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Abstract

In this paper, we present a comparative study eetwthe variational iteration
method and Adomian decomposition method. The siutliyes the significant
features of the two methods. The analysis willllostrated by investigating the
"Improved" Modified Kortweg-de Varies equation.
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1 Introduction

This paper outlines a reliable comparison betweem powerful methods that
were recently developed. The first is the varialorteration method (VIM)
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developed by He in [15-22] and used in [23, 12,25},among many others. The
second is Adomian decomposition method (ADM) depetb by Adomian in
[13,14], and used heavily in the literature in [2a@d the references therein. The
two methods give rapidly convergent series withcgfesignificant features for
each scheme. In this paper, our work stems mainlyw@ of the most recently
developed methods, the VIM and ADM. The two methodkich accurately
compute the solutions in a series form or in arcef@m, are of great interest to
applied sciences. The main advantage of the twhadstis that it can be applied
directly for all types of differential and integraquations, homogeneous or
inhomogeneous. Another important advantage istlilemethods are capable of
greatly reducing the size of computational work lestill maintaining high
accuracy of the numerical solution. The effectivvanand the usefulness of both
methods are demonstrated by finding exact solutionthe models that will be
investigated. However, each method has its ownacieristic and significance
that will be examined.

2  TheGoverning Equation

In this section, we consider the IMKdV equation @hcan be written in the form
+5upu + - =0 <x<b 1
U X T HUxxx "Wyt = U @ Xs 1)

Where p=1, 2,... is positive integer, x andv are positive parameters and the
subscripts x and t denote differentiation w.r.tamd t respectively, with the
physical boundary conditions

u(a,t) = u(b,t) = 0,uy (a,t) = uy(b,t) = O,uyy(@t) = Uyy(b,t) =0, (2)
in addition to the initial conditiom(x,0) = f(x).

It will known that whenp =1, 2,...the "improved" MKdV equation has the single
soliton analytic solution [1]:

uPt) = Wsemz{ (X=X, ~ct} 3)

Where

c
u+ve

k=P
2

3 The Conservation L aws

It is of great importance to discuss the consemwataws for our problems, the
IMKdV equation possesses three polynomial invasiatitese invariants can be
derived, easily to be shown in that case as follbjvs
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l, = [Udx
l, = [JU? +WJ2)dx (4)

|3 - I:(U p+2 _ (p+1)(p+2):uuf)dx
2&

4  Solution by Variational Iteration M ethod

To illustrate the basic idea of variational iteoatimethod, we consider the
following nonlinear functional equation [9, 10, 11B]

Lu(x) + Nu(x) =g(x) 4)
wherelL is a linear operatofy a nonlinear operator arg{x) an inhomogeneous
term. According to the VIM, we can express thedaihg correction functional
as follows

t _~
U 6D =U_(x,1) +g)/1{LSun +(LX + N)un - g}ds, (5)

where) are general Lagrange multiplier which can be idieat optimally via the
variational theory [3], andU, is a restricted variation which meaw@s =0. By

this method, we determine first the Lagrange midtipA; (i = 1, 2, 3, 4) which
will be identified optimally. The successive apgroations u_,,n>0 0f the

solution u will be readily obtained by suitable ww® of trail function .
Consequently, the solution is given as
u(x,y,z,t) =limu, (x y,z,t). 3
for Eq. (1) in the form
un+1(x,t) = un(x,t)
t
-p ~

A - d

+({) (S){(UH(X,S))S+l(un(x,8))xxx V(UH(XS))XXS+£UH (X,S)(UH(X,S))X} S
(7)

After some calculations, we obtain the followingtginary conditions

1+A(s)_, =0, A(s)

=0, A(s)

. =0. (8)
The Lagrange multiplier, therefore, can be ideadifas

A=-1 9)
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Substituting this value of the Lagrange multipliaio the functional (7) gives the
iteration formula

un+l(x,t) = un(x,t)

_z{(un (x,s))s +,u(un(x,s)jxxx —V(un(xs))xxs+gﬁnp(xs)(ﬁn (x,s)jx}ds,
(10)

This is turn the first few components if p=2

U (x0) = ug (%) = Wsecr{ K(x=Xg)}

ul(x,t) = %sedwd'{ k(x - xo)} + (3e coshfk(x - xo) + £coshBk(x - xo)

+ 2kt (72c2 - 11k 2eu + k2eucoshpk(x X)) sinh{k(x=x.)}

U, (1) = —6—gsect{ K(x - xo)}((18k3[3 36c3 - 5ckZe) 2 sedit Y k(x - X, )H3scoshik(x—x )}

