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Abstract

In this paper, we study the resonance problem of a class of singular quasi-
linear parabolic equations with respect to its higher near-eigenvalues. Under a
generalized Landesman-Lazer condition, it is proved that the resonance prob-
lem admits at least one nontrivial solution in weighted Sobolev spaces. The
proof is based upon applying the Galerkin-type technique, the Brouwer’s fixed-
point theorem and a compact embedding theorem of weighted Sobolev spaces by
Shapiro.

Keywords: Weighted Sobolev Space, Quasilinear Parabolic Equation, Res-
onance.

1 Introduction

Resonance problems of quasilinear elliptic (or parabolic) partial differential
equations have been studied extensively in the usual Sobolev spaces. Since
the celebrated paper by Landesman and Lazer [8], many existence results were
obtained under various nonlinearity growth conditions and the Landesman-
Lazer conditions (see [1-4,6,7,9, 11-15] and references therein). However,
there has been very limited existence results for the case of singular quasilinear
elliptic(or parabolic) equations in the existing literature.
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In 2001, Shapiro published a paper [12] on the resonance problems of singu-
lar quasilinear equations. An important element of that paper is the existence
of a complete orthonormal basis in the weighted Sobolev space associated with
singular coefficients of the differential operator. In that paper, a new concept
of near-eigenvalues for singular quasilinear elliptic operators was introduced,
a new compact embedding theorem in the weighted Sobolev spaces was es-
tablished, and some new existence results for the resonance problems were
obtained.

In 2002, Chung-Cheng Kuo [7] applied Galerkin-type techniques and Brouwer’s
fixed point theorem to obtain existence theorems of time-periodic solutions
for quasilinear parabolic partial differential equations with respect to its first
eigenvalue in which the Landesman-Lazer condition may be excluded.

In 2005, Rumbos and Shapiro [11] introduced a generalized Landesman-
Lazer condition and studied the resonance problem of the semilinear elliptic
equations with respect to its first eigenvalue by using the linking argument
and a deformation theorem in weighted Sobolev spaces.

Inspired by papers [9,10,12,14], we have studied the resonance problem of
quasilinear or singular quasilinear elliptic(or parabolic) equations in weighted
Sobolev spaces with respect to their first eigenvalues by using the Galerkin-
type technique and the Brouwer’s fixed-point theorem [2—4].

Motivated by [10-12], in this paper, we show the existence of solutions for
a class of singular quasilinear parabolic equations with respect to its higher
near-eigenvalue in the Hilbert space H (2, T):

pDiu+ Mu = (Nu+ bz, t,u)u” + f(x,t,u)p — G, (z,t) € Q, P)
ue H(Q,T),

where
Mu== 3" Dilp} ()9} ()3 ()3} (waiy(x) Djul + an(a)so(whgu,  (1.1)

and )\, is an eigenvalue of L.

As in paper [3], we assume the existence of a linear uniformly elliptic op-
erator which is close to the original singular quasilinear operator in a certain
sense, and hence the existence of a complete orthonormal basis in the weighted
Sobolev space associated with singular coefficients of the differential operator.
However, unlike the case of the first near-eigenvalue which is simple and whose
eigenfunction is of one-sign, the case of higher near-eigenvalue is challenging to
study due to the fact that the multiplicity of higher near-eigenvalue is greater
than 1 and their corresponding eigenfunctions are sign-changing. By using a
space decomposition technique, we are able to prove that the resonance prob-
lem has at least one solution under a generalized Landesman-Lazer condition.
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The proof method is similar to [12] and [4], which is based also upon apply-
ing the Galerkin-type technique, the Brouwer’s fixed-point theorem and the
compact embedding theorem of weighted Sobolev spaces by Shapiro [12].

This paper is organized as follows. In Section 2, we describe the resonance
problem of a class of singular quasilinear parabolic equations to be studied,
and state the main result. In Section 3, we prove the main theorem.

2 Statement of the Problem and Main Result

Let Q € RY(N > 1), be an open set(possibly unbounded) and let p(z), p;(z) €
C°(Q) be positive functions with the property that

/p(x)dx < 00, / q(z)dzr < oo, /p,-(a:)dw <oo, i=1,2,---,N. (21)
Q Q Q

Let g(x) € C°(Q) be a nonnegative function and T' C 9 be a fixed closed set.
Note that I" may be an empty set and ¢(z) may be zero. On the other hand,
q(z) will satisfy: there exists K > 0, such that

0 <gq(z) < Kp(x), for all x € Q. (2.2)
Here A is a set of real-valued functions defined as
A={u:uecC%Qx R),u(z,t+27) =u(z,t), for all (z,t) € Q x R}.

