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Abstract
The Szeged index of a graph G is defined as S z(G) =

∑
uv = e ∈ E(G)

nu(e)nv(e), where

nu(e) is number of vertices of G whose distance to the vertex u is less than the
distance to the vertex v in G. Similarly, the revised Szeged index of G is defined
as S z∗(G) =

∑
uv = e ∈ E(G)

(
nu(e) +

nG(e)
2

) (
nv(e) +

nG(e)
2

)
, where nG(e) is the number of

equidistant vertices of e in G. In this paper, the revised Szeged index of Cartesian
product of two connected graphs is obtained. Using this formula, the revised Szeged
indices of the hypercube of dimension n, Hamming graph, grid, C4 nanotubes and
nanotorus are computed.
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1 Introduction
All the graphs considered in this paper are connected and simple. The Cartesian

product, G �H, of graphs G and H has the vertex set V(G �H) = V(G)× V(H) and
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(u, x)(v, y) is an edge of G �H if u = v and xy ∈ E(H) or, uv ∈ E(G) and x = y, that
is, to each vertex u ∈ V(G), there is an isomorphic copy of H in G �H and to each
vertex v ∈ V(H), there is an isomorphic copy of G in G �H, see Fig.1.

Let G be a connected graph with vertex set V(G) and edge set E(G). For u, v ∈
V(G), dG(u, v) denotes the distance between u and v in G. The Wiener index of G is
defined as W(G) = 1

2

∑
u,v∈V(G)

dG(u, v).

This topological index has been extensively studied in the mathematical litera-
ture; see [4, 5]. A vertex x ∈ V(G) is said to be equidistant from the edge e = uv of
G if dG(u, x) = dG(v, x), where dG(u, x) denotes the distance between u and x in G.
For an edge uv = e ∈ E(G), the number of vertices of G whose distance to the vertex
u is smaller than the distance to the vertex v in G is denoted by nu(e); analogously,
nv(e) is the number of vertices of G whose distance to the vertex v in G is smaller
than the distance to the vertex u; the vertices equidistant from both the ends of the
edge e = uv are not counted. Similarly, the number of equidistant vertices of e is
denoted by nG(e).

Fig.1. Cartesian Product of C5 and P4

A long time known property of the Wiener index is the formula [7, 15], W(G) =∑
e=uv∈E(G)

nu(e)nv(e), which is applicable for trees. Motivated by the above formula,

Gutman [6] introduced a graph invariant, named as the Szeged index, as an extension
of the Wiener index and defined by S z(G) =

∑
e = uv ∈ E(G)

nu(e)nv(e).

Randić [14] observed that the Szeged index does not take into account the con-
tributions of the vertices at equal distances from the endpoints of an edge, and so
he conceived a modified version of the Szeged index which is named as the re-
vised Szeged index. The revised Szeged index of a connected graph G is defined as
S z∗(G) =

∑
e = uv ∈ E(G)

(
nu(e) +

nG(e)
2

) (
nv(e) +

nG(e)
2

)
.

The Szeged index studied by Gutman [?], Gutman et. al. [9] and Khadikar et.
al. [10] is closely related to the Wiener index of a graph. Basic properties of Szeged
index and its analogy to the Wiener index are discussed by Klavžar et al. [11] . It
is proved that for a tree T the Wiener index of T is equal to its Szeged index. The
mathematical properties and chemical applications of Szeged and revised Szeged
indices are well studied in [3, 8, 2, 12, 13]. In [1], Aouchiche and Hansen showed
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that for a connected graph G of order n and size m, an upper bound of the revised
Szeged index of G is n2m

4 . In [16], Xing and Zhou determined the unicyclic graphs
of order n with the smallest and the largest revised Szeged indices for n ≥ 5, and
they also determined the unicyclic graphs of order n with the unique cycle of length
r(3 ≤ r ≤ n), with the smallest and the largest revised Szeged indices. In [12], Li
and Liu have identified those graphs whose revised Szeged index is maximal among
bicyclic graphs. In this paper, the revised Szeged index of Cartesian product of two
connected graphs is obtained. Using this formula, the revised Szeged indices of the
hypercube of dimension n, Hamming graph, grid, C4 nanotubes and nanotorus are
computed.

2 Revised Szeged Index of G�H

The proof of the following lemma is left to the reader as it follows easily from
the structure of G�H. The lemma is used in the proof of the main theorem of this
paper.
Lemma 2.1. Let G and H be two graphs. Then
(i) |V(G�H)| = |V(G)| |V(H)| , |E(G�H)| = |E(G)| |V(H)| + |E(H)| |V(G)| .
(ii) dG�H((g, h)(g′, h′)) = dG(g, g′) + dH(h, h′). �

For an edge e = uv ∈ E(G), let TG(e, u) be the set of vertices closer to u than v
and TG(e, v) be the set of vertices closer to v than u. That is,

TG(e, u) = {x ∈ V(G)|dG(u, x) < dG(v, x)}
TG(e, v) = {x ∈ V(G)|dG(u, x) > dG(v, x)}.

