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Abstract 

In this paper, we first bring an introductory of a point process and focus on some 
of its important properties and concepts. Then, we interpret the improved time 
points of a given process based on conditional intensity function. Finally, we 
present an efficient algorithm and prove its performance by performing successful 
results. 
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1 Introduction 
The basic concepts of general point process, Poisson point process and non-
homogeneous Poisson process with basic related definitions and theorems have 
been introduced in [2, 3, 5]. 
 

 



Monte Carlo Simulation for Interpreting…                                                   105  

Definition 1.1 (Conditional Intensity Function): The conditional intensity 
function is a convenient and intuitive way of specifying how the present depends 
on the past in an evolutionary point process. Consider the conditional density f   
and its corresponding cumulative distribution function F  . Then the conditional 
intensity function (or Hazard function) is defined by 
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The conditional intensity function can be interpreted heuristically in the following 
way: consider an infinitesimal interval around t , saydt , then 
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Here ( )N A denotes the number of points falling in an interval, and the last 
equality follows from the assumption that no points coincide, so that there is 
either zero or one point in an infinitesimal interval. In other words, the 
conditional intensity function specifies the mean number of events in a region 
conditional on the past. 
 
Example 1.2 (Poisson Process): The (nonhomogeneous) Poisson process is 
among other things characterized by the number of points in disjoint sets being 
independent. The conditional intensity function inherits this independence. The 
Poisson process is quite simply the point process where the conditional intensity 
function is independent of the past, i.e. the conditional intensity function is equal 
to the intensity function of the Poisson process, ( ) ( )t t   . 
 
2 Simulation 
 
Simulation turns out to be fairly easy when the conditional intensity function is 
specified. The conditional intensity function leads to different approaches for 
simulating a point process. 
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2.1 Why Simulating a Point Process? 
 
Simulations of point processes are useful for many things: What does a point 
pattern typically look like? Simulating a point process a couple of times for a 
given model and a given set of parameters will provide valuable information on 
what a typical point pattern looks. Is it clustered or regular? Is it non 
homogeneous or homogeneous? Does it look anything remotely like the data you 
are going to spend the next week fitting the model to?  
 
Prediction: Given an observed past, what does the future hold? The specification 
of the conditional intensity function means that it is easy to include the already 
observed past, and then simulate the future. 
 
Model Checking: Prediction can also be used for model checking if we only use 
the data in the first half of the observation interval to fit a model, and then 
simulate predictions of the second half to see if this corresponds to the second half 
of the observed data. Or we can use all of the data, and compare with simulations 
of the whole data set. 
 
Summary Statistics: Many quantities can be calculated explicitly from the 
conditional intensity function, such as the probability of getting no events in the 
next month or the mean time to the next event. However, particularly complicated 
summary statistics may not be available on closed form, but can instead be 
approximated by simulation. For example, the mean number of events in a given 
time interval may not be available on closed form for a complicated model, but 
we can then approximate it by the average number of points in a number of 
simulations. 
 
2.2 Simulation Time Points (Method) 
 
In this section, we broach the topic of simulation assessment. In modeling, the 
existence of a logically consistent simulation algorithm for some process is 
tantamount to a constructive proof that the process exists. Furthermore, simulation 
methods have become a key component in evaluating the numerical 
characteristics of a model, in checking both qualitative and quantitative features of 
the model, and in the centrally important task of model-based prediction. A brief 
survey of the principal approach to point process simulation and of the theoretical 
principle on which this approach is based therefore seemed to us an important 
complement to the rest of the text. 
 
This section provides a brief introduction to simulation method for evolutionary 
model; that is, for model retaining a time-like dimension that then dictates the 
probability structure through the conditional intensity function. Simulation 
method can be developed also for spatial point patterns, but considerable 
conceptual simplicity results from the ability to order the evolution of the process 
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in ‘time’. The growth in importance of Markov chain Monte Carlo method for 
simulating spatial processes is a tacit acknowledgement of the fact that such 
method introduces an artificial time dimension even into problems where no such 
dimension is originally present. 
 