Settingﬁ =QOxT,T = (—m,7),p=(p1,+- ,pny) and D; = g;‘(' =1,2,---,N),
we consider the following pre-Hilbert spaces (see [12]):

~0 () 0
CP(Q):{UEC /|uxt|p( )d:r;dt<oo},
with inner product (u,v) = [5u( x,t)p(x)dzdt, and the space

Co(Q.T)={uec ANCY(Q x R)|u(z,t) =0, for all (z,t) € x R;

N
/JZ DaulPps + (i + |Deuf?)p] < 00}
Q=

with inner product

N
(u,v) 5 = /~ [Z piDuDv + (uv + Dtthv)p] dxdt.
Q|i=1



Resonance Problem of a Class of Quasilinear... 81

Let Zg = L%(Q) denote the Hilbert space obtained from the completion of 6’2
with the norm ||u||, = ((u,u);)%, and H £ H(Q,T) denote the completion
of the space 5;”0 with the norm |u||z = (u, u)f; Similarly, we have E]% (1=
1,2,---,N) and Zg
It is assumed throughout the paper that s;(u)(i = 0,1,---, N) meets:
(S1) s;(u): H — R is weakly sequentially continuous;
(S2) there exist 7o, m > 0 such that gy < s;(u) < ny, and s;(u) is measur-
able, for u € H.
The functions a;;(¢,7 =1,2,--- ,N) and ag(x) satisfy(also b;;(z) and by(z)):
(A1) ag(x),a;;(z) € COQ) N L>®(Q), ai;(z) = aji(x),Vz € Q;
(A2) ap(z) > fo > 0, Vo € Q;

N
(A3) there exists ¢g > 0, for z € Q and € € RY, such that > a;;(7)&&; >

ij=1 o
Co | f |2 .
Furthermore, we assume both Caratheodory functions b(x, t, s) and f(x,t, s)
satisfy the following conditions.
(B1) There exist constants 6 > 0 and k > 1 such that

5’5’7 ’5’ §717

pats) < { L
W7 8] > 1,
and0<”yl<1,where'ylzwandmzl.
Conditions on f(z,t,s):
(f1) There exists a nonnegative function fo(x,t) € L? such that

|f(x,t,8)] < fo(x,t), fora.e. z€Q andVs € R;

(f2) limsup,_,, o f(z,t,s) = fH(z,t) € L>(Q), liminf,,_ f(z,t,s) =
[ (x,t) € L=(Q).

It is, in general, difficult to study the eigenvalues and eigenfunctions of
M. Shapiro [12] introduced the concepts of near-related operators and near-
eigenvalue of M.

We first introduce some operators related to this paper.

Definition 2.1. For the quasilinear differential operator M, the two form

18
N

1111 -

M(u,v) = Z /~ |:pi2p]25i2 (u)s? (u)aiijuDiv] —i—/~ gso(uw)aguv, u,v e H(Q,T).
(2.4)
Defining
N 1 1
Lou=-3 D, [p? pfbiiju] + boqu, (2.5)

i.j=1
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foruve H,,,=H,,,(2,T) (as described in [12]), and

Z D; [pz pfb D; u} + apqu, u € I;T(KNZ,F), (2.6)

i,7=1

then the bilinear form of L, is

(u,v) Z /pZ P; 2b;;(x)DjuDsv + / bouvg, w,v € Hy,q,(Q 1), (2.7)
Q

7,7=1

and the bilinear form of L is

L(u,v) Z/pz]?] bij(x DuDv+/~b0uvq, w,ve HQT).  (28)
Q

3,0=1
0J

We further assume that domain 2 and operator £, satisfy the so-called
Vi(Q2,T) conditions [12,14]:

(V-1) There exists a complete orthonormal sequence of functions {¢, }°°,
in L2(Q), such that o, € H} , (Q,T) N C*(Q) for all n.

p,q,p
(V-2) The uniformly elliptic operator £, has a sequence of real eigenvalues

{An}22, corresponding to the orthonormal sequence {, }5°,, satisfying
D< A< <A<~ <\, =00 as n— o0,

and

EI(QDWU) = /\n<90na > Yv € H;qf,(Q,F) and n Z 1.