£
+£c0ShBk(x~ X )} + &t (-27c2 + 5k ey e k(x - X)) tanhf(x~ x)}

36c% 44 36c? - 5k2en) 3 sed O k(x - X} tant K{x— Xt -t

+iutantP{k(x - x)} + k2t taniP{k(x - x,)} + k&2 tanP{k(x - %))
+k%%esecdh®f k(x - X)) (£(1296% - 576c% ey + 61k *e21%) - 36c2K1 (9072

- 280&%2eu+1512% %21 1624 - 6602k 2eu + 5k Ae212) tanHP{ k(x — 8))

+ k22 sech k(x - xpHanhik(x~x)}(ke B6%2 - 61k2en) - t(648a%

— 39602 2eu + 47% 212 tanhik(x — X} - 2885} 2 1 (45c2 - TkPepi) tanH k(x - X}
~144c%532 (4502 - Tk2eri) tanh! { k(x - X)) - kteSsech?{ k(x - Xo)Htanh{k(x - x)}
(36c2 — 5k 2 + 2k2 (1622 - 29Kk 2eri)v tantP{ k(x — X+ k3tu(108@2 - 17%2e)
tantP{k(x - X} +108% 8212 tantP{ k(x - X} + 36c % 333 tantPi k(x - X))

5  Solution by the Adomian Decomposition M ethod
Let us rewrite equation (1) in the form
Ly (U) = —eN(u) = fy (U, ) + Ly (W), (11)

with the initial condition
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u Pt =wsem2{ K(x= %)} (12)
2& 0
WhereL(-)=i L =i(')
t at' X 6x2

and N(u) represents the nonlinear teufiu_ .

Assuming that the inverse operatorLiS(-)zj(-)dt and then operating on both

sides of Eq. (11) with_.*

u(x,t) = u(x,0) - ey AN(U)) — A ULy (uy)) + g ULy (W) (13)

The ADM assumes that the unknown function u(xat) be expressed as a sum of
components defined in a series of the form:

u(x,t) = E Up (X,t) (14)
n=0
And the nonlinear operator N(u) can be written as
N(u) = nﬁo,&ﬂ(uo,u1 ..... un) (15)

where A, are called Adomian polynomials. The Adomian poiymals can be
calculated for all forms of nonlinearity according specific algorithms
constructed by Adomian [13, 14]. The polynomialsafe given by

_1d (@ i P
M| (5 ("

Substituting (14), (16) into the equation (13) give

,n=0 (16)
A=0

D=ux0) - Y Ay - L (S NS> 17
uct) = utx0) = e £ A= E ) o E ) (17)

And we identify the zeros componeny & u(x,0) by terms arising from initial
conditions, and we obtain the subsequent componesitsg the following
recursive relation:

Ug = u(x,0)

, . = (18)
Untg =~ 1(A11) - My 1(|-x(Un)x) +U 1(Lx(un)t), n=o0,
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Where A, are Adomian polynomials that represent the noalinerm u2uX and
given by:

Ay =l A = pu? o)k +ulw)y
Ay = BEZLUE220), + pub ™, )+ Py )+ S Uy)

p(p Db~ 2u13(u0)x+

(19)

A= oyl )y + pp-DuP Pu, () +

P Uy ) + pud )+ (Ug)
And so on. The rest of polynomials can be constidigt a similar manner.

The first few components ojn (x,t) follows immediately upon setting
U™ =1(¥)

U 09 = "_1(_ Ay T o)y +VLx(u0)t)
0, (%) = L‘l(—gAl—ny(ul)x +va(u1)t) (20)
uz(x) = L_l(_‘gAz “H W)y +VLX(U2)t)
U (0 = "_l(_gAs H ), +VLx(u3)t)

The scheme in (20) can easily determine the comnsmﬁ(x,t),n >0.

It is possible to calculate more components indib@mposition series to enhance
the approximation. Consequently, one can recursidelermine every term of the

[o¢]
series Y un(x,t) , and hence the solution u(x,t) is readily obtdiime a series
n=0
form. The obtained series may lead to the exactisal.

Adomian decomposition method gives the recurrealaion:

Up(xt) = Wsecﬁz{ K(x- %)}

-1 (21)
Unyg = Lt T (=&(An) — i(Lx(un)x) +v(Ly(un))), nz0,

In our test problems we pay attention to theseethmeariants, and make sure that
these laws are always satisfied.
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6  Applications

Following we apply our numerical scheme on the tgp@aonlinear equation we
are handling which is the IMKdV equation.

