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Abstract 
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properties in bitopological spaces.  

     Keywords: Bitopological space, -21ττ generalized alpha star closed sets, 
-21ττ generalized alpha star star closed sets, -21ττ generalized alpha star star 

open sets.      

 

1 Introduction 
       
Levine, [6] initiated the study of generalized closed sets in topological spaces in 
1970. In 1963, J.C. Kelly, [2] defined: a set equipped with two topologies is called 
a bitopological space, denoted by ),,( 21 ττX  where ),( 1τX and ),( 2τX  are two 
topological spaces. In 1986, T. Fukutake, [7] generalized this notion to 
bitopological spaces and he defined a set A of a bitopological space X to be an ij -
generalized closed set (briefly ij -g-closed) if UAclj ⊆)(-  whenever UA⊆ and 

U is open-iτ in X, 2,1, =ji  and ji ≠ . Semi generalized closed sets and 
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generalized semi closed sets are extended to bitopological settings by F. H. Khedr 
and H. S. Al-saadi, [1]. K. Chandrasekhara Rao and K. Kannan, [4, 5] introduced 
the concepts of semi star generalized closed sets in bitopological spaces. 
 
The aim of this communication is to introduce the concepts of -21ττ generalized 

alpha star star closed sets, -21ττ generalized alpha star star open sets and study 
their basic properties in bitopological spaces. 
 

2 Preliminaries 
 
Throughout this paper, spaces always mean a bitopological spaces, for a subset A 
of X )(- Acliτ (resp. )(int- Aiτ , )(- Acli ατ ) denote the closure (resp. interior, α - 

closure) of A with respect to the topology iτ , for 2,1=i . 

 
Definition 2.1: A subset A of a bitopological space ),,( 21 ττX is called 
 
(i) --21 αττ open [3] if )))( 11 AclA int(--int(- 2 τττ⊆ . 

(ii) --21 αττ closed [3] if  AX −  is --21 αττ open. Equivalently, a subset A 

of a bitopological space ),,( 21 ττX  is called --21 αττ closed if 

AAclcl ⊆)))( 22 (-int-(- 1 τττ . 

(iii) -21ττ generalized closed (briefly --21 gττ closed) [7] if UAcl ⊆)(2 -τ  

whenever UA ⊆  and U is -1τ open in X. 

(iv) -21ττ generalized open (briefly --21 gττ open) [7] if AX − is 

--21 gττ closed. 

(v) -21ττ alpha generalized closed (briefly --21 gαττ closed) [3] if 

UAcl ⊆)(2 ατ -  whenever UA ⊆ and U is -1τ open in X . 

(vi) -21ττ alpha generalized open (briefly --21 gαττ open) [3] if AX − is 

--21 gαττ closed. 

(vii) -21ττ generalized alpha closed (briefly --21 αττ g closed) [3] if 

UAcl ⊆)(2 ατ -  whenever UA ⊆ and U is --1 ατ open in X. 

(viii) -21ττ generalized alpha open (briefly - -21 αττ g open) [3] if AX − is 

--21 αττ g closed. 
 
Definition 2.2: A subset A of a bitopological space ),,( 21 ττX  is called 

-21ττ generalized alpha star closed (briefly -- *
21 αττ g closed) if UAcl ⊆)(2 -τ  

whenever UA ⊆ and U is --1 ατ open in X. The family of all -- *
21 αττ g closed 

sets of X is denoted by )(- *
21 XCgαττ . 
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Example 2.3: Let },,{ cbaX = , }},{},{,,{1 cbaXφτ = , }},{},{},{,,{2 babaXφτ = . 

Then {a,b} is -- *
21 αττ g closed and {a} is not -- *

21 αττ g closed. 
 
Definition 2.4: A subset A of a bitopological space ),,( 21 ττX  is called 

-21ττ generalized alpha star open (briefly -- *
21 αττ g open) if and only if 

AX − is -- *
21 αττ g closed. The family of all -- *

21 αττ g open sets of X is 

denoted by )(- *
21 XOgαττ  . 

 

3 Generalized Alpha Star Star Closed Sets 
        
In this section we define and study the concept of -21ττ generalized alpha star star 
closed sets in bitopological spaces. 
 
