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Abstract 

In this paper, two high order compact finite difference schemes are formulated for 
solving the one dimensional anomalous subdiffusion equation. The Grünwald-
Letnikov formula is used to discretize the temporal fractional derivative. The 
truncation error and stability of the two methods are discussed. The feasibility of 
the compact schemes is investigated by application to a model problem. 

     Keywords:Compact finite difference method, Time fractional diffusion, 
Grünwald-Letnikov method. 

 

1 Introduction 
 
Diffusionis a phenomenathat has been rigorously and extensively studied. This 
phenomenon is modelled bythe diffusion equation which is a partial differential 
equation that describes the spread of a substance whose particles move, due to the 
random motion, from a region of higher concentration to a region of lower 
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concentration. The dependent variable in the equation is concentration of the 
substance and the independent variables are spatial and temporal variables. The 
diffusion equation is derived using Fick’s law which assumes a homogenous 
environment. In the case of non-homogenous environments (for example, in a 
cell) then the fractional diffusion equation is used to model the diffusion 
process.Anomalous diffusion describes the spread of a particle plume at a rate 
incompatible with the classical Brownian motion mode.Furthermore, the plume 
may be asymmetric.When a cloud of particles spreads slower than classical 
diffusion, it leads to anomalous subdiffusion [2].     
 
The study of fractional partial differential equations has increased in recent years. 
A comprehensive background on this topic can be found in books by Das[14] and 
Podlubny[6]. Compact finite difference schemes are sometimes preferred because 
their accuracy and high computational efficiency.Several papers have recently 
been published on compact finite difference methods for solving theanomalous 
diffusion equation. Gao and Sun [5] have presented a high order compact finite 
difference scheme for the fractional subdiffusion equations.They first transformed 
the problem usingthe Caputo definition and other analytical theories then thel1 
discretization was applied to approximate the temporal fractional derivative. The 
stability and convergence of the method were analyzed by the energy method. A 
compact finite difference method was also discussed by Cui [8] for the 
anomaloussubdiffusion equation. The Grünwald-Letnikov formulawas used to 
approximate the time fractional derivative. The second order spatial derivative in 
the problem was approximated with fourth order accuracy. The stability and the 
convergence of the proposed method were investigated.Richardson extrapolation 
was appliedto increase the accuracy in time as the generating function used in the 
Grünwald-Letnikovformula givesfirst order accuracy in time.It was pointed out 
that the use of the "Short Memory" principlemakes the solution inefficient for the 
given example.Du et al.[11]developed a compact finite difference scheme for the 
time fractional diffusion equation when 1 < � < 2 so that the fractional wave 
equation was also considered. The Caputo definition was applied to discretize the 
time fractional derivative. The stability and convergence of the scheme were 
analyzed in �∞ norm by using the energy method. It was found that the scheme is 
unconditionally stable and has O(τ�	α + h�) convergence. 
 
The purpose of this article is to develop two high order compact finite difference 
methods for solving the one-dimensional fractional anomalous sub-diffusion 
equation: 
 

2

2

( , ) ( , )
( , )

u x t u x t
f x t

t x

α

α
∂ ∂= +

∂ ∂
, ( , ) (0,1) (0, ]x t T∈ ×                                                (1) 

 
With the initial condition 
 �(�, 0) =  0, 0 < � <  1                                                                                      (2) 
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And the boundary conditions 
 � (0, �)  =  ��(�),    � (1, �)  =  ��(�) ,   0 ≤ � ≤ �                                             (3) 
 
Where�, �� and �� are known functions, and the function u is the unknown 
function to be determined.We consider the case when 0 < α < 1 as we wish to 
study the anomalous subdiffusion equation.We shall take h =1/Min the x direction 
with xi = ih,   i = 0,1 …M,   tn= nτ  and     n = 0, 1…N.High order discretizations 
require an additional number of grid points which induces more computational 
effort. The two compact finite difference methods which will be described in this 
article overcome these difficulties by involving derivatives of the function values 
at the nodes of the corresponding independent variables. We eventually eliminate 
the derivatives to get formulas with three points. This then leads to block 
tridiagonal systems.  
 