Also ¢ > 0 in .

Here (u,v), = [5uvp. For the sake of simplicity, in the following, we will
denote (u,v), as (u,v).

Examples of operators and domains for which the V7 (€2, ") conditions hold
can be found in [12](pp. 20-26). The V.(€2,I') conditions play a key role in
our study of the resonance problem of singular quasilinear elliptic equations.

Definition 2.2. Operator M is said to be near-related to operator L (denoted
as M ~ L for convenience), if, for any v € H,

lim M (u,v) — L(u,v)

lJul| o0 w7

— 0. (2.9)

OJ



Resonance Problem of a Class of Quasilinear... 83

Definition 2.3. Assume M ~ L in H. X is called a near-etgenvalue of M

of
(1) A is an eigenvalue of Ly;  (2) limyjy)| . o0 M(“’Pklﬁﬁf(“’&“) =0
H
where Py is the orthogonal projection from Li(Q) onto the eigenspace of L,
corresponding to the eigenvalue \. 0

We now state the main result of this paper:

Theorem 2.4. Let @ € RN(N > 1), T = (-m,71), Q = Qx T, p =
(p1,-,pn), p and p;(i = 1,--- , N) be positive functions in C°(Q) satisfying
(2.1), ¢ € C°(Q) be a nonnegative function satisfying (2.2), and T C OS2 be
a closed set. Let M and L be given by (1.1) and (2.6) satisfying (S1)-(S2),
(A1)-(A3) respectively and L, satisfies the conditions of Vi, (Q, ). If M ~ L,
Ajo s a near-eigenvalue of M of multiplicity jr, (B1) and (f1)-(f2) hold, and
Ge(H H)*, then the problem (P) has at least one weak solution; i.e., there exits
w* € H such that

(Dyu*,v) A+ M(u*,v) = Njo (u*, v) ,+(f(x, t,u")+g(z, t,u"),v) ,—G(v), Yv € H.
(2.10)

Here, we will introduce some lemmas and concepts which will be used later.
If (A1)-(A3) and the conditions of V. (€2, I) hold, we have

(&5 oo UL o2tey s a CONS for L2, (2.11)
where @)
i@ k=0,7=1,2,---
Oz, t) = o | ’ o 2.12
%k( ) { (p](l‘)\/C;S(k‘t)7 k,j=1,2,---, ( )
and
@;(z)sin(kt)

Obviously, both ¢%; and ¢5; are in ﬁ(ﬁ, r).

Lemma 2.5. If {6} 727 o U{@5 ;2 ey i @ CONS for L2( ) defined by
(2.11), setting

ZU ]7 90]0_‘_22 90]k+v (]akj)&jk}> (2'14)

7=1 k=1

we have N
lim ||7,(v) — ||z =0, forallve H. (2.15)

n—oo
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Lemma 2.6. (i) Ifv € H, then

Li(v,v) + || Dl —Zlﬁc 5O (A +1)

J=1

£y

Jj=1

(2.16)
\ + [0°(4, k)| } ()\j+1+k2).

Msz

e
Il

1

(ii) If v € L%((Z) and Ly(v,v) + ||Dpl[5 < oo, then v € H. Here Li(v,v) =
L(v,0)+ <v,v>.

Lemma 2.7. Let PP, q, and L be as in the hypothesis of Theorem 2.1
and assume that (Q,T) is a Vi, (0, T) . Then H is compactly imbedded in LQ(Q)

The proofs of Lemmas 2.1-2.3 can be found in [12]. We define the set

S, = {v €eH:v= 2775095% + ZZUJCkSij + 5Pk Mk M € R} .
=1 j=1 k=1
(2.17)

Remark 2.8. (1) If u, € S,, then M(un, Diu,) = 0; (2) (Di(ag§, +
B5k), a5 + B3 =0, k> 10,8 €R.

3 Proof of Theorem 2.1

The proof of Theorem 2.1 can be divided into three steps. The first step is to
construct a set of approximate solutions {u,} of (2.10) in H, where u, € S,
and S, is defined as in (2.17). Then we show in the second step that {u,} is

bounded in H. Finally, we show {u,} converges to a weak solution u* € H of
(2.10).