Definition 3.1: A subset A of a bitopological space ),,( 21 ττX  is called 

-21ττ generalized alpha star star closed (briefly -- **
21 αττ g closed) if 

UAcl ⊆)(2 -τ  whenever UA ⊆ and U is -- *
1 ατ g open in X. The family of all 

-- **
21 αττ g closed sets of X is denoted by )(- **

21 XCgαττ . 
 
Example 3.2: Let },,,{ dcbaX = , }},{,,{1 baXφτ = , }},{},{},{,,{2 cbcbXφτ = . 
Then ϕ, X,{c},{d}, {a,c},{a,d},{b,c},{b,d},{c,d},{a,b,c},{a,c,d},{a,b,d},{b,c,d} 
are -- **

21 αττ g closed sets. 
 
Now, the characterization of -- **

21 αττ g closed sets by using different types of 

generalization of closed sets and -- *
1 ατ g open sets are established in the 

following theorem. 
 
Theorem 3.3: Let ),,( 21 ττX  be a bitopological space and XA ⊆ . Then the 
following are true. 
 
(i) If A is -2τ closed, then A is -- **

21 αττ g closed. 

(ii) If A is -- *
1 ατ g open and -- **

21 αττ g closed, then A is -2τ closed.  

(iii) If A is -- **
21 αττ g closed, then A is --21 gττ closed. 

(iv) If A is -- **
21 αττ g closed, then A is --21 gαττ closed. 

 
Proof: 
 
(i) It is obvious that every -2τ closed set is -- **

21 αττ g closed. 
 
(ii) Suppose that A is -- *

1 ατ g open and -- **
21 αττ g closed. Then AA ⊆  implies 

that AAcl ⊆)(-2τ . Obviously, )(-2 AclA τ⊆ . Therefore, A is -2τ closed. 
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(iii) Suppose that A is -- **
21 αττ g closed. Let UA ⊆ and U is -1τ open in X. Since 

every -1τ open set is -- *
1 ατ g open in X, we have U is -- *

1 ατ g open in X. Then, 

UAcl ⊆)(2 -τ since A is -- **
21 αττ g closed. Consequently, A is --21 gττ closed. 

 
(iv) Suppose that A is -- **

21 αττ g closed. Let UA ⊆ and U is -1τ open in X. Since 

every -1τ open set is -- *
1 ατ g open in X, we have U is -- *

1 ατ g open in X. 

Then, UAcl ⊆)(2 -τ  since A is -- **
21 αττ g closed. Since )(-)(- 22 AclAcl τατ ⊆ , 

we have UAcl ⊆)(-2 ατ . Consequently, A is --21 gαττ closed.  
 
In the following examples it is proved that the converses of the assertions of the 
above theorem are not true in general. 
 
Example 3.4: In example (3.2), {c} is -- **

21 αττ g closed but not -2τ closed. Also 

{a, d} is -2τ closed, -- **
21 αττ g closed but not -- *

1 ατ g open. 
 
Example 3.5: Let },,{ cbaX = , }},{,,{1 cbXφτ = , }}{,,{2 aXφτ = . Then {b} is 

--21 gττ closed but not -- **
21 αττ g closed in X. 

 
Example 3.6: In example (3.2), {a} is --21 gαττ closed but not -- **

21 αττ g closed 
in X. 
 
Remark 3.7: --21 αττ g closed sets and -- **

21 αττ g closed sets are independent in 
general. The following example supports our claim. In Example (3.2), {a} is 

--21 αττ g closed but not -- **
21 αττ g closed in X. Also {a,b,c} is -- **

21 αττ g  

closed but not --21 αττ g closed in X. 
 
Theorem 3.8: If A is -- **

21 αττ g closed, -- *
1 ατ g open in X and F is -2τ closed 

in X then FA∩ is -2τ closed in X. 
 
Proof: Since A is -- **

21 αττ g closed, -- *
1 ατ g open in X, we have A is -2τ closed 

in X [by theorem (3.3) (ii)]. Since F is -2τ closed in X, FA∩ is -2τ closed in X. 
 
Remark 3.9: 
 
(i) -- *

21 αττ g closed and --21 αττ closed sets are independent in general. 

(ii) -- **
21 αττ g closed and -- *

21 αττ g closed sets are independent in general. 
 
Example 3.10: In example (3.2), {c} is -- **

21 αττ g closed but not -- *
21 αττ g  

closed in X. 
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Theorem 3.11: If A is -- **
21 αττ g closed in X and )(-2 AclBA τ⊆⊆ , then B is 

-- **
21 αττ g closed. 

 
Proof: Suppose that A is -- **

21 αττ g closed in X and )(-2 AclBA τ⊆⊆ . Let 

UB ⊆ and U is -- *
1 ατ g open in X. Since BA⊆ and UB ⊆ , we have UA ⊆ . 

