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Abstract

In this paper, two high order compact finite diface schemes are formulated for
solving the one dimensional anomalous subdiffugignation. The Grunwald-
Letnikov formula is used to discretize the tempdrattional derivative. The
truncation error and stability of the two methode aiscussed. The feasibility of
the compact schemes is investigated by applicéti@model problem.

Keywords:Compact finite difference method, Time fractionaffudion,
Grunwald-Letnikov method.

1 Introduction

Diffusionis a phenomenathat has been rigorously exténsively studied. This
phenomenon is modelled bythe diffusion equationcivhs a partial differential
eqguation that describes the spread of a substanosenparticles move, due to the
random motion, from a region of higher concentratio a region of lower
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concentration. The dependent variable in the egma concentration of the
substance and the independent variables are spatiatemporal variables. The
diffusion equation is derived using Fick’'s law whi@ssumes a homogenous
environment. In the case of non-homogenous enviemsn(for example, in a
cell) then the fractional diffusion equation is dsé& model the diffusion
process.Anomalous diffusion describes the spread pérticle plume at a rate
incompatible with the classical Brownian motion radelurthermore, the plume
may be asymmetric.When a cloud of particles spreddwer than classical
diffusion, it leads to anomalous subdiffusion [2].

The study of fractional partial differential equats has increased in recent years.
A comprehensive background on this topic can baeddn books by Das[14] and
Podlubny[6]. Compact finite difference schemessammetimes preferred because
their accuracy and high computational efficiencyeal papers have recently
been published on compact finite difference methimissolving theanomalous
diffusion equation. Gao and Sun [5] have preseatédgh order compact finite
difference scheme for the fractional subdiffusiguaions.They first transformed
the problem usingthe Caputo definition and othealyital theories then the
discretization was applied to approximate the tem@pimactional derivative. The
stability and convergence of the method were aralyzy the energy method. A
compact finite difference method was also discusbgd Cui [8] for the
anomaloussubdiffusion equation. The Grinwald-Letmikormulawas used to
approximate the time fractional derivative. Thea®torder spatial derivative in
the problem was approximated with fourth order a@cy The stability and the
convergence of the proposed method were investidqiitthardson extrapolation
was appliedto increase the accuracy in time agénerating function used in the
Grunwald-Letnikovformula givesfirst order accuraoytime.lt was pointed out
that the use of the "Short Memory" principlemaklies $olution inefficient for the
given example.Du et al.[11]developed a compactdidifference scheme for the
time fractional diffusion equation wheh< a < 2 so that the fractional wave
equation was also considered. The Caputo definitias applied to discretize the
time fractional derivative. The stability and cornyence of the scheme were
analyzed inl,, norm by using the energy method. It was found thatscheme is
unconditionally stable and ha§t>~* + h?) convergence.

The purpose of this article is to develop two hogter compact finite difference
methods for solving the one-dimensional fractiomalomalous sub-diffusion
equation:

0°u(x, 1) _ 9°u(x 9
o’ ox*

+f(x 1), (xt)O(0,1)x (O,T ] (1)

With the initial condition

ulx,0)=0, 0<x< 1 (2)
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And the boundary conditions

u((0,t) = f1(t), u(,t) = fo(t), 0 <t<T 3)

Wheref, f; and f, are known functions, and the function u is the ngwn
function to be determined.We consider the case whem < 1 as we wish to
study the anomalous subdiffusion equation.We shkéh =1/Min thex direction
with x, =ih, i=0,1..M, t.=nr and n=0, 1..N.High order discretizations
require an additional number of grid points whicluces more computational
effort. The two compact finite difference methodsiet will be described in this
article overcome these difficulties by involvingridatives of the function values
at the nodes of the corresponding independenthlagaWe eventually eliminate
the derivatives to get formulas with three pointhis then leads to block
tridiagonal systems.

2 Fractional Derivatives and Integrals

In this section we give some relevant backgroundraational derivatives and
related integral. Lefbe a function with respect to one independent b&ig the

fractional derivative,D;" of f(t)can be defined by Riemann-Liouville formula as
(see [12]).

dey_df 1 f@)d
D, f(t)—dt{r(l_a)jo (t_l)a}o<a<1 (4)

Wherel (-) is the Gamma function and < t < N.

