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Abstract

In this study we present an algorithm for solvingiltabjective integer
quadratic programming problems having random partarge in the objective
functions and in the constraintSome basic stability notions are characterized
for the problem of concern and the stability coriagthis problem is introduced.
An illustrative numerical example of bicriteriontéger quadratic test problem
under randomness is given.
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1 I ntroduction

Decision problems of stochastic or probabilisti¢imjzation arise when certain
coefficients of an optimization model are randomanmfities. Stochastic
multiobjective integer programs are challengingnfrdoth computational and
theoretical points of view since they combine thdééerent types of models into
one. Until now algorithmic results have been limite special instances.

In recent years methods of multiobjective stoclkasptimization have become
increasingly important in scientifically based d#&en-making involved in
practical problems arising in practical problemstiansportation, scheduling,
agriculture, military purposes and technology [1\8} should point the reader to
an extensive list of papers maintained by Maartm der Vlerk at the Web Site:
http://mally.eco.rug.nl/biblio/SPlist.html.

In literature there are many papers that deal withbility of solutions for
stochastic multiobjective optimization problems. &my the many suggested
approaches for treating stability of these probl¢fag].

In [4], a qualitative analysis of some basic nasionf stochastic vector

optimization problem with random parameters in tight-hand side of the

constraints has been presented. These notionstheset of feasible parameters
and the stability set of the first kind.

Also, the determination of the stability set of tlmst kind has been suggested
when the right-hand side of the constraints arenadly distributed. Theories and
applications of stochastic multiobjective optimirat problems have been
introduced in [5]. The solution of chance-consteginmultiobjective linear
programming problems has been discussed in [61liegevith a parametric study
on the problem of concern. In [7], the author assdima deterministic
multiobjective programming problem which is approgied by surrogate
problems based on estimations for the objectiveetfons and the constraints.
Making use of a large deviations approach, the \iebhawas investigated for the
constraint sets, the sets of efficient points dred dolution sets if the size of the
underlying sample tends to infinity. The resultsevlustrated by applying them
to stochastic programming with chance constraintsere (i) the distribution
function of the random variables is estimated bg #mpirical distribution
function, (ii) certain parameters have to be edi@taA parametric study on
stochastic multiobjective integer linear programgnproblems was presented in
[8] and the stability of efficient solutions forduproblems has been investigated.
A comparison study has been given in [9] betweemzyfuand stochastic
approaches for solving multiobjective integer noedr programming problems.
Moreover, the study of stability of efficient satuts for such problems in the
decision space has been investigated.
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In this study, we will extend the work in the sitedpers [10, 11 and 12] for the
author and with others to cover the case of mykiive integer quadratic

programming problem (MOIQP) and a stochastic apgrda presented to treat
these problems. The problem under consideratiool\veg random parameters in
the objective functions and in the constraints.Skection 2, the mathematical
formulation of (MOIQP) is introduced. Some basiabglity notions such as the
set of feasible parameters; the solvability set thedstability set of the first kind

are characterized for (MOIQP) in Section 3. A solutalgorithm for solving such

problems is described in Section 4. Section 5 ¢ostan illustrative example to
explain and clarify the proposed solution algorithiFinally, the paper is

concluded in Section 6.

2  Problem Formulation and the Solution Concept

The problem to be considered in this study is thétiobjective integer quadratic
programming problem having random parameters. Tresgom parameters are
involved in the objective functions and in the doaisits. The problem of concern
is formulated mathematically as follows:

(MOIQP),: min F(x,y), F:R - R

where F(x,y)=(f1(X yl), fo (X, y2),..., fic (X, yk) is a vector valued criterion
with  f (x,y*), k=12..,Kare real valued convex objective functions.
Furthermore,X is the feasible set and might be, for examplehefform:

X={xOR"/ P(g,(x)=> a,x,<b )za,, r=12,...m,
=1

X; =20andintegersj =12,...,n},

In the above problem(MOIQP),, the objective function f, (X, y* )has the
following quadratic form:

(Y= 3 CExx + 3y,

2i5m i=1
where, we suppose th{a(ti}‘], I,]=12,...,n are symmetric positive semi-definite
matrices, [y'j‘], k=12...,K are n- vectors of random parameters normally

distributed and independently with each other wkinown meansu}‘ and

2k
varianceso j, respectively. MoreoveR means probability andr,, r=12,....m

is a specified probability. This means that thesdin constraintsg, (x) may be
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violated some of the time, and at most 1001 -a, )% of the time. For the sake
of simplicity, we assume that the random paramekersr =12,...,m are also

distributed normally with known mean&{b,}=x and variancegar{b }=0?,
respectively and independently of each other.

The concept of the efficient solution of problgMOIQP), is introduced in the
following definition.

Definition 1: A point x 0 Xis said to be an efficient solution of problem
(MOIQP), if there is no othexX such that

P(y*/ f (% y)<f, (X,y)=1 k=12..,K,

With strict inequality holds for at least okand

P(g,(X)=> a,x'sb )za,,a,0[01], r=12..m

=1

Now, going back to problenfMOIQP), and for the purpose of optimization, new
objective functions f, (x), k=12...,K can be constructed using the chance-
constrained programming technique [13, 14] as:

18,8 n n 2k
fk(x):EZZCi}‘xxj + B> Ui, + By /20’; X2 k=12..K,
i=1j=1 i=1 i=1

2k
where y =meanof{y} and o; = variance ofy;}. In addition,,[>’1k and,[z"z‘
are nonnegative constants whose values indicateethive importance of ,u}‘

2k
and the standard deviatioo; of the minimization, respectively. Therefore,

problem (MOIQP), will take the following equivalent form:
(MOIQP), :