Hence UAcl ⊆)(2 -τ (Since A is -- **
21 αττ g closed). Since )(-2 AclB τ⊆ , we 

have UAclBcl ⊆⊆ )(-)(- 22 ττ . Therefore, B is -- **
21 αττ g closed. 

 
Theorem 3.12: If A and B are -- **

21 αττ g closed sets then so is BA∪ . 
 
Proof: Suppose that A and B are -- **

21 αττ g closed sets. Let U be -- *
1 ατ g open 

in X and UBA ⊆∪ . Since UBA ⊆∪ , we have UA ⊆ and UB ⊆ . Since U is 

-- *
1 ατ g open in X and A and B are -- **

21 αττ g closed sets, we have 

UAcl ⊆)(2 -τ  and UBcl ⊆)(-2τ . Therefore, ∪∪ )(-)(- 22 AclBAcl ττ ⊆  

UBcl ⊆)(-2τ . Hence BA∪  is -- **
21 αττ g closed. 

 
Remark 3.13: The following diagram shows the relations among the different 
types of weakly closed sets that were studied in this section: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Theorem 3.14: The arbitrary union of -- **

21 αττ g closed sets IiAi ∈, in a 

bitopological space ),,( 21 ττX  is -- **
21 αττ g closed if the family },{ IiAi ∈ is 

locally finite in ),( 1τX . 

closed-2τ  closed-- **
21 αττ g

  

closed--21 gαττ
 

closed--21 gττ  

closed--21 αττ g 
  

+ 

open-- *
1 ατ g 

closed--21 αττ  

closed-- *
21 αττ g 
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Proof: Let },{ IiAi ∈ be locally finite in X and iA  is -- **
21 αττ g closed in X for 

each Ii ∈ . Let UAi ⊆∪  and U is -- *
1 ατ g open in X. Then UAi ⊆  and U is 

-- *
1 ατ g open in X for each i. Since iA  is -- **

21 αττ g closed in X for each Ii ∈ , 

we have UAcl i ⊆)(-2τ . Consequently, UAcl i ⊆)](-[ 2τ∪ . Since the family 

},{ IiAi ∈ is locally finite in X, UAclAcl ii ⊆= )](-[ )]([- 22 ττ ∪∪ . Therefore, 

iA∪  is -- **
21 αττ g closed in X. 

 
Remark 3.15: The intersection of any two -- **

21 αττ g closed sets is not 

necessary -- **
21 αττ g closed set as in the following example. 

 
Example 3.16: In example (3.2), },{ caA = , },{ daB =  are -- **

21 αττ g closed but 

}{aBA =∩  is not -- **
21 αττ g closed in X. 

 
Theorem 3.17: If a set A is -- **

21 αττ g closed in X , then AAcl −)(-2τ  contains 

no nonempty -- *
1 ατ g closed set. 

 
Proof: Suppose that A is -- **

21 αττ g closed in X. Let F be -- *
1 ατ g closed and 

AAclF −⊆ )(-2τ . Since F is -- *
1 ατ g closed, we have cF is -- *

1 ατ g open. 

Since AAclF −⊆ )(-2τ , we have )(-2 AclF τ⊆  and cAF ⊆ . Hence cFA ⊆ .  

Consequently cFAcl ⊆)(-2τ  {Since A is -- **
21 αττ g closed in X}. Therefore, 

cAclF )](-[ 2τ⊆ . Hence φττ =⊆ )(-)](-[ 22 AclAclF c
∩ . Hence AAcl −)(-2τ  

contains no nonempty -- *
1 ατ g closed set. 

 
Corollary 3.18: Let A be -- **

21 αττ g closed. Then A is -2τ closed if and only if 

AAcl −)(-2τ is -- *
1 ατ g closed. 

 
Proof: Suppose that A is -- **

21 αττ g closed and -2τ closed. Since A is -2τ closed, 

we have AAcl =)(-2τ . Therefore, φτ =− AAcl )(-2  which is -- *
1 ατ g closed. 

Conversely, suppose that A is -- **
21 αττ g closed and AAcl −)(-2τ is -- *

1 ατ g  

closed. Since A is -- **
21 αττ g closed, we have AAcl −)(-2τ  contains no 

nonempty -- *
1 ατ g closed set {by Theorem 3.17}. Since AAcl −)(-2τ  is itself 

-- *
1 ατ g closed, we have φτ =− AAcl )(-2 . Therefore, AAcl =)(-2τ  implies 

that A is -2τ closed. 
 