The above derivative is related to the Riemann-ti@ifractional integral, which
is defined as

0, 1 et f()dr
ol f(t)_r(a)j0 (t—/)1-00<“<1 (5)
Where ,D{ /I f (t) = f (t) (6)

Fractional derivatives can also be representechby@rinwald-Letnikovformula
definedas ( see [10] ):

[£]

0fo(t)=ria W (t-kr)+O(T?), t20 )
k=0

Wherel isinteger and k =0, 1, 2Landef” =1, of = (1—a—+1)a)f<”’

k T



Compact Finite Difference Methods for the... 107

The coefficientgf” are the coefficients of the power series of theegating

function w(z,a) = (1- z)” and are also the coefficients of the two-point lveaki
difference approximation of the first order derivat

where (1-2)° :i(k_a_ljzk :i@”)zk (8)

k=0 K

It is possible for the functionu(z,a)to generate coefficients of the high order
approximation, for instance if the generationg tioitis

25 4, 1
= (22— L R 9
w(z,a) (12 47+37 ; 7+ . 5y 9)

then we get the Grunwald-Letnikovformula of a fouotder accuracy (i.eP= 4)(
see [6] ).
The coefficientgf” can be expressed in term of the Fourier transfosee([6] ).

If z=¢€"in Eq.(2.5) thenaf” :%T f (p)e"’dgand f (g)=(1-e")".

3 Compact Finite Difference Method with the
Grunwald-Letnikov Formula

Let us define the central, forward and backwartedéince operators

n n
S.ul = Uiy —UT g (6+u) — Ujyq U (6_u) — U Uiy (10
X 2h ' \ax /; h \ax/; h

We can represent’,, ,u;* ; about(x;, t,) by Taylor seriesas (see [15] )

n

=+ h (3) 0 (2) o (1)

ox 2! \ox2/; 3! \ox3
(11)
no_n a_u)" @(&)"_@(&)"
Uier = W h(ax i + 21 \ox2/; 3! \ax3/; +
Analogously, the first and second derivativesuf , , u;* ;are
ou\" _ (ou\" 2\ (W? 33w\t (W3 fatu\"
)., =G, +rGa), +5r (G5), + 5 G), + (12)

B () -2 ) - )+

(3.
0x/ i1
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a2u\" _ (9%u n 3u\" (2 ratu\" . (n)3 [a5u\" \
G, = Ga), +r(Gs), + 5 G), + 5 (Gs), + |
¥ (13)
2u\" _ ro2u\" 3\ (2 fotu\" ()3 [35u\" J
Ge)_, = Ga), —n(Ga), +5 ), — 5 (58), +
We approximate the first and second spatial devieatising Eq.(11), (12) and
(13)toget

G, =y o -
And
24 (9-u\"
(%):l - (fx}(lzaax+2i_) + 0(h4) (15)
120x0x

To obtain the approximate solution of Eq.(1), welaee the second order
derivative in space by the finite difference appmation in Eq.(15) and discretize
the time fractional derivative by using Griinwaldutigovdefinition (7).

Whenp = 1. We obtain

a,(ouy
izn: wﬁa)u_n—k — ox (6)(), + £
" s | (1+hza+ a_j I
12 0x 0x (16)
i=14,2,.M-1 n=12.,N,
ui0 =0, i=142,.M -1,
ul = fi(t), ul=f(t), n=12,..N

Thecompact finite difference method with Grinwalektikovformula for Eq. (1),
(2) and (3) is in the form

S W L0+ )= 12S(4E, - 20+ e (B 1Q 1 f:
k=0

i=1,2,.M-1 n=12.N , 17)
w=0, i=1,2..M-1,
W= ), W= 6t), n=12..N

WhereS = ;—Z .
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We can represent the equations defined in Eq.i{l&)inear system of equations
of the form

AU"=BU™+> CU™ +7"F"1<i<M -1,n=2,3,..N (18)
k=2
WhereU" =[u/, uj,.....,u; 1"