Lemma 3.1. Assume that all the conditions in the hypothesis of Theorem
2.1 hold. Let S, be the subspace of H defined by (2.17). Taking ng = jo + j1
and 7o = 5(Njotjs — Ajo), then for n > ng, there is a function u, € S, with the
property that

<Dtunv U) + M(um U) :()‘jo + 70n_1)<un> U> + <b($’ t, un)(un)_v U>

+(1— n_1)<f(x,t,un),v> — G(v), Yv € S,. (3.1)

Proof. Let {1;}2";*" be an enumeration of (D550 ko UL@5 3520 ey » and set
= o+ —1)2n+1). (3.2)

So {1}/, is an enumeration of {(p]k}ioﬁj}ﬁ;é’" U {@jk}i‘gﬁ:", where n > ng.
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With this enumeration defined, for o = (o, -+, agn21,), We set
2n24n 2n%4n
i=1 i=1

where 6; = —1,if 1 <i<n* §; =1, if n* +1 <1i < 2n% + n, and define

FZ<05) = (Dtu, 511/11> + M(U, (MDZ) — ()\jo -+ ’)/07”&_1)<u, (511/11>
_<b<x7 tv u>u_7 511/}2) - (1 - n_1)<f(x, t? u)? 5z¢z> + G(azl/}z)

It is clear from orthogonality that (D;u,u) = 0. From (3.3) and (3.4) we
get

(3.4)

2n24n

2 Fila)as = M(u,@) = (N +70) (v, @)
—(b(z,t,u)u=,a) — (1 —n Y {f(x,t,u) — you,u) + G(u).

(3.5)
Then -
Z F(a)oy = I(a) + I1(a), (3.6)
where

I(a) =L(u,u) — (Nj, +70){u, w) — (b(x,t,u)u",u)
- (1 - n_1)<f(x7 t? u) — Tol, ﬂ> + G(ﬁ),
I (a) =M(u,u) — L(u, ).

Consider I(a) in (3.6) first. Note that 79 = $(Ajoj, — Ajp) and §;(\; —
>\j0 - /VO) 2 70(] = 172a e 7n)7 then

L(u, ) — (Njo +70)(u, @) > Y0lo]*. (3.7)

By condition (B1), we have

(bt < [ il +om Jul[alo

Qn{jul<yi} Qn{|u/>v1} (|U| +1- 71)’”

< c|al.
(3.8)
From (f1), Hélder inequality and Minkowski inequality, we have

[(f (2, t,u) = you, @] < yolal* + 1] follplal- (3.9)
Note that G € (ﬁ)* It follows from Lemma 2.3 that, for each given n > jo+ 71,
|G(a)] < clal. (3.10)
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Thus, it follows from (3.7)-(3.10) that

1
I(a) > E’yo\aIQ — clal. (3.11)
By M ~ L and [Ju|[5 = |[a][2 = |a|?, we have
17 u) — 7
lim <‘;‘) _ gim M0 25(“’“) = 0. (3.12)
|a]—o0 |Oz‘ |a| =00 ’CK’

Thus it follows from (3.6), (3.11) and (3.12) that, for any given n > jy + j1,
there exists Ag > 0 such that Y )" | Fi(a)a; > 0 for || > Ap. Under the
assumptions of Theorem 2.1, it is straightforward to verify that F; : R® — R is
continuous for 1 < ¢ < n. By applying the Brouwer’s fixed-point theorem [5],
there exists a* = (af,ad, -+ ,al) € R" such that Fj(a*) = 0for 1 <i <n. Let
wh =" afp; € S,. It follows from (3.4) that u} is a solution of (3.1). O

In next step, we will prove that {uy}o2, ., is bounded in H.

Lemma 3.2. Assume the conditions in Lemma 3.1 hold, and {u;}72; .; C

fIN is the sequence of solutions obtained in Lemma 3.1. Assume further G €
(H)* satisfies the following generalized Landesman-Lazer condition:

G(w) < . fH(@ Hw()p + . [ (@ w(z)p(), (3.13)
for every nontrivial \;,-eigenfunction w of L,, where Q; = Qs x (—m,m)(i =
1,2), @ = {z € Qyw(x) > 0} and Q = {z € Q;w(z) < 0}. Then {uy} is
bounded in H.

