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Abstract

In this study, we give dual characterizations foariviheim offsets of timelike
ruled surfaces with timelike rulings in terms oéithintegral invariants. Also, we
give new characterization for the Mannheim offs#tdevelopable timelike ruled
surfaces. We show that if the offset surfaces axeldpable then the striction
lines of surfaces are Mannheim curves. Moreover, okgain relationships
between areas of projections of spherical imaged@annheim offsets of timelike
ruled surfaces and their integral invariants.
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1 Introduction

In the space, a continuously moving of a straigteg generates a surface which is
called ruled surface. These surfaces are one ofntbst important topics of
differential geometry. Because of their simple gahen, these surfaces arise in a
variety of applications including Computer Aided d&eetric Design (CAGD),
mathematical physics, kinematics for modeling tmebfems and model-based
manufacturing of mechanical products. Furthermiorggeneral, offset surface, the
surface which is offset a specified distance frdma original along the parent
surface's normal, is used in CAGD widely. Some ismdealing with offsets of
surfaces have been given in references [4, 18,209, Ravani and Ku have
defined and given a generalization of theory oftB&d curves to ruled surfaces
and called Bertrand trajectory ruled surfaces @nlite geometry [20]. By using
the invariants of ruled surfaces given in [5, 6Jlickk and Girsoy have given the
characterizations of Bertrand trajectory ruled acet in dual space and have
obtained the relations between the invariants [10].

Furthermore, recently, a new definition of curvérphas been given by Liu and
Wang: LetC andC" be two space curve§ is said to be a Mannheim partner
curve of C” if there exists a one to one correspondence betiesr points such

that the binormal vector o is the principal normal vector @&" [11]. Orbay,
Kasap and Aydemir have given a generalization ohmh&im curves to ruled
surfaces and called Mannheim offsets [12]. Mannheifeets of timelike ruled

surfaces in the Minkowski 3-spadB; have been studied in [14].

In this paper, we examine the Mannheim offsetsrafettory timelike ruled
surfaces with timelike rulings in view of their @gral invariants. We give a result
obtained in [14] in short form. Furthermore, usithg dual representations of
timelike ruled surfaces, we obtain some new resutigch are not obtained in
[14]. Moreover, we obtain that the striction line$é Mannheim offsets of
developable timelike trajectory ruled surfacesMemnheim partner curves in the

Minkowski 3-spacelR’. Furthermore, we give relations between the imtegr

invariants (such as the angle of pitch and thehpitd closed timelike trajectory
ruled surfaces. Finally, we obtain the relationshipetween the areas of
projections of spherical images of Mannheim offs#tsimelike trajectory ruled
surfaces and their integral invariants.

2 Differential Geometry of the Ruled Surfaces in tk
Minkowski 3-Space

Let IR} be a 3-dimensional Minkowski space over the figldeal numberdR
with the Lorentzian inner produgt, ) given by
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(ab)=-ab+ab+ ah

wherea=(a,, a,, a,) andb=(b,,b,,b)JIR. A vectord=(a, a,, a,) of IR? is
said to be timelike ifd,a)< 0, spacelike if(4,d)>0 or a=0, and lightlike
(null) if (a,a>=o and a#0. Similarly, an arbitrary curvex(s) in IR} can
locally be spacelike, timelike or null (lightlikelf,all of its velocity vectorsa’'(s)
are spacelike, timelike or null (lightlike), respigely [13]. The norm of a vector
a is defined by|d)=,/[(a3)|. A vector a0IR’ is called a unit vector if

la] =y/|(a 3| =1 and the sets of the unit timelike and spaceliketors are

called hyperbolic unit sphere and Lorentzian urphese, respectively, and
denoted by

H: ={a=(a,a,a)0 IR: (33=-1
and
st ={a=(a, a, a)0 IR: (ah=1
respectively [22].

A surface in the Minkowski 3-spad&’ is called a timelike surface if the induced

metric on the surface is a Lorentz metric and ikedaa spacelike surface if the
induced metric on the surface is a positive defiRiemannian metric, i.e., the
normal vector on the spacelike (timelike) surfage itimelike (spacelike) vector

3].