The matrices in Eq. (18) are tridiagonal and afendd as follows

~245+10) 15-1
125-1 —(24S+ 10) 15 1

125-1 —(245+10) 15 1
125-1  —(245+ 10)

(M-1)x(M-1)

10 1 10 1
1 10 1 1 10 1
B=-a| . . C=af? P
1 10 1 1 10 1
1 10 1 10

(M-1)x(M-1) (M-D)x(M-1)

,k=2,3,...n, O<axl

and the vectorg" for 2< n< Nare in the form

I (augt +(12S- D - Y WV g+ 1060 8
k=2
f"+10f," + f;

T
=}
1

o, +10f0,+ 1,

™ (aul™ +(12S-1)\ —Zn:cqf") g )+ f,+10f, +
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4  Compact Finite Difference Method with Right-
Shifted Grinwald-Letnikov Formula

To estimate the left-handed time fractional denxatn Eq. (1), we use the right-
shifted Grinwald-Letnikovformula which is defines( &ee [9] ).

0u(x, ) _ 1S5 -k 19
ot” r? Z:: N +o(n) (19)
wherep = 1.

This formula is shifted by one grid point to thght to get the fractional forward
difference formula.

We use finite difference approximation in Eq. (idyiscretize the second order
spatial derivative in Eg. (1) to obtain

(0]
nzﬂwﬁa)un k1 _  OX\ 0X /J, + £

& ( h? . a_j e
1+ o=

|:112! M_ll n:112! N )

uw = , 1=1,2,.M-1

up, = f(t), uy =f(t), n=12,.,N

Hence the compact finite difference method withhtghifted Grinwald-
Letnikovformulafor Eq. (1), (2) and (3) is givern as

n+l

Zaf) (U5 +10y™  + g )= 12S(U, - 200+ 7 £+ 1Q 4 f]
I—1,2,...l\/| 1, n=12,..N , (21)
qOZO, i=12,.M-1,

B= 60 U =6, n=12..N

The linear system of EqQ. (4.3) is

n+1l
AUM™ =BU"-> CU™™+77F", 1<i<M -1,1sn< N (22)

k=2
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whereU" =[u/, uj,....., u;_,]" and the vectdr"isdefined as

F" =[(a+ 7 +106"+ 1), (f/+10f )+ £), .o €7 o+ 20,7+ 6,7, 0+ §,0 5+ 107+ 4,")

n+l

wherea=7"7((a +12S){§ - §*-> [ § ") and
k=2

n+l

b=7"((@+12S)Y, - §* =D " “)for 1<sn<N.
k=2

The entriesa ;,h,,¢; andd,; for i=1,2,,M -Tand j=1,2,.M - 1can be
defined as

1 wheni=j-1and=j+ a+12S wheni=j-1and=j+
g, =110 wheni=]j , B, =41100-24S when i= |
0 othervise 0 othewise

«® wheni=j-1and=j+
G, =1104f” wheni=j k=2,3,.n+1 0O<a<l
0 otrerwise

5 The Truncation Error

Let us consider the truncation error of Eq. (16§ Mave

Q(O-U)"
T(X,L)=%Z;aé”)tf'k -%- f" (23)

k=
o.(ouY
1 : a), n-k aau " azu " aX aX ;
- u —_ +| — —_ ~ 7
ﬂé“i ' (at”l [ax2 | (+h26+6

_1& e (07U [ (0°u)
e (R ot
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=0(r") +O(H)

Since we use the generating functidn z)? then the Grinwald-Letnikovformula
has an accuracy of ordpr= 1.

Hence

T(%,1,) = O@)+ (1) (24)

The same result will be obtained if the truncagoror of Eq. (20) is investigated.
Therefore both of the propsed fractional compautdidifference methodsfor the

time fractional diffusion equation have accuracywfer O(r + h*)

6  The Stability Analysis of the Two Compact Finite
Difference Methods

In this section the von Neumann (or Fourier) metid be used to analyze the
stability of CFD methodwith the Grinwald-Letnikowioula and CFDmethod
with the right-shifted Grinwald-Letnikovformula.

We start with Eq. (17) and for simplicity let usitgrthis formula with no source.
Cui [8] introduced the following lemma about prafes of &}”

Lemma: The coefficientgd” (k =0,1,.) satisfy (see [8] )

1) «”=Laf” =-a; g™ <0,k=12,...