Proof. For simplicity of notation, we denote {uy}52; .. by {un}nl; ;- It
follows from Lemma 3.1 that u,, € S,, and wu,, satisfies

(Dt v) + M(tp,v) = (Njy + Y01 ) {(tn, v) + (b(, t,u,) (u,) ", v)

+(1—n"Y{f(z,t,un),v) — Gv), Yv € S,, (3.14)

where 79 = (Ajo1ji — Ajp)/2, and n > ng = jo + Ji.
In order to prove Lemma 3.2, we only need to prove that there exists a
constant such that {u,} obtained by Lemma 3.1 satisfies

Juallz < K. (3.15)

Assume that (3.15) dose not hold. Then there exists a subsequence of {u,,},
denoted again by {u,}, such that

Tim [l 7 = oo. (3.16)
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Letting v = Dyu, in (3.14), by (£2), (Dyu,, u,) = 0 and M(Dyuy,, u,) = 0, we
have

QN{lun|<m}

|<b(x7taun)u;7Dtun>| S / |un|2|Dtun|p

Up| | Dty
o | | [Drtalp_
QN{|un|>71} (Jtn] +1 =)
< (8,71, (2D Deunll,

and we can conclude that there exists X' > 0 such that
| Dy |lp < K. (3.17)

Under conditions (B1) and (S2), it follows from (1.1) that

N

Mt ) = col 3 [ Diwnll2, + a2,

i=1
where ¢ is a positive constant. Then we have

cl|unllfy < M(un, wn) + e2(lunllf + | Do 7). (3.18)
Now by letting v = u,, in (3.14), and the proof of (3.9), we have

[{f (2, t, 1n) = Yotn, wn)| < ollunll; + K fJunl,- (3.19)

From (B1) and Hélder inequality, we have

2
Ot ) < [ sl [ s

O {Jun|<m} Snffun|>m} (Un] +1—=71)™

< &5(8, 71, 1) a3~ + €5(8, 7, 192]).
(3.20)
Then by (3.19), (3.20) and (D;uy,, u,) = 0, we have

Cl”un”% < ()‘jo + 70)<un>un> + <b($at>un)u;7 un)
+ (1 =) (f (@, un) = Yotn, tn) = Glun) + er(lunlly + [ Deunlly)
< Kallunll; + Klluall 7 + ¢3(8, 70, 92D |unll;™™ + €5(8, 70, 1€2),

where Ky = \j, + 27 + ¢1, and m > 1. Dividing both sides of the above in-
equalities by ||un||% and then by (3.16), we know that there exists ni(n; > ng)

such that || H2
U
0<2§ nngl, Vn > ny.
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Noticing (3.16), the above inequalities establish if and only if
lim ||u,||, = oo, (3.21)
n—oo

that is, there exists K > 0 such that

lunllz < Kllunllp, Vn > na. (3.22)
Rewrite u,, as u,, = u,1 + Upo + un3, and let @, = —u,1 — U2 + u,3, where

( jO*lA ) . Jjo—1 n . " . "
Upy = Zl Uy, (4, 0) @50 + 21 ];I(UZ(J,k)wjk + 5, (4, k)51,

j= j=1 k=

Jotj—1 jo+ji—1 n _
U = > U,(5,0)85 + X2 Z( (0 k)PS5, + s (7, k)@s),  (3.23)

i=Jo i=jo k=1
Uz = > Uun(4,0)@5 + ) Z( (0 k)5, + un (7, k)@5)-
. J=Jjo+j1 J=Jjo+j1 k=

First, for given any n > n;, we can prove the following conclusion

o Tl + sl

n—o0 [[enll

~0. (3.24)

As a result, from (3.14) with v = @, we have

<b($, ta un)(un)_v ﬁ,n> + (1 - n_1)<f(x, tv un) — YoUn, an)
—G () + LUy, Up) — M (U, Uy,)

:Z@w—%—wmuWQ (3.25)

+ 3 650y — Al B + 15 R

7,k=1
Since
jo+j1—1 n
(325)r =vollunl2 + D Ny = MIESG 0P+ D (A = Ay — 290)5(4,0)|
j=1 j=jo+ir
Jjo+ji—1 n

+Z)ZJr G R+ 183, R
+ EEI EZI<Aj——Aﬁ)—-2n@>naz<j,k>ﬁ-+|az<j,kn2L

J=jo+j1 k=1
by (3.8) and the proof of (3.9), we get

(3:25) < Yollunll} + ¢ (8,70, 192, K lfunlly + L£(tn, @) = M (utn, n)-
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In this way, it follows from (3.25) that
(3:25)r < ollunll; + (8,71, 1R, K)[unllp + L£(tn, @) = M(tn, @n)- (3.26)
For fixed n, there exists a constant +' > 0 such that
Y (14 ) < Njg — Ay k=1,2,- 50— 1,

Y1+ M) < M = Ajy — 270, k= Jo+ i

Since

n

La(tn, ) =Y (L X)5(5, 00850+ D > (L+M)[is (, k)G + 115 (7, k),

j=1 j=1 k=1
by (3.26) and the above inequalities, there exists v* > 0 such that
7 (a2 + sl g2) < < llunllp + Lun, @) = M(up, in) + K.