Let | be an open interval in the real liti@, k = k(9 be a curve inR® defined

onl andg=g(9 be a unit direction vector of an oriented linelRf. Then we
have the following parametrization for a ruled agd N

#(s, V)= k(9+ Vd (1)

whered(s) is called ruling andk = k(9 is called base curve or generating curve
of the surface. In particular, if the direction @fis constant, the ruled surface is
said to be cylindrical, and non-cylindrical otheswi

The striction point on a ruled surfadé is the foot of the common normal
between two consecutive rulings. The set of thetgin points constitute a curve
C=¢(9 lying on the ruled surface and is called strictimurve. The

parametrization of the striction cunge= ¢(9 on a ruled surface is given by
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B} <dq, dR>
c(9= k(3‘wﬁc (2

So that, the base curve of the ruled surface istiistion curve if and only if
<dq, dT<> =0.
The distribution parameter (or drall) of the rukdface in (1) is given as
dk, g, dt
5, _[o 3 &9 . 4 (3)
(da, dg

and a ruled surface is developable if and onlyt iélaits points the distribution
parameteris J, =0 [1, 9].

9.9, . So,
|2, %4

For the unit normal vectam of the ruled surfacéN we havem=

at the points of a nontorsal rulirg= § we havea =lim (s, v :—(d”?:iij(/j?j;; q

The plane of ruled surfacé which passes through its ruling and is

perpendicular to the vect@r is called theasymptotic planer . The tangent plane
y passing through the ruling which is perpendicular to the asymptotic plane

is called thecentral plane.lts point of contacC is central pointof the ruling.
The straight lines which pass through pdihtand are perpendicular to the planes
a and y are called theentral tangenaindcentral normal respectively.

Since the vectors|, dq/ ds are perpendicular to the vectar representation of
dq/ ds
|da/ dg -

system{C; d, ﬁ,é} is called Frenet frame of the ruled surfadéssuch thath and

the unit vectorh of central normal is given bﬁz The orthonormal

a=hxTg are the central normal and the central tangeritl pfrespectively, and
C is the striction point.

Let now consider the ruled surfade. According to the Lorentzian characters of
ruling and central normal, we can give the follogviclassifications for the ruled
surfaceN :
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i) If the central normal vectdn is spacelike and the ruling is timelike,
then the ruled surfachl is said to be of typé\®.

i) If both the central normal vectdr and the rulingg are spacelike, then
the ruled surfaceN is said to be of typé\:.

iii) If the central normal vectoh is timelike and the rulingj is spacelike,
then the ruled surfachl is said to be of typd? [16, 23].

The ruled surfaces of typds' and N} are clearly timelike and the ruled surface
of type N? is spacelike [8].

By using these classifications, the parametrizatioN can be given as follows,

#(s V)= k(3+ Vq (4)

where
(A.R) =& (=21, (9.9 =¢, C21) (5)

The set of all bound vectois) at the originO constitutes thelirecting coneof
the ruled surfaceN . If £, =-1 (resp.&, =1), the end points of the vectodgs)
drive a spherical spacelike (resp. spacelike oeltke) curvek, on hyperbolic
unit sphereH/ (resp. on Lorentzian unit sphe®), called thehyperbolic (resp.
Lorentzian) spherical imagef the ruled surfacé [16,23].

Let {q, F\,é} be a moving orthonormal trihedron making a spatiation along a

closed space curvie(s) in IR? wheresO IR and h is assumed spacelike. In this

motion, the oriented ling generates a closed timelike ruled surface callesed

timelike trajectory ruled surface (CTTRS). A paranteequation of a closed
trajectory timelike ruled surface generatedd»axis is

P (sV)=K(9+ VA B g(s2m, y=¢( SN s (6)

Consider the moving orthonormal syst(%m ﬁ,é} which represents a timelike

ruled surface of the typdl} or N' generated by the vectdr. Then, the axes of
trihedron intersect at striction point gfgenerator ofg,-CTTRS. The structural
equations of this motion are

dg=kh dh=-g ko ka d&e, k (7)
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And

%zu(a—)qw(a—)a ®)
S

where b=b(9 is the striction line ofg, -CTTRS and (o) =cosho ,
9(o)=sinho , if both g and b(s) are timelike; and u(o)=sinho ,
(o) =cosho, if both g andb(s) are spacelike. The differential fornks, Kk,
and o are the natural curvature, the natural torsion el striction ofg, -
CTTRS, respectively. Heres is the arclength of the striction line [16].