The most important theoretical result is a construction, originating in Kerstan 
(1964) and refined and extended in Br´emaud and Massouli´e (1996). There we 
transformed a point process with general conditional intensity to a Poisson 
process; here we convert a Poisson process back into a process with general 
conditional intensity. For this purpose, we use an auxiliary coordinate in the state 
space, so we consider a unit-intensity Poisson process, N say, on the product 
space     . The realizations of N consist of pairs (x , y )j j . Also, let t
denote the  -algebra of events defined on a simple point process over the interval 
[0, )t and  the history { }t . The critical assumption below is that  is  -
adapted. 
 
Theorem 2.1 Let N ,  be defined as above, let ( )t  be a nonnegative, left-
continuous,  -adapted process, and define the point process N on  by 
 

( ) ( (0, ( )]).                                                                                                                        (2.1) N dt N dt t 
 
Then N has -conditional intensity ( )t . 
 
Proof: Arguing heuristically, it is enough to note that 
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There is no requirement in this proposition that the conditional intensity be a.s. 
uniformly bounded as was required in the original Shedler-Lewis algorithm. 
When such a bound exists, it leads to straightforward versions of the thinning 
algorithm, as in algorithm 2.3 below. 
 
The result can be further extended in various ways, for example to situations 
where more general histories are permitted or where the initial process is not 
Poisson but has a conditional intensity function that almost surely bounds that of 
the process to be simulated; see [2, 4]. 
 
Example 2.2 (Standard Renewal Process on[0, ] ): We suppose the process 
starts with an event at 0t  . Let ( )h u denote the hazard function for the lifetime 
distribution of intervals between successive points, so that (see [10]) the 
conditional intensity function has the form 
 

( )( ) ( )            ( 0) ,                                                                                                                                            (2.3)  N tt h t t t   
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Where ( )N tt is the time of occurrence of the last event before time t . However, 

( )t  should be defined on the history of N rather than on N . To this end, we 
first define the sequence of points it  in terms of N . With 0 0t  , define 
sequentially 
 

 1 min :   and  ( )          ( 0,1, ...)                                                                            (2.4) n i i n i i nt x x t y h x t n     

 
and then define ( )t  as above. Notice that the right-hand side of this expression 
is Ft -measurable and the whole process is F -adapted.  
 
Thinning algorithm generally follow much the same lines as in theorem 2.1 and 
the example above. The main difficulty arises from the range of iy being 
unbounded, which provides a flexibility that is difficult to match in practice. The 
original Shedler-Lewis algorithm (Lewis and Shedler, 1976; see [1, 6]) was for a 
non-homogeneous Poisson process in a time interval where the intensity is 
bounded above by some constant, M say. Then, the auxiliary dimension can be 
taken as the bounded interval (0, )M rather than the whole of  , or equivalently 
the iy could be considered i.i.d. uniformly distributed random variables on the 
interval (0, )M . Equivalently again, the time intensity could be increased from 
unity to M and the iy taken as i.i.d. uniform on (0,1) , which leads to the basic 
form of the thinning algorithm outlined in the algorithm 2.3 below. 
 
In discussing the simulation algorithm 2.3 below, it is convenient to introduce the 
term list-history to stand for the actual record of times, or times and marks, of 
events observed or simulated up until the current time t . We shall denote such a 
list-history by H , or tH if it is important to record the current time in the notation. 
Thus, a list-historyH is just a vector of times 1 ( ),..., N tt t or a matrix of times and 

marks 1 1 ( ) ( )( , ),..., ( , )N t N tt t  . We shall denote the operation of adding a newly 
observed or generated term to the list-history by    jH H t  or

   ( , )j jH H t   . In the discussion of conditioning relations such as occur in 
the conditional intensity, the list-history tH bears to the σ-algebra Ht a relationship 
similar to that between an observed value x of a random variable X and the 
random variable X itself. 
 
