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Abstract

A Linear Multistep Hybrid Method (LMHM) with contiaus coefficients is
considered and directly applied to solve third ordaitial Value Problems
(IVPs). The continuous method is used to obtaintipal Finite Difference
Methods (MFDMs) each of order 5 which are combiresl simultaneous
numerical integrators to provide a direct solutiaa IVPs over sub-intervals
which do not overlap. The convergence of the MFDislsdiscussed by
conveniently representing the MFDMs as a block oektand verifying that the
block method is zero-stable and consistent. Thersagy of the MFDMs over
the existing methods is established numerically.

Keywords: Multiple finite difference methods, third orderpundary value
problem, block methods, multistep methods.
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1 I ntroduction

The mathematical formulation of physical phenomienscience and engineering
often leads to initial value problems of the form:

y" = f(xy) @)=y, .y(@=n.y"(@)=n (1)

However, only a limited number of numerical methade available for solving
(1) directly without reducing to a first order syt of initial value problems.
Some authors have proposed solution to second ordied value problems of
ordinary differential equations using different eggches (see Awoyemi [1],
Awoyemi and Idowu [2], Fatunla [3], Lambert [4] amkbee et al. [5]) ; in
particular Awoyemi and Idowu [2]. Awoyemi [1] dead a p-stable linear
multistep method for general second order initialue problems of ordinary
differential equations which is to be used in fayfrpredictor-corrector forms and
like most linear multistep methods, they requigetsig values from Runge-Kutta
methods or any other one-step methods. The presliate also developed in the
same way as correctors. Moreover, the block methodstunla [3] are discrete
and are proposed for non-stiff special second cod#inary differential equations
in form of a predictor- corrector integration prese Also like other linear
multistep methods they are usually applied to titeal value problems as a single
formula but they are not self-starting; and theyaamte the numerical integration
of the ordinary differential equations in one-stap a time, which leads to
overlapping of the piecewise polynomials solutiomddl. There is the need to
develop a method which is self-starting, elimingtihe use of predictors with
better accuracy and efficiency. Recently, sevarsg¢arches (Jator [6,7], Jator and
Li [8], Mohammed et al.[9] and Mohammed [10]) prepd LMMs for the direct
solution of the general second order IVPs, whiclmewshowed to be zero stable
and were implemented without the need for eithediotors or starting values
from other methods. Jator [11] used the LMMs depetbfor IVPs and additional
methods obtained from the same continuous k-stepLibl solve second order
BVPs with Dirichlet and Neumann boundary conditiaml also Olabode and
Yusuph [12] developed a linear multistep methodtfar direct solution of initial
value problems of ordinary differential equatioms Special third order initial
value problem. This study, therefore propose akolodrid multistep method for
the direct solution of third order initial valuegmems of ordinary differential
equations.

The paper is organized as follows. In Section 2, dezive a continuous
approximation Y (x) for the exact solution y(x).c8en 3 is devoted to the
specification of the methods and how the MFDMs abtained. Analysis,
stability region and implementation of MFDM are alissed in section 4.
Numerical examples are given in Section 5 to shwefficiency of the MFDMs.
Finally, the conclusion of the paper is discussefection 6.
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2  Development of Methods

In this section, our objective is to derive Hybrighear Multi-step Method
(HLMM) of the form

r-1 s-1

a] yn+j = hSZﬁj fn+j + h3ﬁvfn+v
0 j=0

j=

(2)

wherea, 5, and 3, are unknown constants ard is not an integer. We note
that a, =1, B, #0,a, and 3, do not both vanish. In order to obtain (2), we
proceed by seeking to approximate the exact solyi{®) of the form

Y(x)= 21, 3

Where xD[a,b],Ij are unknown coefficients to be determined dmr <k,

S > 0are the number of interpolation and collocatiomporespectively. We then
construct our continuous approximation by imposhegfollowing conditions.