2 Fractional Derivatives and Integrals 
 
In this section we give some relevant background on fractional derivatives and 
related integral. Let fbe a function with respect to one independent variable t, the 

fractional derivative 0 tDα of f(t)can be defined by Riemann-Liouville formula as 

(see [12] ). 
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∫ 0 < � < 1                                                     (4) 

 
Where Γ( )  is the Gamma function and  0 ≤ � ≤ �. 
 
The above derivative is related to the Riemann-Liouville fractional integral, which 
is defined as 
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Where 0 0 ( ) ( )t tD I f t f tα α =                                                                                  (6) 

 
Fractional derivatives can also be represented by the Grünwald-Letnikovformula 
definedas ( see [10] ): 
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Where tτ  is integer and  k = 0, 1, 2…tτ and ( )
0 1αω = , ( ) ( )
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The coefficients ( )
k
αω are the coefficients of the power series of the generating 

function ( , ) (1 )z z αω α = − and are also the coefficients of the two-point backward 
difference approximation of the first order derivative.  
 

where    ( )

0 0

1
(1 ) k k

k
k k

k

k
z zz αα α

ω
∞ ∞

= =

− − = = 
 

− ∑ ∑
                                                    

(8)   

 
It is possible for the function ( , )zω α to generate coefficients of the high order 
approximation, for instance if the generationg function is    
 

2 3 425 4 1

12 3 4
( , ) ( 4 3 )z z z z z αω α = − + − +

                                                                
(9) 

 
then we get the Grünwald-Letnikovformula of a fourth order accuracy (i.e., P= 4)( 
see [6] ). 
The coefficients ( )

k
αω can be expressed in term of the Fourier transform ( see [6] ). 

 

If  iz e ϕ−= in Eq.(2.5) then 
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3 Compact Finite Difference Method with the 
Grünwald-Letnikov Formula 
 
Let us define the central, forward and backward difference operators  
 ����� = �� !" 	��#!"�$ ,  %& �&� '�

� = �� !" 	��"$  ,%&#�&� '�
� = ��"	��#!"$                                    (10)                                                           

 
We can represent ��(��  , ��	��   about (��, ��) by Taylor seriesas (see [15] ) 
 

)��(�� = ��� + ℎ %&�&�'�
� + ($)+�! %&+�&�+'�

� + ($)-�! %&-�&�-'�
� + ⋯   

��	�� = ��� − ℎ %&�&�'�
� + ($)+�! %&+�&�+'�

� − ($)-�! %&-�&�-'�
� + ⋯   0                                (11) 

Analogously, the first and second derivatives of  ��(��  , ��	�� are 
 

)%&�&�'�(�
� = %&�&�'�

� + ℎ %&+�&�+'�
� + ($)+�! %&-�&�-'�

� + ($)-�! %&1�&�1'�
� + ⋯

%&�&�'�	�
� = %&�&�'�

� − ℎ %&+�&�+'�
� + ($)+�! %&-�&�-'�

� − ($)-�! %&1�&�1'�
� + ⋯234

35                       (12) 
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)%&+�&�+'�(�
� = %&+�&�+'�

� + ℎ %&-�&�-'�
� + ($)+�! %&1�&�1'�

� + ($)-�! %&6�&�6'�
� + ⋯    

%&+�&�+'�	�
� = %&+�&�+'�

� − ℎ %&-�&�-'�
� + ($)+�! %&1�&�1'�

� − ($)-�! %&6�&�6'�
� + ⋯   234

35
                (13)   

We approximate the first and second spatial derivativesusing Eq.(11), (12) and 
(13)toget 

 %&�&�'�
� = 78��"9�(:+; < <8<#<8= + >(ℎ?)                                                                               (14) 

 
And 
 

%&+�&�+'�
� = < <8%<#@<8 '�"9�(:+!+< <8<#<8= + >(ℎ?)                                                                             (15) 

 
To obtain the approximate solution of Eq.(1), we replace the second order 
derivative in space by the finite difference approximation in Eq.(15) and discretize 
the time fractional derivative by using Grünwald-Letnikovdefinition (7). 
When p = 1. We obtain  
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(16) 

 
Thecompact finite difference method with Grünwald-Letnikovformula for Eq. (1), 
(2) and (3) is in the form 
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Where 2h

S
ατ= . 
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We can represent the equations defined in Eq. (17) in a linear system of equations 
of the form 

1

2

n
n n n k n

k

AU BU CU Fατ− −

=

= + +∑ ,1 1i M≤ ≤ − , 2,3,...n N=                             (18) 

 
Where 1 2 1[ , ,....., ]n n n n T

MU u u u −= . 