The algorithm requires an extension of theorem 2.1 to the situation where the 
process may depend on an initial history 0H ; we omit detail but note the following. 
Such a history will be reflected in the list-history by a set of times or times and 
marks of events observed prior to the beginning of the simulation. This is an 
important feature when we come to prediction algorithms and wish to start the 
simulation at the ‘present’, taking into account the real observations that have 
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been observed up until that time. It is also important in the simulation of 
stationary processes, for which the simulation may be allowed to run for some 
initial period ( ,0)B before simulation proper begins. The purpose is to allow the 
effects of any transients from the initial conditions to become negligible. Finding 
the optimal length of such a preliminary ‘burn-in’ period is an important question 
in its own right. Its solution depends on the rate at which the given process 
converges toward equilibrium from the initial state, but in general this is a delicate 
question that is affected by the choice of initial state as well as decay parameters 
characteristic of the process as a whole. 
 
Suppose, then, that the process to be simulated is specified through its conditional 
intensity ( )t , that there exists a finite bound M such that 
 

( )t M  for all possible past histories,                                                             (2.5) 
 
and that the process is to be simulated over a finite interval [0, )A given some 
initial list-history 0H . 
 
Algorithm 2.3 (Thinning Algorithm for Processes with Bounded Conditional 
Intensity): 
 
1)  Simulate 1,..., ix x according to a Poisson process with rate M (for example, 

by simulating successive interval lengths as i.i.d. exponential variables 

with mean 1
M

), stopping as soon as ix A . 

2)  Simulate 1,..., iy y as a set of i.i.d. uniform (0,1) random variables. 
3)  Set 1k  , 1j  . 
4)  If kx A , terminate. Otherwise, evaluate ( ) ( |  )

kk k xx x H   . 

5)  If ( )k
k

xy
M



 , set j kt x , update H to jH t , and advance j to 1j  . 

6)  Advance k to 1k  and return to step 4. 
7)  The output consists of the list 1;   ,..., jj t t . 
 
This algorithm is relatively simple to describe. In the more elaborate versions that 
appear shortly, it is convenient to include a termination condition (or conditions), 
of which steps 1 and 4 above are simple. In general, we may need some limit on 
the number of points to be generated that lies outside the raison d'etreof the 
algorithm. 
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3 Practical Example 
 
Let us we want to make a hybrid format of Poisson point process and non-
homogeneous Poisson process based on the above introduced algorithm in an unit 
square with intensity 1   and we will generate an arbitrary intensity function for 
investigating on time points. In the second part of this example we bring its scatter 
plots where sketched for different values of  . 

 
Fig 1: Two dimensional scatter plots of time points directly generated by 

conditional intensity function using rand function 
 

 
Fig 2: Two dimensional scatter plots of time points where directly generated by 

conditional intensity function using modified rand library function 
 
The efficiencies of algorithm 2.3 are presented in Fig1. We conclude that the time 
points for conditional intensity function have not uniform distribution on the 
desired area of the unit square, this effect on convergence of time points. That is, 
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based on the conditional intensity function of time points the convergence will 
happen longer than unconditional one.  In this case, if we employ the partitioned 
rand function (improved uniform random number generator), as it has been shown 
in Fig2, we have more uniform distributed random number generated in unit 
square which this effect on speed up convergence too, in shorter time. 
 
Also, we should note that in improved algorithm, not only we use partitioned rand 

function but also we consider step length 1
10

. Since the conditional desired 

intensity function has complex format and its elimination does not have negative 
effect its computations we easily ignored it! 
 
Now, we investigate on second part of this example. Here with regards to the 
algorithm and using partitioned rand function, we use different values of . 
 

  

  
Fig 3: Conditional intensity as a function of t for    

 

 
Fig 4: Conditional intensity as a function of t for 1, 4,9,16, 25   

1 1 1 11, , , ,
2 3 4 5

 
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As we can see in Fig3, 4 for evaluated time points of algorithm (horizontal axis) 
are considered for intensity function this example (vertical axis) using different

 .  
 
4 Conclusion 
 
In this paper we introduce an efficient algorithm for simulating time points of a 
general point process. We also set improved rand function (partitioned rand) 
instead of original one in Matlab software, and then run it to get results. This 
makes more uniformity in unit square and will increase the speed of convergence.  
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