulton corrector numerical techniques. le tonclusion, the nonlinear
problem discussed here is quite different from tbatBabchin et al. [2]
considering plane Couette flow. The present probkegreatly influenced by slip
velocity at the interface between porous layer &#md film. Also, the effect of
magnetic field to stabilize the system. It is noeaable to analytical treatment as
that of Babchin et al.[2]. Therefore, numerical stdbns have to be found. Fourth
order accurate central differences are used for tsphadiscretization using
predictor and corrector numerical technique.
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1 I ntroduction

The phenomenon of instability of the interface kesw a heavy fluids supported
by a lighter fluid known as Rayleigh-Taylor inst#lyi (RTI) has been extensively
studied in a wide range of physical contexts baiteeimentally and theoretically.
In spite of a long history of investigations them® many important motivations
which still attract attention to different branchafsphysics, namely astrophysics
(Arons et al. [3], Bernstein and Book [4], Rudra[&l), plasma fusion (Finn [6]),
space (Amatucci et al. [7]; Penano et al. [8]), @pheric (Sazonov [9]) and
geophysics (Wilcock and Whitehead [10]), etc. Thenpry source by which this
instability is triggered is the gravitational foreeting on an inverted density
gradient (e.g. a heavy fluid supported by a lighid). The basic mechanism of
this instability, an interchange of flux tube te tdoe gravitational free energy, is
the same mechanism that drives the Rayleigh-Bematdbility in the thermal
convection of a gravitationally unstable fluid. tlms case the mean temperature
gradient of the fluid plays a similar role as thensity gradient and the buoyancy
force acts similar to the gravity. Apart from fludynamics RT mode exists in
magnetized plasmas in both collisional and colfiles regimes. It plays a crucial
role in the areas of inertial confinement fusio@K) (see Mikelian [11]).

Rayleigh [12] initiated the study of hydrodynamitstability of fluid having a
vertical density variation. He showed the equiliomi of a horizontal layer of
incompressible, in viscid (ideal) fluid is stableumstable according as the density
increases or decreases anywhere in the verticalyard direction. Under various
physical effects the Rayleigh-Taylor instabilityopfem of a semi-infinite layer of
a fluid has been studied by several authors indgydramics and iMHD. The
detailed account of the various assumptions of dggltamics and
hydromagnetics has been given by ChandrasekharfRb®jerts [14] has extended
the analysis to the case of two fluids of equakkiatic viscosities in the presence
of a vertical magnetic field, while Gerwin [15] hastudied the case of
compressible streaming fluids. The influence otesty on the stability of the
plane interface separating two incompressible fgs®d fluids of uniform
densities, when the whole system is immersed imifoum horizontal magnetic
field, has been studied by Bhatia [16]. He carpatthe stability analysis for two
fluids of equal kinematic viscosities and differel@nsities. A generalized theory
of hydromagnetic stability of the interface betwe®o infinitely conducting
superposed fluids is given by Shivamoggi [17]. Ruah et al. [18] have pointed
out that a magnetic field applied obliquely to theerface between two kinds of
electrically conducting viscous fluids exerts abgitaing influence on the
configuration.
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Although copious literature is available on lin&rl, the work on nonlinear RTI
is very sparse. With the invention of high-speethpoters the nonlinear approach
has changed drastically. If the perturbed quastisiee very small in comparison
with the basic state then the product of the pkedrquantities can be neglected
leading to linear theory. On the other hand if pleeturbations are not small then
product of the perturbed quantities can’t be negtbdeading to nonlinear theory.
Before we proceed into details of this problem wiefly review the work done
on nonlinear RTI. McCrory et al. [19]) have givdretsimulations of the RTI of
ablatively accelerated thin-shell fusion targetsl amowed that the nonlinear
evolution exhibits spike amplitude saturation. Amgle model is derived
heuristically for the nonlinear evolution of the Riy Baker and Freeman [20]).
Babchin et al. [2] have studied the nonlinear sditon of RTI in thin films. They
have found that the combined action of flow shead aurface tension is the
essence of the saturation mechanism. Shivamogg) [2s used the method of
strained co-ordinates in investigating the nonlind&TI problem. After
incorporating the corrections pointed out by Maikd Singh [22] he obtained a
revised expression for the nonlinear cut-off wawember which separates the
region of stability from that of instability. Mohad and Shehawey [23] have
investigated nonlinear electrohydrodynamic RTIha &ibsence of surface charges
and a charge free surface separating two semitmmftlielectric fluids influenced
by a normal electric field subjected to nonlineafadmations. Allah and Yahia
[24] have studied the nonlinear RTI in the preseotenagnetic field and also
mass and heat transfer using the simplified fortrara Later, Verma and Shukla
[25] have studied the linear and nonlinear propsrtif Rayleigh-Taylor modes.