The pole vector and the Steiner vector of the nmodiie given by

ra:|"’”

o, d=¢g@ (9)
] ¢

respectively, whereJ = £.k,G- ka is the instantaneous Pfaffian vector of the
motion. The real invariants @f,-CTTRS are defined by

to=du= —5236<dk, a} (10)
which is the pitch, and

/lq:36d9:5295<dﬁ,a>:52<q6>:2n— a (11)

which is the angle of pitch af,-CTTRS, respectively, wherg, is the measure
of the spherical surface area bounded by the sgiiemage ofg,-CTTRS. The

pitch and the angle of pitch are well-known redkegral invariants of closed
timelike trajectory ruled surfaces [2, 16].

The area vector of a-closed space curve iR’ is given by
v, = qs %% dx 12

and the area of projection ofXaclosed space curve in direction of the generator
ofay-CTRS is

21, =(v,.7) (13)

(See [25]).
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3 Dual Lorentzian Vectors and E. Study Mapping

In this section, we give a brief summary of theotlyeof dual numbers and dual
Lorentzian vectors.

A dual number has the foroh =1 +&1”", whereAd and A" are real numbers and

stands for dual unit which is subject to the rulest0, £2=0,
06=£0=0, le=¢1=¢. We denote set of all dual numbers Dy

D={1=1+a1": LA"0IR, £=(
Equality, addition and multiplication are definedD by
A+ed =B+¢gB” ifandonlyif A= B andA =4,
(A+eX)+(B+eB)=(A+ B)+e(X +[)
and
(A+EX)(B+eB)=AB+E(AB +A p),

respectively. Then it is easy to show tli&t,+, [J is a commutative ring with
unity. The numbergA” (A0IR) are divisors of zero [7].

Now let f be a differentiable function with dual variabte= x+£X’. Then the
Maclaurin series generated Wy is

F(R)= f(x+eX)= f(X)+e X T( X,

where f'(x )is the derivative off with respect tox [7]. Let D® be the set of
all triples of dual numbers, i.eD*={a=(a,3,,a)|20D 1<i<3. The

elements ofD? are called dual vectors. A dual vectbimay be expressed in the
form a=a+& @', wherea anda” are the vectors ofR °.

Now let a=a+¢c 3, b=b+eb 0D andA =A+£A°0D. Then we define
a+b=(a+b)+e(@+ B), 1 @A are(Ad+A"

Then, D® becomes a unitary module with these operations.dalled D -module
or dual space [7].
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The Lorentzian inner product of two dual vectérsa+¢ &, b=b+eb 0D is
defined by
(a.B)=(aBjre((aB)+(aB).

where <§,6> is the Lorentzian inner product of the vect@sandb in the

Minkowski 3-spacelR’. Then a dual vectord=a+¢ @’ is said to be timelike if
a is timelike, spacelike ifa is spacelike 0@ =0 and lightlike (null) ifa is
lightlike (null) anda # 0[21, 24].

The set of all dual Lorentzian vectors is calleclduorentzian space and it is
denoted byD} :{ d=a+ed’: aal IR }

The Lorentzian cross product of dual vectars D} is defined by
axb=axb+e(@x b+ & b),
wherea x b is the Lorentzian cross product iR’ .