 
The matrices in Eq. (18) are tridiagonal and are defined as follows 
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, 2,3,...,k n= ,  0 1α< <  
 
and the vectors nF  for 2 n N≤ ≤ are in the form 
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4 Compact Finite Difference Method with Right-
Shifted Grünwald-Letnikov Formula 
 
To estimate the left-handed time fractional derivative in Eq. (1), we use the right-
shifted Grünwald-Letnikovformula which is defined as( see [9] ). 
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(19) 

 
where p = 1. 
 
This formula is shifted by one grid point to the right to get the fractional forward 
difference formula. 
 
We use finite difference approximation in Eq. (15) to discretize the second order 
spatial derivative in Eq. (1) to obtain 
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Hence the compact finite difference method with right-shifted Grünwald-
Letnikovformulafor Eq. (1), (2) and (3) is given as: 
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The linear system of Eq. (4.3) is 
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where 1 2 1[ , ,....., ]n n n n T

MU u u u −=  and the vector nF isdefined as 

 

0 1 2 1 2 3 3 2 1 2 1[( 10 ),( 10 ),.....,( 10 ),( 10 )]n n n n n n n n n n n n n T
M M M M M MF a f f f f f f f f f b f f f− − − − −= + + + + + + + + + +  
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5 The Truncation Error  
 
Let us consider the truncation error of Eq. (16). We have 
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4( ) ( )pO O hτ= +  
 
Since we use the generating function (1 )z α−  then the Grünwald-Letnikovformula 
has an accuracy of order p = 1. 
 
Hence 
 

4( , ) ( ) ( )i nT x t O O hτ= +                                                                                        (24) 

 
The same result will be obtained if the truncation error of Eq. (20) is investigated. 
Therefore both of the propsed fractional compact finite difference methodsfor the 
time fractional diffusion equation have accuracy of order 4( )O hτ +  

 

6 The Stability Analysis of the Two Compact Finite 
Difference Methods 
 
In this section the von Neumann (or Fourier) method will be used to analyze the 
stability of CFD methodwith the Grünwald-Letnikovformula and CFDmethod 
with the right-shifted Grünwald-Letnikovformula. 
 
We start with Eq. (17) and for simplicity let us write this formula with no source. 

Cui [8] introduced the following lemma about properties of ( )
k
αω  

 
Lemma: The coefficients ( )

k
αω ( )0,1,..k = satisfy (see [8] ) 
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0 1;αω = ( )
1 ;αω α= − ( ) 0,k

αω < 1,2,...k =  
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0

0;k
k

αω
∞

=

=∑ ( )

1

, 1
m

k
k

m N αω+

=

∀ ∈ − <∑  

 
Proposition 6.1: The compact finite difference scheme with the Grünwald-
Letnikov formula defined in Eq. (17) is unconditionally stable. 
 
Proof: Suppose n

iU is the approximate solution of Eq. (17) and so the error we 

obtain from the difference between the theoretical and numerical solutions can be 
addressed as  
 

n n n
i i iu Uε = − ,     0,1,...,i M= ,    0,1,..., .n N=  

 
This error can be presented by the same compact finite differencemethod with the 
Grünwald-Letnikovformula.  
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We obtain 
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1 1 1 1
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( 10 ) 12 ( 2 )
n
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k

Sαω ε ε ε ε ε ε− − −
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0 0n n
mε ε= = ,  1,2,...,n N=                                                                                  (26) 

 
According to the Fourier method, the errors( )n

ixε at the grid points in the range 

[0,1]x∈ and a given time level can be expressed in terms of a finite Fourier series 
with the complex exponential form( see [4] ) 
 

( ) 1

0

m i

M
q xn

i m
m

x A eε −

=

=∑  , 0,1,...,i M=                                                              (27) 

 
where /mq m lπ= , l Mh=  

 
To study the propagation of errors as t increases, let us omit the summation and 

the constant Am, taking only a single term 1 m iq xe − . 
 