6.1 Single Soliton Solution

Consider the initial value problem associated wihi& IMKdV equation (1) with
initial condition Eq. (12)

Fig. (1.a): The VIM solution for IMKdV Fig. (1.b): ADM solution for IMKdV
equation for c=0.01 andOx <80, 0<t<1. equation for c=0.01 and0Ox < 80, 0<t
<1

Table (1): Invariants for the IMKdV equation by VIM and ADM thi c=0.01,
n=2, [0, 80]

T LVIM 1,VIM 13VIM 1 ADM lLADM It ADM

0.0 | 0.78806 0.16087 4.8972E-03 0.7880¢ 0.160868 9721B-03

0.2 | 0.78805 0.16159 4.8938E-03 0.78803 0.1615929458B-03

0.4 | 0.78802 0.16377 4.8837E-03 0.78804 0.163[/65 866B-03

0.6 | 0.78796 0.16739 4.8668E-03 0.78801 0.167386 7341B-03

0.8 | 0.78789 0.17246 4.8433E-03 0.78797 0.172456 54818-03

1 0.78779 0.17899 4.8131E-03 0.78793 0.178975 21B38
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Table (2): Comparison between ADM and VIM with absolute efmrthe
IMKdV (n=2, e=1, ¢=0.01)

X T=0.2 T=0.8

Abs.Error ADM| Abs. Error VIM | Abs.Error ADM| Abs. Error VIM
10 6.49383E-06 6.49386E-06 2.58911E-05 2.5892E-05
20 6.50793E-06 6.508E-06 2.6117E-05 2.6116E-05
30 3.7846E-10 3.7845E-10 1.5187E-9 1.5187E-09
40 2.1702E-14 2.17E-14 8.7088E-14 8.7087E-14
50 1.2445E-18 1.2445E-18 4.9939E-18 4.9939E-18
60 7.1363E-23 7.1363E-23 2.8637E-22 2.8637E-22
70 4.0923E-27 4.0922E-27 1.6422E-26 1.6422E-26
80 2.3467E-31 2.3467E-31 9.4168E-31 9.4168E-31
6.2 Interaction of Two Solitary Waves

The interaction of two IMKdV solitary waves havirdifferent amplitudes and
traveling in the same direction is illustrated. \&nsider the IMKdV equation
with initial conditions given by the linear sum tfo well separated solitary
waves of various amplitudes.

Forp=2

u0=u(x0)=u +u

y ) (22)

Where
G = sechlAX+x}

C C,
- _ / 1 _ _ _ / 2 _
Where,cl_ 0'17"°1‘°1 y+c1v’xl_58’c2_ 034,A2—c2 #+C2V,x2-23.

The values of . 1,and I, throughout the simulation are shown in table (3).

(23)

Table (3): Invariants for the IMKdV equation with n=2, [0, 80]

T 1VIM [LVIM I3VIM ;ADM I, ADM I;ADM
0 -3.11468 0.705623 0.0522919  -3.11468 0.705623 522919
0.2 | -3.11468 0.705616 0.0522894  -3.11468 0.705621 .0522909
0.4 | -3.11468 0.705597 0.0522819  -3.11468 0.705615 .0522877
0.6 | -3.11468 0.705566 0.0522693  -3.11468 0.705604 .0522825
0.8 | -3.11468 0.705522 0.0522518  -3.11468 0.70559 0522753
1 -3.11468 0.705466 0.0522294  -3.11468 0.705572 522669
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Fig (2.a): VIM interaction two solitary
waves of IMKdV equation at times0t<1

Fig (2.b): ADM interaction two solitary waves
of IMKdV equation at times & t<1

We have repeated this experiment with interactieges which are two negative

solitary waves, we take =-034,c, = 017,D,= 23and D, = 380ur results are given
in table (4).

Table (4): Invariants for the IMKdV equation with n=2, [0,]80

T 1VIM 1LVIM I3VIM 1L ADM I, ADM I;ADM
0 -3.11468 0.705623 0.0522919  -3.11468 0.705623 522919
0.2 | -3.11468 0.705616 0.0522894  -3.11468 0.705621 .0522909
0.4 | -3.11468 0.705597 0.0522819  -3.11468 0.705615 .0522877
0.6 | -3.11468 0.705566 0.0522693  -3.11468 0.705604 .0522825
0.8 | -3.11468 0.705522 0.0522518  -3.11468 0.70559 0522753
1 -3.11468 0.705466 0.0522294  -3.11468 0.705572 522669
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Fig (3.a): VIM interaction two solitary waves Fig (3.b): ADM interaction two solitary
of IMKdV equation at times & t<1 waves of IMKdV equation at times0t<1

7 Conclusions

In this paper, VIM has been successfully appliedfibaling the solutions of

"Improved" Modified Kortweg-de Varies equation. Thétained solutions are
compared with those of ADM.the results of the pn¢seethod are in approximate
agreement with those of ADM. The two methods argvgrtul and efficient

methods that both give approximations of higheueacy. The two methods are
powerful mathematical tool for solving linear andnfinear partial differential

equations.
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