Let a=a+cd'0 D'. Thend is said to be dual unit timelike (resp. spacelike)
vector if the vectorsi and a" satisfy the following equations:

<g,a>=-1 (resp<aa®=1), <aa>=0

The set of all dual unit timelike vectors is calkb@ dual hyperbolic unit sphere,
and is denoted by 2. Similarly, the set of all dual unit spacelike tas is called

the dual Lorentzian unit sphere, and is denoted?b{/Zl, 24].

Theorem 3.1 (E. Study Mapping) ([21]): The dual timelike (respectively
spacelike) unit vectors of the dual hyperbolic pextively Lorentzian) unit sphere

HZ (respectivelyéf) are in on-to-one correspondence with the diredtetelike
(respectively spacelike) lines of the Minkowskpaeg IR’ .

Definition 3.1 ([21, 24]):

i) Dual Hyperbolic Angle: Let X and § be dual timelike vectors iB;. Then the
dual angle betweek and y is defined by< %, y>=~-|¥||}coshg . The dual
number@ = 8+ £6" is called the dual hyperbolic angle.
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if) Dual Lorentzian Timelike Angle: Let X be a dual spacelike vector ardbe
a dual timelike vector iD?. Then the angle betweenand ¥ is defined by
<%, ¥>=|¥||}|sinh@ . The dual numberd =8+e6” is called the dual
Lorentzian timelike angle.

Let now K be a moving dual unit hyperbolic or Lorentzian esghgenerated by a
dual orthonormal system

{q, ﬁ=”3—g”(spacelik§: “F g N}q, g ge g A he o=l (14)

and K' be a fixed dual unit sphere with the same cerftben, the derivative
equations of the dual spherical closed motiofKofvith respect toK' are

dg=kh dh=-¢, kKo ka dae, K (15)

where Ei(s) =k(9+c k(¥ _g( B= K)¥e k)s( 5 ) are dual curvature
and dual torsion, respectively. From the E. Studypping, during the spherical
motion of K with respect toK', the dual unit timelike (resp. spacelike) veofpr

draws a dual curve on dual unit hyperbolic (resprebtzian) spher&’ and this
curve represents a timelike ruled surface with lilkee(resp. spacelike) ruling

in line spacelR’ [15].

Dual vectorgy = + " = £,k,§- k ais called the instantaneous Pfaffian vector

of the motion and the vectd? given by =|iZ| P is called the dual pole vector
of the motion. Then the vector

d=¢y (16)
is the dual Steiner vector of the closed motion.

By considering the E. Study mapping, the dual eqnat(15) correspond to real
equations (7) and (8) of a closed spatial motiotRh. So, the differentiable dual
closed curved = §(9 corresponds to a closed trajectory timelike ridadace in

the line spacdR’® and denoted by,-CTTRS.

A dual integral invariant of &, -CTTRS can be given in terms of real integral
invariants as follows and is called the dual amglpitch of ag, -CTTRS

0,=-&¢(dha)=~(g d = 27-7 =4, +,l, (17)
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whered = d+&d” anda, = g, +£4, are the dual Steiner vector of the motion and
the measure of dual spherical surface are®,6CTTRS, respectively. Here,
&, =(0,d) and¢ is dual unit [17].

Analogue to the real area vector given in (12),dbal area vector of §-closed
dual curve is given by

W, = Gx dy {18

and from ref. [10], the dual area of projection aff -closed dual curve in
direction of the generator of @-CTRS is

210 = (W, &) (19)

4 Mannheim Offsets of Timelike Trajectory Ruled
Surfaces with Timelike Rulings

Let ¢, be a timelike trajectory ruled surface of the type or N' generated by
dual unit vectorg and let dual orthonormal frame ¢f be{q(s), h9, A 3} :
The trajectory ruled surfacg, , generated by dual unit vectgf with dual
orthonormal frame{ql(q), h(s), & §)} is said to be Mannheim offset of the

timelike trajectory ruled surfacg,_ , if

a(s9) = h(s) §20

holds, wheres and s are arc-lengths of striction lines df, and ¢, ,

respectively. By this definition and considering ttiassifications of the timelike
ruled surfaces we have the following cases:

Case 1:If the trajectory ruled surfaceg, is of the typeN’, then by considering
(20), the Mannheim offseg, of ¢, is a timelike trajectory ruled surface of the
type N2 or N;. If ¢, is of the typeN. and @, is of the typeN;, then we have

G\ (sinh@ costo q
h|=| 0 0 1|lh (21)
g |(coshd sintg@ a
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Case 2:Similarly, if both ¢, and ¢>qL are of the typeN’, we have

G ) (coshd sintg q
hl=| 0 0 1| h (22)
g/ |sinh@ cos@ a

In (21) and (22)8 =6+¢£6”, (8,6°01R) is dual angle between the generatijrs
and ¢, of Mannheim trajectory ruled surfacgs and ¢, . The angled is called

offset angle and real numbéf is called offset distance. Thefl,= 8+&6" is
called dual offset angle of the Mannheim trajectauied surfacesp, and ¢, .

Thus, we can give the followings.

5 N' -Type Mannheim Offsets of Timelike Ruled
Surfaces with Timelike Rulings

Let the timelike trajectory ruled surfagg of the typeN! be a Mannheim offset
of timelike trajectory ruled surfacg, with timelike rulings. Then we can give the
followings.

Theorem 5.1: Let trajectory ruled surface, of the typeN! be a Mannheim

offset of timelike trajectory ruled surfag with timelike rulings. Then offset
angle and offset distance are given by

0=-[kds 6"=-[K ds (23)
respectively, wheré, =k +£K is the dual curvature op, -

Proof: Let ¢, and¢, form a Mannheim offset wherg, and ¢, are of the type
N' and N!, respectively. From (21) we have

6, =sinhd g+ costd h (24)
Differentiating (24) and by using (15) and (20)allows

d—q:(%i+aja+@coshéh (25)
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Since(zlj—(;‘L is orthogonal tca, , from (25) we get

g=- j k,ds (26)
Separating the last equation into real and duaspee have
0=-[kds 6"=-[K ds (27)

Theorem 5.2: The closed timelike trajectory ruled surfagg with timelike

rulings and the closed timelike trajectory ruled surfaggeof the typeN! form a

Mannheim offset with a constant dual offset angland only if the following
relationship holds

0, =0,sinhg + T, costd (28)

Proof: Let the closed timelike trajectory ruled surfaggsand ¢, (of the type

NI) form a Mannheim offset with a constant dual offaegled . Then,from
(17) and (21), the dual angle of pitch@f-CTTRS is given by

a, g)coshd +<ﬁ<d”a h} sini®

da, §) coshg - 95<dh a> sint@
sinh@ +00, costg

=(dh,
< (coshd Y+ (sint® iw>
=¢(d
<

Conversely, if (28) holds, it is easily seen tigfgtand ¢, -CTTRS form a
Mannheim offsets with a constant dual offset angle.

Equality (28) is a dual characterization of Mannheffsets of CTTRS with a
constant dual offset angle in terms of their dudégral invariants. Separating
(28) into real and dual parts, we obtain

A=A sinh@+ A_costd
{ ] q h (29)

ly =(=L,+68A)sinh+ (¢, +6°A,)costd

Then, we may give following result:
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Result 5.1: If 8'=0, i.e., the generator§ and g, of the Mannheim offset
surfaces intersect, then we have

A=A sinh@+ A _cosio ,
{ ] q h (30)

ly, =—l,sinh@+(, costd
In this caseg, andg, -CTRS are intersect along their striction linesmans

that their striction lines are the same.