Theorem 3.19: If A is -- **

21 αττ g closed and )(-2 AclBA τ⊆⊆  then 

BBcl −)(-2τ  contains no nonempty -- *
1 ατ g closed set. 
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Proof: Let A be -- **
21 αττ g closed and )(-2 AclBA τ⊆⊆ . Then B is 

-- **
21 αττ g closed {by theorem (3.11)}. Therefore, BBcl −)(-2τ contains no 

nonempty -- *
1 ατ g closed set {by theorem (3.17)}. 

 
Theorem 3.20: For each Xx∈ , the singleton {x} is either -- *

1 ατ g closed or its 

complement cx}{ is -- **
21 αττ g closed in ),,( 21 ττX . 

 
Proof: Let Xx∈ . Suppose that {x} is not -- *

1 ατ g closed. Then cx}{ is not 

-- *
1 ατ g open. Consequently, X itself is the only -- *

1 ατ g open set 

containing }{xX − . Therefore, XxXcl ⊆− }){(-2τ  which implies that }{xX −  

is -- **
21 αττ g closed in ),,( 21 ττX . 

 

4 Generalized Alpha Star Star Open Sets 
 
We begin this section with a relatively new definition. 
 
Definition 4.1: A subset A of a bitopological space ),,( 21 ττX  is called 

-21ττ generalized alpha star star open (briefly -- **
21 αττ g open) if and only if 

AX − is -- **
21 αττ g closed. The family of all -- **

21 αττ g open sets of X is 

denoted by )(- **
21 XOgαττ . 

 
Example 4.2: In example (3.2), ϕ, X, {a}, {b}, {c}, {d}, {a, b}, {a, c}, {a, d},  
{b, c}, {b, d}, {a, b, c}, {a, b, d} are -- **

21 αττ g open sets in X. 
 
The following theorem will give an equivalent definition of -- **

21 αττ g open sets.     
 
Theorem 4.3: A set A is -- **

21 αττ g open if and only if )(int-2 AF τ⊆  whenever 

F is -- *
1 ατ g closed and AF ⊆ . 

 
Proof: Suppose that A is -- **

21 αττ g open. Then cA is -- **
21 αττ g closed. Suppose 

that F is -- *
1 ατ g closed and AF ⊆ . Then cF is -- *

1 ατ g open and cc FA ⊆ .  
 
Therefore, cc FAcl ⊆)(-2τ (since cA  is -- **

21 αττ g closed). Since =)(-2
cAclτ  

cA)](int-[ 2τ , we have cc FA ⊆)](int-[ 2τ . Hence )(int-2 AF τ⊆ . 
 
Conversely, suppose that )(int-2 AF τ⊆  whenever F is -- *

1 ατ g closed and 

AF ⊆ . Then cc FA ⊆ and cF is -- *
1 ατ g open. Take cFU = .  

Since )(int-2 AF τ⊆ , we have UFA cc =⊆)](int-[ 2τ . Since =)(-2
cAclτ  

cA)](int-[ 2τ , we have UAcl c ⊆)(-2τ . Therefore, cA is -- **
21 αττ g closed.  
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Thus, A is -- **
21 αττ g open. 

 
Remark 4.4: Every -1τ open set is -- **

21 αττ g open but the converse is not true 
in general as can be seen from the following example.   
 
Example 4.5: In example (3.2), {a, c} is -- **

21 αττ g open in X but not -1τ open 
in X. 
 
Remark 4.6: -- **

21 αττ g open and -- *
21 αττ g open sets are in general, 

independent as can be seen from the following two examples. 
 
Example 4.7: Let },,{ cbaX = , }},{},{,,{1 cbaXφτ = , }},{},{,,{2 cabXφτ = . 

Then {c} is -- *
21 αττ g open in X but not -- **

21 αττ g open in X. 
 
Example 4.8: In example (3.2), {d} is -- **

21 αττ g open in X but not 

-- *
21 αττ g open in X. 

 
Remark 4.9: The union of any two -- **

21 αττ g open sets is not necessary 

-- **
21 αττ g open set as in the following example. 

 
Example 4.10: In example (3.2), },{ cbA = , },{ dbB =  are -- **

21 αττ g open sets 

but },,{ dcbBA =∪  is not -- **
21 αττ g open in X. 

 
Theorem 4.11: If A and B are -- **

21 αττ g open sets then so is BA∩ . 
 