Theorem 2.2. Let G and H be two connected graphs. Then S z∗(G�H) = |V(G)|3

S z∗(H) + |V(H)|3 S z∗(G).

Proof. Let V(G) = {u1, u2, . . . , un}, V(H) = {v1, v2, . . . , vm}. For our convenience, we
partition the edge set of G�H into two sets, E1 = {(ur, vi)(ur, vk) | ur ∈ V(G), vivk ∈

E(H)} and E2 = {(ur, vi)(us, vi) | urus ∈ E(G), vi ∈ V(H)}, that is,
E1 = ∪ui∈V(G)E(〈Xi〉) and E2 = ∪m

j=1E(〈Y j〉).
Let e = vivk ∈ E(H) and let v j be equidistant from e in H. Then, for ur ∈ V(G)

and e′ = (ur, vi)(ur, vk) ∈ E(G�H), dG�H((ur, vi), (ur, v j)) = dG�H((ur, vk), (ur, v j)).
Further, both (ur, vi) and (ur, vk) are equidistant to all the vertices of Y j; so,
if (us, v j) ∈ Y j, then

dG�H((ur, vi), (us, v j)) = dG(ur, us) + dH(vi, v j), by Lemma 2.1,

= dG(ur, us) + dH(vk, v j),

since v j is equidistant from the edge vivk,

= dG�H((ur, vk), (us, v j)), by Lemma 2.1.
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Thus to each edge e = vivk ∈ E(H) and a vertex v j equidistant from e in H, there
correspond |V(G)| edges e′ ∈ E(Yi,Yk) ⊆ G�H such that all the vertices of Y j are
equidistant from e′. If v j is not equidistant from e = vivk in H, then we can observe
that each of the corresponding |V(G)| , edges e′ ∈ E(Yi,Yk) are not equidistant to
any of the vertices of Y j. Hence

nG�H(e′) = |V(G)| nH(e). (2.1)

Thus we have computed the number of equidistant vertices of the edges of E1 ⊆

E(G�H).
Let e = vivk ∈ E(H) and let v j ∈ TH(e; vi). Then, for any ur ∈ V(G) and e′ ∈

E1 ⊂ E(G�H), the distance of (ur, vi) to each vertex of Y j, is less than its distance
to the vertex (ur, vk) in G�H. It can be observed that if some vertex vs < TH(e, vi),
then all the vertices of the column Ys are not in TG�H(e′; (ur, vi)) in G�H. Also if vr

is equidistant to e in H, then every vertex of Yr is equidistant to e′. Consequently,
for the edge e′ ∈ E1 (of G�H) corresponding to e (in H),

n(ur ,vi)(e
′) = |V(G)| nvi(e) (2.2)

and similarly,

n(ur ,vk)(e′) = |V(G)| nvk(e). (2.3)

Hence for E1 defined as above,∑
(ur ,vi)(ur ,vk) = e′ ∈ E1

(
n(ur ,vi)(e

′) +
nG�H(e′)

2

) (
n(ur ,vk)(e′) +

nG�H(e′)
2

)
=

∑
(ur ,vi)(ur ,vk) = e′ ∈ E1

(
|V(G)| nvi(e) + |V(G)|

nH(e)
2

) (
|V(G)| nvk (e) + |V(G)|

nH(e)
2

)
,

by (2.1) (2.2) and (2.3), where e = vivk ∈ E(H),

= |V(G)|
∑

vivk = e ∈ E(H)

|V(G)|2
(

nvi(e) +
nH(e)

2

) (
nvk (e) +

nH(e)
2

)
,

since |E1| = |V(G)| |E(H)| ,

= |V(G)|3 S z∗(H). (2.4)

Since Cartesian product is commutative, for any edge e′ = (ur, vi)(us, vi) ∈ E2 ⊂

E(G�H),

nG�H(e′) = |V(H)| nG(e).
n(ur ,vi)(e

′) = |V(H)| nur (e)
n(us,vi)(e

′) = |V(H)| nus(e). (2.5)
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Hence for E2 defined as above,∑
(ur ,vi)(us,vi) = e′ ∈ E2

(
n(ur ,vi)(e

′) +
nG�H(e′)

2

) (
n(us,vi)(e

′) +
nG�H(e′)

2

)
=

∑
(ur ,vi)(us,vi) = e′ ∈ E1

(
|V(H)| nur (e) + |V(H)|

nG(e)
2

) (
|V(H)| nus(e) + |V(H)|

nG(e)
2

)
,

by (2.5), where e = urus ∈ E(G),

= |V(H)|
∑

urus = e ∈ E(G)

|V(H)|2
(

nur (e) +
nG(e)

2

) (
nus(e) +

nG(e)
2

)
,

since |E2| = |V(H)| |E(G)| ,

= |V(H)|3 S z∗(G). (2.6)

Now we shall obtain the S z∗(G�H). By the definition,

S z∗(G�H) =
∑

(ur ,vi)(us,vk) = e′ ∈ E(G�H)

(
n(ur ,vi)(e

′) +
nG�H(e′)

2

) (
n(us,vk)(e′) +

nG�H(e′)
2

)
=

∑
(ur ,vi)(ur ,vk) = e′ ∈ E1

(
n(ur ,vi)(e

′) +
nG�H(e′)

2

) (
n(ur ,vk)(e′) +

nG�H(e′)
2

)
+

∑
(ur ,vi)(us,vi) = e′ ∈ E2

(
n(ur ,vi)(e

′) +
nG�H(e′)

2

) (
n(us,vi)(e

′) +
nG�H(e′)

2

)
= |V(G)|3 S z∗(H) + |V(H)|3 S z∗(G), by (2.4) and (2.6).