Let now consider that what the condition for theaelepable Mannheim offset of
a CTTRS is. Letp, and ¢, -CTTRS be the Mannheim offset surfaces and let

d(s) and S(s) be striction lines ofp, and ¢, -CTRS, respectively, wherg, is
of the typeN! and ¢, is of the typeN; . Then, we can write

B =a(9+6"d 3 (31)

wheres is the arc-length ofi(s). Assume thaty,-CTTRS is developable. Then
from (3) and (8) we have

<cosh0'q+ sintoa ,gx KT1> sinho

o, = —— = =0 (32)
“ (I, I h) k
which gives thato =0. Thus, from (8) we get
da
—=0 33
ol (33)

Hence, along the striction ling(s), orthogonal fram%q, ﬁ,é} coincides with the

Frenet frame{f, N, B} and differential forms, andk, turn into curvaturex,

and torsionr, of the striction lined(s), respectively. Then, by the aid of (8), (31)
and (33) we have
d

‘hl
I
ol

|

(\a)
=
=i

(34)

o
(7]
Q

On the other hand from (20) and (21) we obtain

d_qlz(%+/(ajcosh€q +(d—6+Kaj sintbh+7, cosHa (35)
ds ds ds
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By using (24) and the fact théf = «,, from (35) we have

dg =1, coshda (36)
ds

From (34) and (36) we obtain

_(dB. qxdq)  cosho+67, sintd
g, =\ . (37)
(dg,, dg) r, coshg

Thus, from (33) and (37), it can be stated thétefMannheim offsetg, and ¢,
are developable then the following relationshipdsol

coshd+6T, sintd= ( (38)
In [14], equality (38) is also obtained with a difént way. If (38) holds, along the

striction line S(s,), orthogonal framéq, ﬁél} coincides with the Frenet frame

{fl N,, Bl} of B(s) . Thus, the following theorem may be given:

Theorem 5.3:Let the trajectory timelike ruled surfacgg and ¢, be of the type

N' and NI, respectively. Iy, and ¢, are developable Mannheim offsets, then
their striction lines are Mannheim partner curvestihe Minkowski 3-space.

In this case from (38) we have the following comojt

Corollary 5.1: If ¢, and ¢>qL form a developable Mannheim offset, then the
relationship between the torsion ofs) and offset distance and offset angle is
given byr, 8" =-cothd.

If ¢,-CTTRS is developable then from the equations () and (34) the pitch
¢, of ¢, -CTTRS is
fa = _3B<d'é ! q>
= —<j><q ~07_h, (sinhd)g+ (cost® ﬁ) ds
=<]S(sinh9+ 67, costo Yis

Then we can give the following corollary.
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Corollary 5.2: If ¢,-CTTRS is developable then the relation betweerpiivh
¢, of ¢, -CTTRS and the torsion of sitriction limg(s) of ¢,-CTTRS is given by

= $(sinh@+67, costo s (39)

Let now consider the area of projections of Manmheffsets. From (18), the dual
area vectors of the spherical imagegpfand ¢, Mannheim offsets are

{w =d+1,¢
- (40)
w, =-d-0, q,

respectively. Then, from (19), dual area of progciof spherical image of, -
CTTRS in the directiorg is

2f, o =(W,.8)=-(d+0,9, Y
=-<d, > <(smht9 g+ (cost® h 0>
:—<d,q> 0, sinhd
2f =17 -0, sinh@ (41)

Q.4 q

Separating (41) into real and dual parts we hagddhowing theorem.

Theorem 5.4:Let the trajectory timelike ruled surfacgg and ¢, be of the type

N and N;, respectively and let they form a Mannheim off§ke relationships
between the area of projections of spherical imageshe timelike Mannheim

offsetsg, and ¢, and their integral invariants are given as follows

2f, o= A=Ay sinhg, 2 =-( +( sinB+A 6 cosh (42)

Similarly, the dual area of projection of sphericmage ofg, -CTTRS in the
direction h is
<d+D0ﬂq >

2f. =<w ,ﬁ> =T, -, coshd (43)
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Separating (43) into real and dual parts we hagddlowing:

Theorem 5.5:Let the trajectory timelike ruled surfacgg and ¢, be of the type
N' and N, respectively and let they form a Mannheim offd§gien the

relationships between the area of projections dfesggal images of the surfaces
¢, and ¢qL and their integral invariants are given as follaws

2f, n=A,—A coshg, X =¢,-( cosB-A. 6" sinfi (44)

q

Similarly, dual area of projection of spherical geaof ¢, -CTRS in the direction
ais