2) D w!” =0; OmO N*,—iaf("’ <1
k=0 k=1

Proposition 6.1: The compact finite difference scheme with the Galidw
Letnikov formula defined in Eq. (17) is unconditbin stable.

Proof: SupposeU"is the approximate solution of Eq. (17) and so éher we
obtain from the difference between the theoreta®l numerical solutions can be

addressed as

g=u"-U", i=01..M, n=01,..N.

This error can be presented by the same compaie fifferencemethod with the
Grunwald-Letnikovformula.
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We obtain

Y (6L +105T + g )= 1B €N - F 5], ) =12, M - ],

k=0

n=12,...N (25)
& =€r=0, n=12,...N (26)

According to the Fourier method, the errotéx) at the grid points in the range

x[[0,1]and a given time level can be expressed in ternasfiofite Fourier series
with the complex exponential form( see [4] )

M
g“()g):ZAneFl ", i=0,1..M (27)

whereq,, =mm/ |, | =Mh

To study the propagation of errorstascreases, let us omit the summation and

the constang, taking only a single terg S

Suppose the solution of equations (25) and (2&)erform
gin — eﬁnr e\/—_lqih (28)

wheree”™ is termed the temporal or amplification factor #@his complex
temporal number which depends uppn

We note that an = 0, the solution of error reducesaglqih. For the von
<lforally.

Neumann method, a scheme is said to be stablel ibaly if‘e'gr
Substituting Eq.(28) into Eq.(25) we obtain

~12S sirt (%)
3-sin’ (1)

(29)

n
e—k,Br =
2

To study the stability of Eq.(29) let us considee tteration whem — «; so we
obtain
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Lo, -12Ssirf (1)
lim e = 2 30
n~°°;)af 3-sin’ (1) (30)
2 —12Ssirf (1)
kBr _— 2
Hence e = . 31
kZ; Cuf 3- sz (%h) ( )
Then from Eq.(8) we can obtain
e —-12S sir? (&£
(1-e7) === 5,3) (32)
3-sin” (%)
Since the maximum value gin(gh) =1, then
. 1
e =——— (33)
1+(6S)°
Therefore according to the von Neuman method thedition for stability
‘e”’ <1 is satisfied by 1 _|<1 for all values 06> 0 and0O<a <1. Hence
1+(68)°

the compact finite difference method with the Grafox_etnikovformula (17) is

a

unconditionally stable fo® = ;—2 > 0 and O<a <1. Now we study the stability

of the compact finite difference method with thehtishifted Grinwald-
Letnikovformula.

Proposition 6.2: The compact finite difference scheme with the fight
a-1

for

shiftedGrunwald-Letnikovformula defined in Eq.(324)stable if S < 2

O<a<l1
Proof: The errok;" satisfies the equations (21). This gives

n+l

> of? (el +106m + 1Y) =125(g - "+ £1L), n=0,1,...N
k=0

(34)
& =&,=0,n=0,1,...,N (35)
We assume that the solution of the equation (3dstéhe forng" = €™ g/ 1o



Compact Finite Difference Methods for the... 115

Inserting the above solution into Eq.(34), we abtali

—-4Ssin? (4
n(+f ) (36)

=
(l—sinz (q;)jzm;we-kﬁf
3

If e’ > 1 for all B then the errors will propagate exponentially anel dguation
of the error will be unstable

Suppose th#eﬁ’ <lthen-1<ef <1

whene?” < 1 then from Eq.(36) we have

-4Sssin® (1)
n+1

- <1 (37)
(1— Lgin? (q;)jz AN
3

taking the maximume value &’ = 1 we get

-4Ssin® (1)
n+1

(1— ;sin2 (“;‘)J Z W™
k=0

<1

From the Lemma we hav® «f” >-10m O N* then
k=0

Ssin?($£) > 0 is always true if S > 0

whene”” > -1 we have

-4Ssin® (1)
n+1
(1— zlgsin2 (“zh)) > we

k-0

> -1

Taking the limits of the summation whan»ow we obtain
4S sin® (1)

(1— = sin (q;)j S w@e

k-0

>1

then from equation (8) we have
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4Ssir? () s(l—% sirf(%")j( be)
Consider the extreme valeé” = -1 then
assin® (T) < 7| -1 sif (2
sin® () < 1 3 S (<)
Since the maximum value sih(<) = 1, then we arrive at the condition that

2[2’—1
3 .