Y(X )= Y, i=012.0 -1
4)

Ylx,s, )= fon, )

Equation (4) and (5) lead to a system of (r+s) #qna which is solved by
Cramer’'s rule to obtaith, . Our continuous approximation is constructed by

substituting the values of; into equation (3). After some manipulation, the
continuous method is expressed as

Y(X) = iaj (X)yn+j + hgiﬁj (X)fn+j + hsﬁv (X) fn+v (6)

whereg (x), B, (x) and B,(x) are continuous coefficients. We note that since

equation (1) involves first and second derivatiués, first and second derivative
formula

r-1

Y'(X) :% (Z a; (X)yn+j + hgsz_oﬁ; (X)fn+j + hSIB\;(X)fmv ]

j=0

L (a @
Y”(X) =17 ( agl(x)ynﬂ + hSZIB;’(X)an + hsIB\;'(X) fn+v j
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Equation (7) is easily obtained from (6) and isntlused to provide the first and

second derivatives for the methods by imposingtralition

Y'(x)=3(x). Y*(x) = y{x)
(8)

Y'(a) =0y, Y"(a) =W 9)

3  Specification of the M ethods

To derive these methods, we use Eq.(6) to obtamedntinuous 3-step HLM
method with the following specification:

r:3,s:5,k=3,v:§,yi(x):x‘,i:0,],...,7. We also expressr,(x),5,(x) and

. X=X
B.(x) as a functions of t, where= ="

follows:

3.1 1, 1
a()=(1-3t50] @ =l -v). @, = -Jes 2o
By (x) =1 (1170 - 31572 +3360° —1858* +567° - 91t° + 6t”)

2016(

B(x) = ﬁ(ﬂga -3815° +1680* -812° +161° -12")

B, (x) :Flsc(_ 230t +427 - 420" +287° - 70t° +6t”)

b (x) = ﬁ)(l%& ~ 2835 + 2835 —2073° +567° ~54)
s (x) =ﬁ(— 306 +5532 -560t* +420t° -11%° +12t7)

(10)
The MFDMs are obtained by evaluating (10)xa¢{xn+3,x 8} to obtain the
n+§

following

3
yn+3 = yn _3yn+1 +3yn+2 +h_|:5fn +376fn+l + 4'6Ofn+2 _81f 8 + 4Ofn+3i|
800 s 1)

n+>
3

874

n+-
3

(12)
In particular, to start the initial value problewrn = 0, we obtain the following
equations from (9):

to obtain the continuous form as

3
y o= g y - %5 Yo+ 2_90 Yoo, + h—g{mfn +2268f ,, +2436f,,, —-675f , +260f .

|
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3
ho, = —g Yo + 2y, — Ly, + 0{975% +5596f, ~ 2300f, +2349f, ~1020f,

2 1680 s
(13)
3
h?y, =y, =2y, +V, + h - 451f  —1308f, + 732f, — 729f, + 316f,
1440 S
: (14)
It is worth noting that the derivatives are proddsy
x. )=3..; Ux., )= r=123and3
n+r ner s Pner) = Vowr s "3 as follows:
o =—Ly + Ly N e0f s1030f —af  +81f . —40f
n+l 2 n 2 n+2 6720 n n+l n+2 n+§ n+3
ho, —ly -2y +3 y, +h—3
n+2 2 n n+1 2 2 16800

{65fn+3748fn+1+ 2460, - 1058 ,+ 3a‘q+3}
n+5

10 13 h*

0y =Ly =y oy
e 67" 3™ 6™ 244940

[17443‘n+ 135121P, + 1780788,- 293463 + 13713%
3

3 5 h?
h5n+3 =5 Y _4yn+1+_ yn+2+

2 2 6720

[61fn+4792‘nﬂ+ 7060,.,—- 8L ,+ 48&3}

3

3
WY =Y. =2y + Yoy +%}{40fn +132f , —315f ,, +243f , -100f,,

n+-

3

h
hy . =y -2y  + +—
yn+2 yn yn+l ym2 7200

[Zan+3636fn+l+ 4620, ,~ 170 ,+ 62%3}

3

|
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3

Wy =y -2y + VY, ,+——
yn+§ Yo ™ ¥ ™ Y2 90200

[1195fn+93756n+1+ 190980),,+ 36369, + 17Q93}
n+3

3

h2Y s = Y0 =2V * Youo +ﬁ) 10f +876f ,, +1725f ., +729f , +260f

n+-
3

4  Analysisand I mplementation of the M ethod

Following Fatunla [13] and Lambert [4] we defineetlocal truncation error
associated with the conventional form of (2) taloelinear difference operator

Ly(x):h] = {a, vx+ jh) = h°B, y"(x + jh)}+h°B,y" (x + vh)
i=0 (15)

Assuming that y(x) is sufficiently differentiablee can expand the terms in (15)
as a Taylor series about the point x to obtairettgression

L[y(x);h] = C, y(x) + C,hy’ +...,+thqu(x)+...,
g=01...