�
Denote by

en
i=1 Gi the Cartesian product of graphs G1,G2, . . . ,Gn. In [11],

Klavžar et al. have proved S z(
en

i=1 Gi) =
n∑

i=1
S z(Gi)

n∏
j=1, j,i

|V(Gi)|3 .

Using Theorem 2.2, we have the following corollaries.

Corollary 2.3. Let G1,G2, . . . ,Gn be connected graphs. Then S z∗(
en

i=1 Gi) =
n∑

i=1
S z∗(Gi)

n∏
j=1, j,i

∣∣∣V(G j)
∣∣∣3 . �

Corollary 2.4. Let G be a connected graph. Then S z∗(
e

Gn) = S z∗(
en

i=1 G) =

n |V(G)|3(n−1) S z∗(G). �

Example 2.5. Suppose Qn denotes a hypercube of dimension n. Then by Corollary
2.4, S z∗(Qn) = S z∗(Kn

2) = n23(n−1).

Let us consider the graph G whose vertices are the N−tuples b1b2 . . . bN with
bi ∈ {0, 1, . . . , ni − 1}, ni ≥ 2, and two vertices be adjacent if the corresponding
tuples differ in precisely one place. Such a graph is called a Hamming graph. It is
well-known fact that a graph G is a Hamming graph if and only if it can be written
in the form G =

eN
i=1 Kni and so the hamming graph is usually denoted as Hn1n2...nN .

In the following lemma, the revised Szeged index of a Hamming graph is computed.
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Lemma 2.6. Let G be a hamming graph with above parameter. Then S z∗(Hn1n2...nN ) =
N∏

j=1
ni

3

(
(

N∑
i=1

ni
8 ) − N

8

)
.

Proof. It is easy to see that S z∗(Kn) =
n3(n−1)

8 . Since Hamming graph is a product of
complete graphs, by Corollary 2.3,

S z∗(Hn1n2...nN ) = S z∗(
Nm

i=1

Kni)

=

N∑
i=1

S z∗(Kni)
N∏

j=1, j,i

n j
3

=

N∑
i=1

ni
3(ni − 1)

8

N∏
j=1, j,i

n j
3

=

N∏
j=1

ni
3

N∑
i=1

(ni − 1)
8

=

N∏
j=1

ni
3

( N∑
i=1

ni

8
) −

N
8

 .
�

Let Cn and Pn denote the cycle and path on n vertices, respectively. It can be
easily verified that S z∗(Cn) = n3

4 and S z∗(Pn) = ( n+1
3 ).

Fig.2. Ladder graph of 2n vertices

Example 2.7. Using Corollary 2.3, we obtain the exact revised Szeged index of the
grid graph Pn1�Pn2� . . .�Pnk .

S z∗(Pn1�Pn2� . . .�Pnk) = 1
6

( k∏
i=1

n3
i

)( k∑
i=1

(1 + 1
ni

)(1 − 1
ni

)
)
.

If each ni = n, then S z∗(
e

Pk
n) = kn3k−2

6 (n + 1)(n − 1).

Example 2.8. Using Corollary 2.3, we obtain the exact revised Szeged index of the
graph Cn1�Cn2� . . .�Cnk .

S z∗(Cn1�Cn2� . . .�Cnk) = k
4

k∏
i=1

n3
i .

If each ni = n, then S z∗(
e

Ck
n) = kn3k

4 .
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Example 2.9. The graphs Ln = Pn�K2, R = Pn�Cm, S = Cm�Cn and T = Pm�Pn

are known as ladder, C4 nanotubes, C4 nanotorus and grid, respectively. The exact
revised Szeged indices of these graphs are given below.

1. S z∗(Ln) =
n(9n2+4)

3 .

2. S z∗(R) =
nm3(5n2−2)

12 .

3. S z∗(S ) = n3

8 .

4. S z∗(T ) = 1
6 (2n3m3 − nm(n2 − m2)).
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[14] M. Randić, On generalization of Wiener index for cyclic structures, Acta
Chim. Slov., 49(2002), 483-496.

[15] H. Wiener, Structural determination of paraffin boiling points, J. Am. Chem.
Soc., 69(1947), 17-20.

[16] R. Xing and B. Zhou, On the revised Szeged index, Discrete Appl. Math.,
159(2011), 69-78.


