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Abstract 

     In this paper, we present a comparative study between the variational iteration 
method and Adomian decomposition method. The study outlines the significant 
features of the two methods. The analysis will be illustrated by investigating the 
"Improved" Modified Kortweg-de Varies equation.  

     Keywords: Variational iteration method, Adomian decomposition method, 
Improved Modified Kortweg-de Varies equation.      

 

1 Introduction  
 
This paper outlines a reliable comparison between two powerful methods that 
were recently developed. The first is the variational iteration method (VIM) 
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developed by He in [15–22] and used in [23, 12, 24, 25] among many others. The 
second is Adomian decomposition method (ADM) developed by Adomian in 
[13,14], and used heavily in the literature in [2-9] and the references therein. The 
two methods give rapidly convergent series with specific significant features for 
each scheme. In this paper, our work stems mainly on two of the most recently 
developed methods, the VIM and ADM. The two methods, which accurately 
compute the solutions in a series form or in an exact form, are of great interest to 
applied sciences. The main advantage of the two methods is that it can be applied 
directly for all types of differential and integral equations, homogeneous or 
inhomogeneous. Another important advantage is that the methods are capable of 
greatly reducing the size of computational work while still maintaining high 
accuracy of the numerical solution. The effectiveness and the usefulness of both 
methods are demonstrated by finding exact solutions to the models that will be 
investigated. However, each method has its own characteristic and significance 
that will be examined.  
 

2 The Governing Equation 
 
In this section, we consider the IMKdV equation which can be written in the form 
  

             bxaxxtuxxxuxu
p

utu ≤≤=−++      ,0νµε                                             (1) 

 
Where p=1, 2,… is positive integer, ε, µ and ν are positive parameters and the 
subscripts x and t denote differentiation w.r.t. x and t respectively, with the 
physical boundary conditions 
 

 ,0),(),(0),(),(0),(),( ====== tbxxutaxx,utbxutax,utbutau                          (2)         

 
in addition to the initial condition  f(x).u(x,0)=  
 
It will known that when 1 2p = , , … the "improved" MKdV equation has the single 
soliton analytic solution [1]: 
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3 The Conservation Laws 
 
It is of great importance to discuss the conservation laws for our problems, the 
IMKdV equation possesses three polynomial invariants, these invariants can be 
derived, easily to be shown in that case as follows[1]: 
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4 Solution by Variational Iteration Method 
 
To illustrate the basic idea of variational iteration method, we consider the 
following nonlinear functional equation [9, 10, 11, 18] 
 

 g(x) = Nu(x) + Lu(x)                                                                                      (4) 
 
where L is a linear operator, N a nonlinear operator and g(x) an inhomogeneous 
term. According to the VIM, we can express the following correction functional 
as follows 
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where λ are general Lagrange multiplier which can be identified optimally via the 
variational theory [3], and  nu~ is a restricted variation which means 0u~n =δ . By 
this method, we determine first the Lagrange multipliers λi (i = 1, 2, 3, 4) which 
will be identified optimally. The successive approximations ,0,u 1n ≥+ n of the 
solution u will be readily obtained by suitable choice of trail function u0. 
Consequently, the solution is given as 
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for Eq. (1) in the form 
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After some calculations, we obtain the following stationary conditions 
 

.0)(',0)(,0)(1 ===+
=== tststs

sss λλλ                                        (8) 

 
The Lagrange multiplier, therefore, can be identified as 
 

1−=λ                                                                                 (9) 
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Substituting this value of the Lagrange multiplier into the functional (7) gives the 
iteration formula 
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This is turn the first few components if p=2 
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5 Solution by the Adomian Decomposition Method 
 
Let us rewrite equation (1) in the form 
 

   ),()()()( tuxL
x

uxLuNutL νµε +−−=                                                      (11) 

 
with the initial condition 
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The ADM assumes that the unknown function u(x, t) can be expressed as a sum of 
components defined in a series of the form: 
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And the nonlinear operator N(u) can be written as 
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where An are called Adomian polynomials. The Adomian polynomials can be 
calculated for all forms of nonlinearity according to specific algorithms 
constructed by Adomian [13, 14]. The polynomials An are given by 
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Substituting (14), (16) into the equation (13) gives 
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And we identify the zeros component u0 = u(x,0) by terms arising from initial 
conditions, and we obtain the subsequent components using the following 
recursive relation: 
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Where An are Adomian polynomials that represent the nonlinear term xuu2  and 

given by: 
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And so on. The rest of polynomials can be constructed in a similar manner. 
 
The first few components of ),( txnu  follows immediately upon setting 
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The scheme in (20) can easily determine the components .0),,( ≥ntx

n
u  

 
It is possible to calculate more components in the decomposition series to enhance 
the approximation. Consequently, one can recursively determine every term of the 
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u  , and hence the solution u(x,t) is readily obtained in a series 

form. The obtained series may lead to the exact solution.  
 
Adomian decomposition method gives the recurrence relation: 
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In our test problems we pay attention to these three invariants, and make sure that 
these laws are always satisfied.  
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6 Applications 
 
Following we apply our numerical scheme on the type of nonlinear equation we 
are handling which is the IMKdV equation. 
 