Sincea=h, we have
2fq =0, =0, (45)

Separating (45) into real and dual parts we hagddlowings:

Theorem 5.6:Let the trajectory timelike ruled surfacgg and ¢, be of the type
N' and N, respectively and let they form a Mannheim offsgien the

relationships between the area of projections dfesigal images of the surfaces
¢, and ¢, and their integral invariants are given as follaws

foa=Ay=Aa fga=l,=1(

=}

6 N!-Type Mannheim Offsets of Timelike Ruled Surfaces
with Timelike Rulings

Let the timelike trajectory ruled surfagg of the typeN' be a Mannheim offset
of the timelike trajectory ruled surfags with timelike rulings. Then we can give

the followings. The proofs of this section can beeg by the similar ways in
Section 5.
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Theorem 6.1: Let the timelike trajectory ruled surfacgg and ¢, with timelike

rulings form a Mannheim offset. Then the offsetlarand offset distance are
given by

0=-[kds &"=-[Kds,

respectively.

Theorem 6.2: The closed timelike trajectory ruled surfacgs and ¢, with

timelike rulings form a Mannheim offsets with a stant dual offset angle if and
only if following relationship holds,

0, =0,sinhg + T, costd .
Separating this equation into real and dual panrtspbtain,
Ay =A;Sinh@+ A, costg , 7, = (—€q+HD/1h )sinid + f(h+HD/1q ) codh.
Then we have the following results.

Result 6.1:1f 8=0, then the relationships between real integral navds of ¢,
and ¢, -CTTRS are given byl, =A,, ¢, =£h+t9'])lq. Furthermore, the measure
of spherical surface areas bounded by sphericagjemafg, and ¢, -CTTRS
Mannheim offsets are the same, i.e, = &, anda, =a,+8(277+q,).

Result 6.2: If 87=0, i.e., the generator§ and ¢, of the Mannheim offset
surfaces intersect, then we have

A, =A,coshd+ A, sintg , ¢ =—( cosB+/(, sind.

In this caseg, andg, -CTRS are intersect along their striction linesmans
that their striction lines are the same.

Theorem 6.3:Let the trajectory timelike ruled surfag, of the typeN® be the
Mannheim offset of developable timelike ruled siefg, with timelike ruling.
Theng, is developable if and only doshg + 67, sintd= (holds.

Theorem 6.4: Let the developable trajectory timelike ruled soes¢, and ¢,
be of the typeN?. If ¢, and ¢, form a Mannheim offset then their striction lines
are Mannheim partner curves in Minkowski 3-spaig.



120 Mehmet Onder et al.

Corollary 6.1: If ¢,-CTTRS is developable then the relation betweerpiivh
Co of ¢qL-CTTRS and the torsion of sitriction limgs) of ¢, -CTTRS is given by

(o == (cosh6+67, sintd Jis.

Theorem 6.5: Let the trajectory timelike ruled surfacgg and ¢, of the type

N! form a Mannheim offset. The relationships betweea af projections of
spherical images of the surfacgg and ¢, and their integral invariants are
given as follows,

2%, :<v”vql,q> =-T,+0, coshg,
or

2f, 4 =Aq—A, coshd, ZE’q=—(q—£q cosl?+,]q|6?D sin@ .

Theorem 6.6: Let the trajectory timelike ruled surfacgg and ¢, of the type

N! form a Mannheim offset. Then the relationshipsvben area of projections
of spherical images of ruled surfacgs and ¢, and their integral invariants are
given as follows

2f, - = (W, ,h)=~0, + T, sinhg,
or

2f, n=AAgsinh@, 2f =¢ 1 sinl9+1 6”7 cosB.

Theorem 6.7:Let the trajectory timelike ruled surfacgg and ¢, of the typeN’

form a Mannheim offset. Then the relationships betwarea of projections of
spherical images of ruled surfacgg and ¢, and their integral invariants are

given as follows

2Ty a=(W,8)=0,=0, or f, =A =4, fJ.=¢,=/

PO
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