Dividing both sides of the above inequality by ||u,[|> and taking the limit as
n — oo, it follows from (3.21) and M ~ L that (3.23) establishes.
Next, taking use of the notation of (3.23) and letting

Unp, o Un;

Wy, = ——, Wy = ,1=1,2,3, (3.27)
Huan Huan
thus by (3.22), there exists K > 0 such that
|lwnllg < K and ||wyllg < K, i=1,2,3, Vn > ny, (3.28)

that is, ||w,| 7 is a bounded sequence in H. As Hisa separable Hilbert space,
by Lemma 2.3 and (3.28), there exists a subsequence of w, ( denoted again by
wy,) and w € H such that

(1) lim {jw, —w||z = 0; )

(2) Juw* € Zf), sitw,(z,t)] < w*(z,t), ae. (z,t)€; (3.29)

(3) lim wy,(z,t) = w(z,t), ae. (z,t)€ Q.
n— oo
Since M ~ L, we get from (3.28) that
fimg M 0ai) = LltwWns) _ g5y g g
nvoo [l

We observe from (3.24) that lim |lw,s||, = 0. Hence, if n — oo, then
n— oo

<wn7§5§k> = <wn37§5§k> - 07 j > jO +jl
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Now by (3.29), we get w°(j, k) = 0, for j > jo+ 71 and all k. Similarly, we have
w*(j, k) = 0, for j > jo + 71 and all k. By (3.24), we gain lim |jwy|, = 0,
n—oo

similarly, we can obtain w°(j, k) = 0 and @*(j,k) =0, for 1 < j < jo — 1 and
all k. Thus, we get

{wc(j, k) =0 and @°(j, k) = 0, for j > jo + j1 and all k; (330)

we(j,k) =0 and w*(j,k) =0, for 1 <j < jo— 1 and all .

Hence, letting v = Dyu, in (3.14), and by M (u,,, Dyu,) = 0, Schwarz inequality
and G € (H)*, we get

1Dl < Lf (@, ty )+ (6,7, 1)

Therefore, we have
| Deunll?
lim ——F =

oo funllF

that is,
Tim | Dywy |5 = 0. (3.31)

On the other hand, for £ > 1 and jo < j < jo + j1 — 1, from (2.12), (2.13)
and (3.31), we know

kwe(j, k) = — lim | Dyw,(z, )¢5, (2, t)p(x)drdt = 0.

n—oo ﬁ
A similar situaion prevails for kw*(j, k) = 0. So we have
w(j, k) =0 and w*(j,k) =0,

for kK > 1 and jo < j < jo + j1 — 1. Hence, we know that w(z,t) is a function
unrelated to t; i.e.,

wiz, ) =w(x) = Y D), 0)F5(x). (3.32)

Jj=Jjo
Replacing v by wu,s in (3.14), and by (V — 2), for ¥n > ny, we have
(1 - n*1)<f(x, t, un)a un2> - G<un2> + E(um unZ) - M(um un2)

3.33
< =0 a2 (b by 00) (1) )| < (00 1) )]
On the other hand, we have
|<b(ZL‘, t, un)(un)_’ un2>| < int§~2|b(x’ t, UN)| ’ |un|2p
(3.34)

4 / 16, 10 )t (1t + t3) .
0
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By (B1) and the computing method of (3.20), we can get

J et < 83188 + (5 [ p = ca(6,7, [A]). (3.35)
Q

Qn{un|>n}

So, by (3.35), we can obtain

/~ 16, £, )t (tny + n3)p < (8,71, Q) ||tns + Uns|| p- (3.36)
0

By using of (3.34)-(3.36), then it follows from (3.33) that

(1= Y {f (2, t,un), Una) — G(tnz) + L (U, Una) — MUy, Upz) (3.37)
< (0,70, [N unllp™™ + €508, 71, [Q) + ¢3(8, 72, 12D [wnt + wns]l-