(16)

where the constant coefficierﬁg’ are given as follows:

C, q=0L..

C a

0 j?

M- 3 2

{0l
iy

C, ja;,

1& . S
C, = EZJQC’; —da-1>j"°8, |
- =1

j=1
According to Henrici [14], method (5) has ordef p

C,=C,=..=C,=C,,, =0, Cp,, %20
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Our calculations reveal that the methods (11) &) {lave order p = 5 and error
7 8 811 197Y
7200 157464 18 14

constants given by the vect@y = (—

In order to analyze the methods for zero-stabilig, normalize (11) to (14) and
write them as a block method given by the matrffedénce equation

A%,,, = A, +h?|B°F,, + B'F,|
Where

(17)

Y1 = (Yot oo Yiea) o Yo = Vogeor V) o Fa = (Freveoos faa) s Fy = (fogees £)T @ndn= 03...
and matrices Aand A are defined as follows:

A%is an identity matrix of dimension four and

O o o o
O o o o
L

It is worth noting that zero-stability is concernedth the stability of the

difference system in the limit as h tends to zditwus, ad - 0, the method a7)
tends to the difference system

A, - A, = 0whose first characteristic ponnomiQI(R) is given by
o(R) = defRA° - A') = R¥(R~1) (18)

Following Fatunla [13], the block method (17) isrestable, since from (18),
,o(R):O satisfy ‘Rj‘slj:l..,k and for those roots WitHRj‘ =1, the

multiplicity does not exceed 2. The block method)(is consistent as it has
orderP >1. According to Henrici [14], we can safely asséw tonvergence of
the block method (17).

It is vital to note that the main method given W) can be used as a numerical
integrator directly and singly in the conventiongy on non-overlapping sub-
intervals. However, our method is implemented meifeciently by combining
methods (11) to (14), each of order five with relgiy small error constants, as
simultaneous integrators for IVPs without lookingr fany other methods to
provide the starting values. We proceed by expfiabtaining initial conditions
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at Xpa3 N=03,..,N-5 using the computed
values y(xn+3):yn+3’5(xn+3):5n+3 and"(xms):/]ms over sub-
intervals|x,, X;]...{X, 5. X, | which do not overlap (see [10]). For instance, for
n=0, (yl, Y, y3)T are simultaneously obtained over the sub-inteﬁkgakg] asy

is known from the IVP; fon=3(y,,Y.,Y,)" are simultaneously obtained over
the sub-interval,, x; |, as is known from the previous block, and so on. Hence,

the sub-intervals do not over-lap and the solutiobtained in this manner are
more accurate that those obtained in the conveaitizay.

4.1 Region of Absolute Stability

The absolute stability region of the newly constiedchybrid linear multi-step
methods (8)-(10) is plotted using Chollom [15] ®farmulating the methods as
general linear methods and is shown in Figure aviel

Im(z)

Re(2) -

Fig. 1. Region of Absolute Stability Region of Hybrid LexeMulti-Step Method
(HLMM)

4.2 Numerical Examples

We report here a few numerical examples on somélgms taken from the
literature.



70 U. Mohammed et al.

Problem 1 (Olabode and Yusuph [12])

ym — ex
y©0)=3 y(©0)=1 y'(0)=5

—_ 2 X
Exact Solution js¥(X) =2+2X" +e

Table 1: Error of methods for problem 1

X  Exact Numerical Error in Olabode and
Solution Solution Proposed Yusuph [12]
M ethod
0O 3 3 0.000000000E+000.000000000E+00

0.1 3.125170918 3.125170918 0.000000000E+00-7.5647E-11

0.2 3.301402758 3.301402758 0.000000000E+00 1.83983E-09

0.3 3.529858808 3.529858807 1.000000083E-09 4.42400E-09
0.4 3.811824698 3.811824697 1.000000083E-09 1.03587E-08
0.5 4.148721271 4.148721270 1.000000083E-09 1.12999E-08
0.6 4.542118800 4.542118799 1.000000083E-09 1.46095E-08
0.7 4.993752707 4.993752706 9.999991946E-10 2.05295E-08
0.8 5.505540928 5.505540927 1.000000083E-09 1.95075E-08
0.9 6.079603111 6.079603109 2.000000165E-09 1.08431E-08