S<

7 Numerical Experiments

Let us consider the equation from Takaci et al. [3]

0u(x t) _ 9*u(x 9 28 t

5 > TG-a) ~t?e*fora = 0.5 (38)
With the initial condition
u(x,0)=00< x< 1 (39)
And the boundary conditions
u(0,t) = t?, u(l,t) =et?, 0<t<T (40)

The exact solution of Eg. (38) is
u(x, t) = t?e* 41)

We implement the two numerical methods discussddispaper for solving the
above example and compare their solutions witreRaet solution.Figure 1 shows
the comparison ofi(x,t) values between the solutions of the two methadishea
exact solutionfor a certain set of parameter valwbsch satisfy the stability
condition of the CFD scheme with the right-shifedinwald-Letnikovformula.
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(% f)

g w10-17 b —&— Exact Solution f"}?
[ —+—— CFDM withsight shified G — L el
o[ TS CEDMwithG- 1 Qf’”g/ Py
6510717 L — -
[ -l
5
17 =
4107 A

2x10717 |

0.2 0.4 0.6 [R:3 1.0

Fig.1: Comparison between the results of the CFD methdtid @A4L formula and
CFD method with right-shifted G-L formulaand theaeksolution atr = 5.55556
x10"anch=0.1

To test the order of convergence of our schemesiir estimate the error iff
norm where|d|. = max|y' - U"|at T = 1,h =17 =0.2 and then decrease the

I<isM -1
mesh size oh to half andr t0 0.1257. The results of the maximum errors and the
order of convergence of the compactDu Fort Franiethod are listed in table 1.

The order of convergenagr,h) is evaluated by the formula

I°°/ I°°)

Table 2 represents the maximum errors and the ofdesnvergence obtained by
the CFD method with the right-shifted Grinwald-likbvformula, here the step
sizes, h are shosen to satisfy the stability conditionhi$ tnethod.

r(r,h):logz(||e(8r,m)| e .h)

Assuming thatel

. = Cr+ G H whereC, andC,are constant, the maximum error
tends to C,h*as time step size becomes small enough and the ofdthe
convergence tends to 4. Analogouslys it large therjd
the convergence tends to 1 (Hu and Zhang, 2012).

- = Grand the order of

Table 1: Error inl” norm and order of convergence of CF with G-L mdthb

a=0.5
||e]|;»order
h=r=0.2 2.108%2 -
h=0.17r=0.025 1.83&3-3 3.5195
h=0.057r= 3.12%& - . 1.0292-4 4.1578

h=7r=0.1 1.0832 -
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h=0.057 = 0.012! 8.161 -4 3.7143
h=0.0257 = 1.562& - 3.7556 -5 4.4418

Table 2: Error inl* norm and order of convergence of CF with shifted G
Lmethod atx = 0.5

||e]|;»order

h=0.2,r =1.388E - 3.368 -1 -
h=0.1r=1.736E- 1 1.192B-2 4.8204
h=0.057= 2.1701&- 1 7.792E-4 3.9356
h=0.1r = 5.425£-13 1.1656 -5 -
h=0.057r= 6.781E- 1 7.620B-7 3.9351
h=0.0257 = 8.477E- 1 2.4356 -8 4.9675

These results indicate the convergence of the gexpoethods.

8 Conclusion

In this paper, two high order compact finite difiece schemes have been
developed. The stability of the proposod methods waestigated and it was
shown that the compact finite difference schemehwthe Grunwald-
Letnikovformulais unconditionally stable while th@ompact finite difference
scheme with the right-shifted Grinwald-Letnikovfara is conditionally stable.
Both of these methods have an accuracy of or@ér?*) in space and
ofordelO (7)in the temporal step. It should be noted that ttop@sed algorithms
produced reasonable results.
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