Dividing by ||u,||, on both sides of (3.37), we get
(1= n"H{f (@, t,un), wn) — Gwy) + (L(tn, Uun2) — M (un, un2))/|[unllp
< (0,7, QD Nall,™ + c3(3, 71, 120)/unll,
+ 30,71, [Q) [[uny + ns|l o/ [unll,-

From (f2) and (3.29)(2), there exists K such that (3:38)
/ﬁf(x,t, Up)wpp < |2z, 0)||,||w* (z, ), < K. (3.39)

Because of M ~ L, by (3.21) and (3.22), we have
oo Wumum?l;ﬁ\jwn?unm =0 (3.40)

Taking the limit in (3.38) as n — oo, and by (3.21), (3.24), (3.39), (3.40) and
(3.29)(3), we get

limsup/~f(x,t,un)wnp < G(w). (3.41)
o)

n—oo

Setting
Q= {(z,t) € Q:w(x) >0}, Qy={(z,t) € Q:wx) <0},
it follows from (3.39) and (3.41) that

liminf [ f(x,t, up)w,p + liminf [ f(x,t, u,)wpp < G(w). (3.42)
_ el 18

n—oo Ql n Q2

By (3.21) and (3.29)(1)(3), we have

lim u,(z,t) = 400, ae. (x,t) € Q;

n—0o0
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lim w,(z,t) = —co, a.e. (z,t)€ .

n—oo

Next, it follows from (f2) and (3.29)(3) that

Frwp = lminf f(z,t,up)wep, ae. (x,t) € Q;
no _ (3.43)

frwp = lminf f(x,t,u,)w,p, a.e. (z,t) € Q.
n—oo

And by (3.42), (3.43) and Fatou Lemma, we obtain
[ 7t [ @l < Go)

By (3.24) and (3.27), we know ||w||, = 1, thus, w is a nontrivial eigenfunction
and satisfies (3.13). But it forms a contradiction between (3.13) and the above
inequalities. Therefore, (3.15) is established and we complete the proof of
Lemma 3.2. [l

We are now ready to prove Theorem 2.1.

Proof of Theorem 2.1. Since f[(ﬁ, ') is a separable Hilbert space, we see
from (3.15) and Lemma 2.3 that there exists a subsequence (For the sake of
simplicity, we take to be a full sequence{u,}) and a function u* € H(Q,T)
with the following properties:

(1) lim [lu, — ', = 0

(2) Fk(z,t) € L2 st Jun(z, t)| < k(z,t), ae. (z,t) €Q, Vn;
(3) hrn up(z,t) = u*(z,t), ae. (x,t) € @;

(4) hm (D Up, V), = (Dju*,v),,, for all ve E?w 1=1,---,N;
(5)

5 hm (ao( T)Up, V)q = (ao(z)u*,v),, for all ve Zfl
\

(3.44)

Since s;(u) satisfies (S1), we have

lim s;(u,) = s;(u*), i=0,1,2,---,N.

n—oo

Let v € H and 7,(v) be defined by (2.14). Then 7,(v) € S;(J > no) and from
(3.44)(1)(4)(5) we have that

lim M(uy,, 7;(v)) +T}Lr£10<Dtun,TJ(v)) = M(u*,7;(v))+ (D, 75(v)). (3.45)

n—oo

Next from (f1)-(f2), (3.44)(2)(3) and the Lebesgue dominated convergence
theorem, we obtain

lim (f(z, t,u,), 7 (v)) = (f(z, t,u*), 7;(v)), ae. (z,t) €. (3.46)

n—oo
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And from (B1), (3.44)(2)(3) and the Lebesgue dominated convergence theo-
rem, we get

lim (b(z, t, un)(un)~, 7 (v)) = (b(z, t,u")(u) ™, 7(v)), ae. (z,t) € Q. (3.47)

n—oo

It follows from (3.44)-(3.47) that

(D™, 7y (0)) + M(u”, 75 (0)) = Ajy (", 75 (0)) + (b, 1, w") (u*) ™, 75 (v))
+(f (st ut), 7 (v) = G(75(0)).

(3.48)

Passing to the limit as J — oo on both sides of (3.48), we have

(Dyu*,v) + M(u”,v) = Njg (u*, v) + (b(x, t,u™) (u*) ", v) + (f(z, t,u"),v) — G(v).

Thus we complete the proof of Theorem 2.1. .
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