1.0 6.718281830 6.718281831 1.000000083E-09 1.54095E-08

Problem 2 (Awoyemi et al [16])

m

y"+4y' =X
y(0)=0, y'(0)=0, y"(0)=1h=01

3 5
y(X) = ——cos2X + —
Exact Solution is 16 16
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Table 2: Error of methods for problem 2

X  Exact Solution  Numerical Error in Error in
Solution Proposed [16]
Method

0.1 0.0049875167000.0049875176619.61000E-10 1.1899E-11
0.2 0.01980106360 0.01980107010 6.50000E-09 3.0422E-09
0.3 0.04399957220 0.04399958817 1.59700E-08 7.7796E-08
0.4 0.07686749200 0.07686750864 1.66400E-08 1.5559E-07
0.5 0.1174433176 0.1174433379 2.03000E-08 3.0541E-07
0.6 0.1645579210 0.1645579476 2.66000E-08 4.6102E-07
0.7 0.2168811607 0.2168811874 2.67000E-08 3.138E-07
0.8 0.2729749104 0.2729749375 2.71000E-08 7.0374E-07
0.9 0.3313503928 0.3313504205 2.77000E-08 1.0177E-06
1.0 0.3905275319 0.3905275591 2.72000E-08 1.6528E-06

Problem 3 (Sagir [17])

y’"+5y"+7y'+3y:0
y0=1 y(©0)=0 y'(0)=-1h=01

Exact Solution isY(

X)=e " +xe”

Table 3: Error of methods for problem 3

X Exact Numerical Error in Errorin[17]
Solution Solution Proposed
Method
0.1 0.9953211598 0.9953211599 1.00000E-10  6.4300E-08
0.2 0.9824769037 0.9824769040 3.00000E-10  2.7200E-08
0.3 0.9630636869 0.9630636876 7.00000E-10  3.0500E-08
0.4 0.9384480644 0.9384480651 7.00000E-10  8.9800E-08
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0.5 0.9097959895 0.9097959901 6.00000E-10  4.4260E-07
0.6 0.8780986178 0.8780986180 2.00000E-10  7.7260E-07
0.7 0.8441950165 0.8441950174 9.00000E-10 1.9523E-06
0.8 0.8087921354 0.8087921382 2.80000E-09 1.0274E-06
09 0.7724823534 0.7724823588 5.40000E-09 1.3509E-06
1.0 0.7357588824 0. 7357588824 3.50000E-09 1.34BE-0

Problem 4 (Badmus and Yahaya [18])

ylrr_yrl+y!_y:0
y©0) =1 y'(©)=0 y'(0)=-Lh=001

Exact Solution isY(X) = €OSX

Table 4: Error of methods for problem 4

X Exact Numerical Error in Errorin[18]

Solution Solution Proposed

Method

0.01 0.9999500004 0.9999506724 6.72000E07 1.60168E-05
0.02 0.9998000067 0.9998013508 1.34410E06 1.100991E-04
0.03 0.9995500337 0.9995520507 2.01700E06 5.567153E-04
0.04 0.9992001067 0.9992027951 2.68840E06 1.6332403E-03
0.05 0.9987502604 0.9987536198 3.35940E06 3.62018361E-03

5 Conclusion

We have derived a three-step continuous HLMM frorhiclv MFDMs are

obtained and applied to solve third order ordindifferential equations (ODE)
without first adapting the ODE to an equivalenstfiorder system. The MFDMs
are applied as simultaneous numerical integratees sub-intervals which do not
overlap and hence they are more accurate than SFDMsh are generally
applied as single formulas over overlapping intexv&Ve have shown that the
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methods are convergent and have large intervabsslute stability, which make
them suitable candidates for computing solutionsgvimter intervals. In addition to
providing additional methods and derivatives, tbetmuous HLMM can be used
to obtain global error estimates. Our future redeavill be focused on adapting
the MFDMs to solve third order partial differentedquations.
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