Suppose the solution of equations (25) and (26) in the form  
 

1n n qih
i e eβ τε −=                                                                                                   (28) 

 

where neβ τ is termed the temporal or amplification factor andβ is complex 
temporal number which depends uponq  
 

We note that at n = 0, the solution of error reduces to1qihe − . For the von 

Neumann method, a scheme is said to be stable if and only if 1eβτ ≤ for all γ .  

Substituting Eq.(28) into Eq.(25) we obtain 
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To study the stability of Eq.(29) let us consider the iteration when n → ∞; so we 
obtain 
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( )
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Then from Eq.(8) we can obtain 
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Since the maximum value of sin( ) 1qh = , then 
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Therefore according to the von Neuman method the condition for stability

1eβ τ ≤  is satisfied by
( )

1

1
1

1 6S α
≤

+
 for all values ofS> 0 and 0 1α< < . Hence 

the compact finite difference method with the Grünwald-Letnikovformula (17) is 

unconditionally stable for
2

0S
h

ατ= > and 0 1α< < . Now we study the stability 

of the compact finite difference method with the right-shifted Grünwald-
Letnikovformula. 
 
Proposition 6.2: The compact finite difference scheme with the right-

shiftedGrünwald-Letnikovformula defined in Eq.(21) is stable if 
12

3
S

α −

≤ for 

0 1α< <  
 
Proof: The error n

iε satisfies the equations (21). This gives 

 

( ) ( )
1

( ) 1 1 1
1 1 1 1

0

10 12 2
n

n k n k n k n n n
k i i i i i i

k

Sαω ε ε ε ε ε ε
+

− + − + − +
− + − +

=

+ + = − +∑ , 0,1,...,n N= .              

                                                                                                                             (34) 
 

0 0n n
Mε ε= = , 0,1,...,n N=                                                                                 (35) 

 

We assume that the solution of the equation (34) takes the form 1 .n n qih
i e eβ τε −=  
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Inserting the above solution into Eq.(34), we obtain 
 

( )

( )

2
2
1

2 ( )
2

0

4 sin
1

1 sin
3

qh

n
qh k

k
k

S
e

e

βτ

α βτω
+

−

=

−=
 − 
 

∑
                                                              

(36) 

 
If 1eβ τ > for all β then the errors will propagate exponentially and the equation 
of the error will be unstable  
 
Suppose that 1eβ τ ≤ then 1 1eβ τ− ≤ ≤  

 
when 1eβ τ ≤  then from Eq.(36) we have 
 

( )

( )

2
2
1

2 ( )
2

0

4 sin
1

1
1 sin

3

qh

n
qh

k
k

S

eα β τω
+

=

− ≤
 − 
 

∑
                                                                  

(37) 

 
taking the maximume value of 1eβ τ = we get 
 

( )

( )

2
2

1
2 ( )

2
0

4 sin
1

1
1 sin

3

qh

n
qh

k
k

S

αω
+

=

− ≤
 − 
 

∑
 

 

From the Lemma we have ( )

0

1
m

k
k

αω
=

> −∑ m N +∀ ∈  then 

 
( )2

2sin 0qhS >  is always true if S > 0 

 
when 1eβ τ ≥ −   we have  
 

( )

( )

2
2

1
2 ( )

2
0

4 sin
1

1
1 sin

3

qh

n
qh k

k
k

S

eα β τω
+

−

−

− ≥ −
 − 
 

∑
 

 
Taking the limits of the summation when n→∞ we obtain  
 

( )

( )

2
2

2 ( )
2

0

4 sin
1

1
1 sin

3

qh

qh k
k

k

S

eα β τω
∞

−

−

≥
 − 
 

∑
 

 
then from equation (8) we have 
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( ) ( ) ( )2 2
2 2

1
4 sin 1 sin 1

3
qh qhS e

αβτ− ≤ − − 
 

 

 
Consider the extreme value 1eβ τ = −  then  
 

( ) ( )2 2
2 2

1
4 sin 2 1 sin

3
qh qhS α  ≤ − 

 
 

 
Since the maximum value of ( )2sin 1qh = , then we arrive at the condition that

12

3
S

α −

≤  . 