6.1 Single Soliton Solution 
 
Consider the initial value problem associated with the IMKdV equation (1) with 
initial condition Eq. (12) 
 
   

  

Fig. (1.a): The VIM solution for IMKdV 
equation for c=0.01 and 0 ≤ x ≤ 80, 0 ≤ t ≤ 1. 

 

Fig. (1.b): ADM solution for IMKdV 
equation for c=0.01 and 0 ≤ x ≤ 80, 0 ≤ t 

≤1 
 

 
Table (1): Invariants for the IMKdV equation by VIM and ADM with c=0.01, 

n=2, [0, 80] 
 

T I1VIM I2VIM I3VIM I1 ADM I1ADM I1ADM 
0.0 0.78806 0.16087 4.8972E-03 0.78806 0.160868 4.8972E-03 
0.2 0.78805 0.16159 4.8938E-03 0.78805 0.161592 4.8945E-03 
0.4 0.78802 0.16377 4.8837E-03 0.78804 0.163765 4.8866E-03 
0.6 0.78796 0.16739 4.8668E-03 0.78801 0.167386 4.8734E-03 
0.8 0.78789 0.17246 4.8433E-03 0.78797 0.172456 4.8549E-03 
1 0.78779 0.17899 4.8131E-03 0.78793 0.178975 4.8312E-03 
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Table (2): Comparison between ADM and VIM with absolute error for the 
IMKdV (n=2, ε=1, c=0.01) 

 
X T=0.2 T=0.8 

Abs.Error ADM Abs. Error VIM Abs.Error ADM Abs. Error VIM 
10 6.49383E-06 6.49386E-06 2.58911E-05 2.5892E-05 
20 6.50793E-06 6.508E-06 2.6117E-05 2.6116E-05 
30 3.7846E-10 3.7845E-10 1.5187E-9 1.5187E-09 
40 2.1702E-14 2.17E-14 8.7088E-14 8.7087E-14 
50 1.2445E-18 1.2445E-18 4.9939E-18 4.9939E-18 
60 7.1363E-23 7.1363E-23 2.8637E-22 2.8637E-22 
70 4.0923E-27 4.0922E-27 1.6422E-26 1.6422E-26 
80 2.3467E-31 2.3467E-31 9.4168E-31 9.4168E-31 
 
 
6.2 Interaction of Two Solitary Waves 
 
The interaction of two IMKdV solitary waves having different amplitudes and 
traveling in the same direction is illustrated. We consider the IMKdV equation 
with initial conditions given by the linear sum of two well separated solitary 
waves of various amplitudes. 
 
For p = 2  
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The values of 2,1  II and 3I  throughout the simulation are shown in table (3). 
 

Table (3): Invariants for the IMKdV equation with n=2, [0, 80] 
 

T I1VIM I2VIM I3VIM I1ADM I2ADM I3ADM 
0 -3.11468 0.705623 0.0522919 -3.11468 0.705623 0.0522919 
0.2 -3.11468 0.705616 0.0522894 -3.11468 0.705621 0.0522909 
0.4 -3.11468 0.705597 0.0522819 -3.11468 0.705615 0.0522877 
0.6 -3.11468 0.705566 0.0522693 -3.11468 0.705604 0.0522825 
0.8 -3.11468 0.705522 0.0522518 -3.11468 0.70559 0.0522753 
1 -3.11468 0.705466 0.0522294 -3.11468 0.705572 0.0522659 
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Fig (2.a): VIM interaction two solitary 
waves of IMKdV equation at times 0 ≤  t ≤ 1 

 

Fig (2.b): ADM interaction two solitary waves 
of IMKdV equation at times 0 ≤  t ≤ 1 

 

We have repeated this experiment with interacting waves which are two negative 
solitary waves, we take 2317.034.0 121 = ,D = ,c = -c  and 382 = D our results are given 
in table (4). 
 

Table (4): Invariants for the IMKdV equation with n=2, [0, 80] 
 

T I1VIM I2VIM I3VIM I1ADM I2ADM I3ADM 
0 -3.11468 0.705623 0.0522919 -3.11468 0.705623 0.0522919 
0.2 -3.11468 0.705616 0.0522894 -3.11468 0.705621 0.0522909 
0.4 -3.11468 0.705597 0.0522819 -3.11468 0.705615 0.0522877 
0.6 -3.11468 0.705566 0.0522693 -3.11468 0.705604 0.0522825 
0.8 -3.11468 0.705522 0.0522518 -3.11468 0.70559 0.0522753 
1 -3.11468 0.705466 0.0522294 -3.11468 0.705572 0.0522659 
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Fig (3.a): VIM interaction two solitary waves 
of IMKdV equation at times 0 ≤  t ≤ 1 

 

Fig (3.b): ADM interaction two solitary 
waves of IMKdV equation at times 0 ≤  t ≤ 1 

 
 

7 Conclusions 
 
In this paper, VIM has been successfully applied to finding the solutions of 
"Improved" Modified Kortweg-de Varies equation. The obtained solutions are 
compared with those of ADM.the results of the present method are in approximate 
agreement with those of ADM. The two methods are powerful and efficient 
methods that both give approximations of higher accuracy. The two methods are 
powerful mathematical tool for solving linear and nonlinear partial differential 
equations. 
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