Rudraiah et al. [26] have studied the linear andlinear RTI in a viscous fluid
layer bounded below by a rigid surface and abova pgrous layer based on the
approximations in effect which are similar to Idation and Stokes
approximations. The linear problem has been studiedlytically, while the
nonlinear problem is studied numerically. They ha®wn that the stability
curve can be controlled by the porous-slip parametéahmoud [27] has
discussed the theoretical analysis of the nonlifayleigh-Taylor instability of
two fluids under the influence of a periodic radmahgnetic field. A weakly
nonlinear stability for magnetic fluid has beencdissed by EI-Dib [28]. The
research of an interface between two strong visbonsogeneous incompressible
fluids through porous medium is investigated thecaly and graphically. The
effect of the vertical magnetic field has been dest@ted in this study. The
kinematic viscosities play a stabilizing role whée fluid flows through a porous
media, while a destabilizing influence is recordeaen the fluid flows through
non-porous media. The investigation has shownttigaporous permeability plays
a dual role in the stability behavior. Recently,j#inDevi and Hemamalini [29]
have analyzed the effects of rotation and magrietid on nonlinear RTI of two
superposed ferrofluids. More recently, Rudraialalef30] has investigated the
non-linear study of electrohydrodynamic Rayleighy®a instability in a
composite fluid—porous layer. This problem has tyemfluenced by the slip
velocity at the interface between porous layer taindfilm.
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Nevertheless, much attention has not been giveheriterature on the study of
nonlinear RTI in a poorly conducting fluid boundaidove by a porous layer and
below by a rigid surface in the presence of magnégld in spite of its
importance in varied problems. Therefore, in théggpgr we have investigated
nonlinear hydrodynamic RTI in a composite fluid-quas layer. The evolution of
the interface is analyzed numerically by employiogyth order Adams-Bashforth
predictor and Adams-Moulton corrector methods. @tetrol of instability of the
interface is analyzed in detail.

To achieve this objective, this paper is plannetbbisws. The basic equations for
poorly conducting fluid in the presence of magnéetd called MHD equations
are given in section 2 with suitable approximatiansl boundary conditions. The
dispersion relation of RTI in MHD in the presenderagnetic field in fluid layer
bounded above by a porous layer is derived in @ec8. The importance
conclusions are drawn in the final section.

2 M athematical For mulation

The physical configuration in this paper is shownFig.1. We consider a two-
dimensional fluid-porous medium composite systeriin weavy fluid of constant
density p, in the porous region supported by a lighter flafddensity p; in a

region of height H bounded by a rigid surfacey=0. The interface between the
two fluid —porous medium and the film is descrilibyd;(x,t). Let u and v denote

the velocity components in x and y directions resigely. The fluids are assumed
to be viscous and incompressible. The fluid in tthie film is set in motion by

acceleration normal to the interface whereas irptiveus layer it is assumed to be
static and small perturbations are amplified wherekeration is directed from the
lighter fluid in the thin film to the heavier fluioh the porous layer. Between two
fluids there exists a surface tenspanThe instability at the interface in the

presence of magnetic field is known as hydrodynaRagleigh-Taylor instability
(RTI). To investigate this RTI, we consider a regialar coordinate system (X, y)
with the x-axis parallel to the film and y-axis nal to it.

2.1 Basc Equations:
Following are the basic equations for film-poroagdr composite system:
The conservation of mass:

[1g=0 (1)

The conservation of momentum:

p(%ﬂqﬂ)dj =-0p+ U7t 1o (IxH ) (2)



Nonlinear Study of Hydrodynamic Rayleigh-Taylor... 79

where g = (u, v) the fluid velocity,p the pressurey the fluid viscosity, p the
fluid density andJ the current density.