 

7 Numerical Experiments  
 
Let us consider the equation from Takaci et al. [3] 
 

2 2
2

2

( , ) ( , ) 2

(3 )

x
xu x t u x t e t

t e
t x

α α

α α

−∂ ∂= + −
∂ ∂ Γ −

for � = 0.5                                               (38)   

 
With the initial condition  
 �(�, 0) = 0,0 <  � <  1                                                                                      (39) 
 
And the boundary conditions 
 �(0, �) = �� ,           �(1, �) = C��,    0 ≤  � ≤  �                                               (40) 
 
The exact solution of Eq. (38) is   
 �(�, �) = ��C�                                                                                                     (41) 
 
We implement the two numerical methods discussed in this paper for solving the 
above example and compare their solutions with the exact solution.Figure 1 shows 
the comparison of u(x,t) values between the solutions of the two methodsand the 
exact solutionfor a certain set of parameter values which satisfy the stability 
condition of the CFD scheme with the right-shifted Grünwald-Letnikovformula.  
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Fig.1: Comparison between the results of the CFD method with G-L formula and 
CFD method with right-shifted G-L formulaand the exact solution at τ = 5.55556

×10-10 andh = 0.1 
 
To test the order of convergence of our schemes firstwe estimate the error in �∞ 
norm where 

1 1
max N N

i il i M
e u U∞

≤ ≤ −
= − at � = 1, ℎ = D = 0.2 and then decrease the 

mesh size of ℎ to half and D to 0.125D. The results of the maximum errors and the 
order of convergence of the compactDu Fort Frankel method are listed in table 1.  
 
The order of convergence ( , )r hτ  is evaluated by the formula 
 

( )2 (8 , 2 ) ( , )( , ) log
l l

h hr h e eτ ττ ∞ ∞=  

 
Table 2 represents the maximum errors and the order of convergence obtained by 
the CFD method with the right-shifted Grünwald-Letnikovformula, here the step 
sizesD, ℎ are shosen to satisfy the stability condition of this method. 
 
Assuming that 4

1 2l
e C C hτ∞ = +  where 1C  and 2C are constant, the maximum error 

tends to 4
2C h as time step size becomes small enough and the order of the 

convergence tends to 4. Analogously, if D is large then 1l
e Cτ∞ ≈ and the order of 

the convergence tends to 1 (Hu and Zhang, 2012). 
 

Table 1: Error in�∞ norm and order of convergence of CF with G-L method at � = 0.5 
 ‖C‖F∞order 

0.2.h τ= =                                           2.1081 2E −                                         - 
0.1, 25.0.0h τ= =                                 1.8383 3E −                                    3.5195 
0.05, 3.125 3h Eτ= = −                        1.0299 4E−                                    4.1578 

0.1h τ= =                                            1.0713 2E −                                         - 
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0.05, 0.0125h τ= =                              8.1616 4E −                                    3.7143 
0.025, 1.5625 3h Eτ= = −                    3.7556 5E −                                    4.4418 

 
Table 2: Error in�∞ norm and order of convergence of CF with shifted G-

Lmethod at � = 0.5 
 ‖C‖F∞order 

0.2, 1.3889 3h Eτ= = −                       3.3687 1E −                                           - 
0.1, 1.7361 11h Eτ= = −                      1.1923 2E −                                     4.8204 
0.05, 2.17014 12h Eτ= = −                 7.7921 4E−                                     3.9356 
0.1, 5.4254 .13h Eτ= = −                    1.1656 5E −                                           - 
0.05, 6.7817 14h Eτ= = −                   7.6203 7E −                                     3.9351 
0.025, 8.4771 15h Eτ= = −                  2.4355 8E −                                     4.9675 

 
These results indicate the convergence of the proposedmethods. 
 

8 Conclusion  
 
In this paper, two high order compact finite difference schemes have been 
developed. The stability of the proposod methods was investigated and it was 
shown that the compact finite difference scheme with the Grünwald-
Letnikovformulais unconditionally stable while the compact finite difference 
scheme with the right-shifted Grünwald-Letnikovformula is conditionally stable. 
Both of these methods have an accuracy of order >(ℎ?) in space and 
oforder>(D)in the temporal step. It should be noted that the proposed algorithms 
produced reasonable results. 
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