Proof: Suppose that A and B are -- **

21 αττ g open sets. Let F be -- *
1 ατ g closed 

in X and BAF ∩⊆ . Since BAF ∩⊆ , we have AF ⊆ and BF ⊆ . Since A and 

B are -- **
21 αττ g  open sets. Then )(int-2 AF τ⊆  and )(int-2 BF τ⊆ . Therefore, 

)int(-)(int- 22 BAF ττ ∩⊆  )int(-2 BA∩τ⊆ . Hence BA∩ is -- **
21 αττ g open. 

 
Theorem 4.12: The arbitrary intersection of -- **

21 αττ g open sets IiAi ∈, in a 

bitopological space ),,( 21 ττX  is -- **
21 αττ g open if the family },{ IiA c

i ∈ is 

locally finite in ),( 1τX . 
 
Proof: Let },{ IiA c

i ∈ be locally finite in ),( 1τX and iA  is -- **
21 αττ g open in X 

for each Ii ∈ . Then c
iA  is -- **

21 αττ g closed in X for each Ii ∈ . Then by 

theorem (3.14), we have )( c
iA∪  is -- **

21 αττ g closed in X. Consequently, let  
c

iA )(∩ is -- **
21 αττ g closed in X. Therefore, iA∩  is -- **

21 αττ g open in X. 
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Theorem 4.13: If A is -- **
21 αττ g open in X and ABA ⊆⊆)(int-2τ , then B is 

-- **
21 αττ g open. 

 
Proof: Suppose that A is -- **

21 αττ g open in X and ABA ⊆⊆)(int-2τ . Let F is 

-- *
1 ατ g closed and BF ⊆ . Since BF ⊆ and AB ⊆ , we have AF ⊆ . Since A 

is -- **
21 αττ g open, we have )(int-2 AF τ⊆ . Since BA ⊆)(int-2τ , we have 

)(int-2 AF τ⊆ )(int-2 Bτ⊆ . Hence  B is -- **
21 αττ g open in X. 

 
Theorem 4.14: If a set A is -- **

21 αττ g closed in X, then AAcl −)(-2τ  is 

-- **
21 αττ g open set. 

 
Proof: Suppose that A is -- **

21 αττ g closed in X. Let F be -- *
1 ατ g closed and 

AAclF −⊆ )(-2τ . Since A is -- **
21 αττ g closed in X, we have AAcl −)(-2τ  

contains no nonempty -- *
1 ατ g closed set. Since AAclF −⊆ )(-2τ , we have 

])(-int[- 22 AAclF −⊆= ττφ . Therefore, AAcl −)(-2τ  is -- **
21 αττ g open. 

 
Theorem 4.15: If a set A is -- **

21 αττ g open in a bitopological space ),,( 21 ττX , 

then G = X whenever G is -- *
1 ατ g open and GAA c ⊆∪)(int-2τ . 

 
Proof: Suppose that A is -- **

21 αττ g open in a bitopological space ),,( 21 ττX and 

G is -- *
1 ατ g open and GAA c ⊆∪)(int-2τ . Then =⊆ ccc AAG ])(int-[ 2 ∪τ  

cc AAcl −)(-2τ . Since G is -- *
1 ατ g open, we have cG  is -- *

1 ατ g closed. 

Since A is -- **
21 αττ g open, we have cA  is -- **

21 αττ g closed. Therefore, 
cc AAcl −)(-2τ contains no nonempty -- *

1 ατ g closed set in X {by theorem 

(3.17)}. Consequently, φ=cG . Hence G = X. 
 
Remark 4.16: The converse of the above theorem is not true in general as can 
seen from the following example. 
 
Example 4.17: In example (3.2), if we take A = {c,d}, then XAA c ⊆∪)(int-2τ , 

X is -- *
1 ατ g open, but A is not -- **

21 αττ g open. 
 
Lemma 4.18: The intersection of -- **

21 αττ g open set and -2τ open set is always 

-- **
21 αττ g open. 

 
Proof: Suppose that A is -- **

21 αττ g open and B is -2τ open. Since B is 

-2τ open, we have cB  is -2τ closed. Then cB  is -- **
21 αττ g closed {by theorem 
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(3.3) (i)}. Hence, B is -- **
21 αττ g open. Hence BA∩ is -- **

21 αττ g open {by 
theorem (4.11)}. 
 
Remark 4.19: The following diagram shows the relations among the different 
types of weakly open sets that were studied in this section: 
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