2.2 Boundary and Surface Conditions:

) The no-slip condition at the rigid surface :
u=0 at y=0 3

i) The Saffman[1] slip condition :
M_%y at y=h 4
& S UkY & y=E (4)

i) The kinematic condition :
_on 0n

+U—=— at y=h (5)

v ot 0X

iv) The dynamic condition :
= =0l 0 + on =h 6
P=-0p-yagztHg aty=h. (6)
where (4 is the fluid viscosity k the permeability of the porous layer, the slip
parameter at the interfacg;the fluid surface tension and = g(,oIO - p;) the

gravitational force.

In solving Egs. (1) to (2), following Rudraiah dt f18], we make use of the
following approximations:

0] The film thicknessh is much smaller than the thicknedsof the dense
fluid above the film. That is

h<<H
(i) The surface elevation is assumed to be small compared to film thickness
h. That is
n<<h

(i)  The Strauhal numbe&, a measure of the local acceleration to inertial
acceleration in Eq.(2.2), is negligibly small. Tia

:L<<1
TU

where U =v/L is the characteristic velocityy the kinematic viscosity,
L=./y/J the characteristic length andl = uy/h*5* the characteristic time.
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These approximations are usually called Stokeslamgcation approximations.
Also we assume that the heavy fluid in the poraysi is almost static because of
heavy creeping flow approximation in a densely pacgorous medium, which is
needed to use the Saffman [1] slip condition.

To understand the physics of the problem, it ispéified using the following
dimensionless variables

X y u v p h
XD:_’ :_’LF: ’\F: , :_,0- - 7
h y h O I u, oW/, d oh" " Jk @
Equations (1) to (6) reduce to the following form:
ou o0v
2
S/ VEY ©)
oX dy
ap
0=— . 10
y (10)
Subject to the above boundary and surface condition
u=0 at y=0 (11)
ou 1 5
a—y—apapu at y = (1)
on on
V—W+UW aty=1 (13)
L 62,7 t 1 14
= - - — a =
P=-N1-"B%Z y (14)

where M =g Hh [o,/u, is the Hartmann numbds,=dJh?/ythe Bond

h
number, 7 =n(X, y, t)the elevation of the interface artdp = N the porous

parameter. It may be noted here that the kinencaticlition given by Eq. (13) is
nonlinear.
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3  Digpersion Relation

To find the dispersion relation, first we have itadfthe velocity distribution from
Eq. (9) using the above boundary and surface dondit

The solution of (9) subject to the above conditi@ns

. ap

u= ﬁCOShMyF /%\S |nhMy_ W& (15)

where :%@

M < 0x

_ K op

M? 0x

_ [B(A-coshM) - MsinhM
' [M coshM+ 8 sinhM
B=a,0,.

After integrating Eq.(8) with respect yobetweeny = 0 and 1 and using Eq.(15),
we get

V(1) =v, = —j a—;J(dy =A — . (16)

_M -sinhM - K (1- coshM

Al M3

To find the expression for the interface evolutjgrusing Eqgs. (16) and (13), we

get
0 3,19 2 4
O_Az{aiulan} ’7+A1{0/7+16/7]

()4

17
ox° Baxt a7

ot T2 ox Boax®

coshM+ K sinhM-1

whereA, = E

Let us analyze the interface evolution by this ¢igna

Equation (17) in the limit oM - O reduces to the one given by Rudraiah et al.,
(1998), where the effect of porous lining on thenlimear evolution of the
interface is studied. In this paper we study thmlooed effect of porous layer
and applied magnetic field on the nonlinear evolutf the interface. The process
described here is quite different from a processhich the film is bounded by a
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fluid with moving boundaries, instead of porousdgydiscussed by Babchin et al.
[2]. Therefore, we use EqQ. (3.3) to study the nwedr interface evolution. Eq.
(17) is not amenable to analytical treatment angcene solve it numerically
using a & order central differences in space and time asamen below. For
time-integration of EQ.(17), Adams-Bashforth prédicand Adams-Moulton
corrector steps of fourth order are used, as de=trin Chapra and Canale [31].
Spatial derivatives are described by the followaegtral difference formulae of
fourth order accuracy:

Z_Z*ﬁ([”(i'z)‘m(i‘])”f??(i+3)‘/7(i+3] (18)
% el n(i-2) 16 -)-30()+ 100+ }-a(+ P @9

a—sz —»ﬁ[-ﬂ(i-i&)-&](i —2+1([i-3-1§ + )+ B( + P-n( + )3]

ox
(20)
a°n 1
Xt BAX
[n(i-3)+127(1- 2~ 391 - 3+ 58()- 390 + b 18 + o + )3
(21)

Here 17(i-2) stands for the value of at the positiox—2Ax. The integer
indicates thé™ grid point.

The initial condition used in the numerical intdgya is a sine-wave with wave
number/ and is of the form

n(x,0) =1, sin(£x) (O< xsgﬁj. (22)

Here the amplitudey, is assumed to be small. In our numerical computatie

use 77, =10 in non-dimensional form and periodic boundary étands have
been applied in the x-direction.

4 Results and Discussion

The nonlinear hydrodynamic RTI (ERTI) in a fluidy&a bounded above by a
thick porous layer and below by rigid surface ie firesence of magnetic field is
investigated. This equation is solved numerica#ling fourth order differences in
space and time and the results are depicted in Z§s
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In Figs 2-9, we discuss the spatial structure ofugin rate of the interface in terms
of 1 _n _107 _ 1 07max at an early stage (initial time) before
NL NL,max ,7 at ”max at

instability occurs for two wave numbér=0.75and ¢ = 2.0 and other parameters
defined earlier. In Figs. 2 and 3 six waves aretaord in the intervdlésr the
case of small wave numbers. The peaks reflect tiséipn of the wave modes.
The case of large wave numbefs-2.0 is presented in Figs. 4 and 5 and it
contains 16 complete waves in the intei@r. Figures 6 and 7 represent whether
the full numerical solutions deviate from a simplarmonic behaviour of7,

namely 77 =sin(¢xX) for ¢=0.75 where only part of the wave is shown and
similarly in Figs. 8 and 9 discussion is on largavesnumber/ = 2.0.

Figures 6(a)-(d) shows that the spatial structueshe interface fort>0 and
Figs.2 describes the interfaceta0 . Initial interface profile is symmetric in the
interval0< x<16/7. But for t>0 every point of the interface moves in the X
direction with velocity proportional to that poietvolution /7. Thus the points

wheren =0 do not move, while the points of maximal elevatiave faster than

all other points. In the subsequent evolution thereetry is lost, since the
maximum moves farther from one of the zeros anderldo the other one.
However, this process of steepening of the forwamks of the profile doesn'’t
result in the breakup of the interface, becausbtetffects of surface tension, slip
and magnetic field. Initially these parameters rhaye negligible effects, but as
time progresses those parameters play an impoméantin the stabilization. In
Figs.6(a)-(d) only one part of the wave is showa(, ionly one perio®r) as we
move from top to bottom and clearly notice that sggnmetry can obtained with
the effect of slip due to porous layer and hendeiced the growth rate of RTI at
the interface considerably fa»0 .

From Figs. 3 it is clear that the interface profidesymmetric in the interval
O0< x< 16T for initial time t=0 . As we move from top to bottom in Figs. 7(a)-
(d), we observe that the symmetry can be recovinethcreasing the magnetic
field M. Therefore, the effect of magnetic field is tduee the asymmetry of the
system and hence stabilize the system.

Figures 8 and 9 are similar to Figs. 6 and 7 bey thffer in the value of/, that

is ¢ =2.0. In each of these cases we notice that the shape curve remain the
same but they vary in magnitude. The effect oféhgsmrameters is also to reduce
the growth rate as in the earlier cases.

It may also be noted that the full numerical saltfor all cases is not possible
because of the limitation of the numerical scheiméhis problem computation of
the influence for larger values of Hartmann numideis not possible because of
the above limitation (when M>20). Also similar belwur happens wherg is
very large. In addition to this full numerical sbbn becomes unstable for such
cases.
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