. 190 d
min fk(X)=§Z ZCi'j”ﬁ Xj +r31kzﬂ|1'(xj +r35
i=1j=1 j=1
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where

X={xOR"/ P(g, (=Y a;x;<b, )za,, r=12,...,m,
i=1

X; 20andintegersj = 1,2...,n},

Taking h (x)=9g,(X)-b,, then h (x), r=12,..,m are random parameters
normally distributed with characteristies =g, (X)— 4 and 87 =0’

The inequalities

P(gr(X)=Zn:ar,-xjsbr)zar, r=12,...,m,
j=1

are equivalent to
P(h (X)<0) 2a,, r=12,...m

This leads to

o L)
\/ZZT[U fe 2" 6 (¥ dv=ay, r=12..m
I —oo

Putting

=

2

S

0 2
V) =—— J'e_v /2 dv

(o]

Then, the above inequality can be rewritten as:

r

qo(_”rz(x)) >q,, r=12..m
o}

ie. n()+et(a)oi<s 0

This gives

(9r (0 -4 )+ Hay ) of <0

and consequently, problenfMOIQP), can be reduced to the following
multiobjective integer nonlinear programming prablgl0, 12]:
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(MOINLP): min  f (x), k=12.,K,
subjectto

X(u,0)={xOR"/g,(x)=) a,x; ~u, +¢*(a,)0?<0, r=12..m,
i=1

X; 20 andintegers j=12,...,n}.

Problem (MOINLP) can be treated using the nonnegative weighted gymoach

[15] i.e. by considering the following integer nmdar programming problem
with single-objective function:

K
P(w) : min > w, f, (%),
k=1
subjecto
xOX (u,0),

K
wherew, 90, k=12,..,.K and > w, =1

k=1

Clearly, problem P(w ) above can be solved using any available nonlinear

programming package, for example, GINO [16] couphath the branch- and-
bound method [17].

It should be noted from the scalarization theorei@] [that if x is a unique
optimal solution of problenP(w gt certainw’ OR*, w, @0 for all k=1,2,...,K

then X becomes an efficient solution for the original geob (MOIQP),.

3 Some Basic Stability Notionsfor Problem (moigp),.

The Set of Feasible Parameters

Definition 2: The set of feasible parameters of probl@dOIQP), is defined via
problem (MOINLP) as:

A={wORY -{0},b, ON(u,0) I X (u,0) 2 ¢ }.

where N(u,0 ) denotes the normal distribution. Equivalently, deA can be
redefined as:

A={WORK -{0}, (1,0)/ X (u,0) % ).
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The Solvability Set

Definition 3: The solvability set of probletMOIQP), is defined via problem
(MOINLP) as:

B={ (wy b, )UA/Problem(MOINLP) hasanefficient solutionx*}.

The Stability Set of the First Kind S(x')

Definition 4: Let X be an efficient solution of proble(OIQP), corresponding

to (wg,b; )OB then the stability set of the first kind of prab@vOIQP),,
denoted byS(x"), is defined as:

S(x*):{ (wW,b)OB/ X is an efficient solution of problem(MOINLP) 1}.

As mentioned before, the random parametersr=12,...m can be defined
exactly if its characteristicE{b,} = 7, andVar{b,} =7 are known earlier.

Before we go any further, a nonlinear programmgilgxation problem equivalent
and corresponding to probleR(w can be stated in the following form:

- K
P(w): min " wy fi (%),
k=1
subjectto

n
9r (=D ag X}~ +¢ (ay)of <0, r=12,..m,
i=1
Xj = 0j, jOl ON={12...n},
Xj< Vi, jOJON={12,...,n}.

wherel 0JON ={12,...,n}, I nJ=¢ and the constraintx; 29, x; <y, are

additional and have been added to the feasible tisolu set of
problemP(w through the use of the branch-and-bound processbtain its

integer optimal solutiox’ .
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Deter mination of Stability Set of the First Kind Set S(x)

In what follows, we suppose that the functidpéx),k =12,...,.K; g,(x) and
Ny (X),r =12,....m are convex, then the Kuhn-Tucker necessary optynal

conditions corresponding to probleR(w wijll take the following form:

K
X
03 Wi f )+ A L0900+ 0Py 10 +v; =0
k=1 r
A9y (X) =4 =17 (X 1=0,
9r (X) =4 =11 (X) <0,
Xj Zé-j,
Xj<Vj,
ujx; =0, jOION={12..,n}
vix; =0, jOJON={12...n}
A 20, r=122..,m,
UjZO, jar,

vj20, jOJ,

K
wherew, @0 and > w =1.

k=1
It should be noted that all the relations of thewbsystem are evaluated at the
optimal integer solutiorx” and A, ,uj,vj are the Lagrange multipliers. The first

and the last three relations of the above systepresent a Polytope in
Auv - space for which its vertices can be determinedguaimy algorithm which

is based upon the Simplex Method, for example ri3&li[19].

According to whether any of the \variablesA, (r=1,2,...m),
uj,(JO1I'ON) andvj,(jOJON) are zero or positive, then the set of
parameterswy,(k =12,....K Jand A, ,(r =12,...,m) for which the Kuhn-Tucker
necessary optimality conditions are utilized wil determined and is denoted by
T(x").Clearly, we can write thak(x~ 0 S(X").

4  The Solution Algorithm

Now, we describe an algorithm to solve problédMOIQP), which has been

formulated earlier in Section 2. This suggestedrélyo terminates in a series of
finite number of steps and can be summarized ifidlh@ving manner.



On the Solution of Chance-Constrained... 119

2k
Step 1: Determiney; =meanof{y} and o; = variance ofy;} .Also, determine

E{b } = and variancegar{b }=0’.

Step 2: Formulate the deterministic objective functiofis(x), k=12,...,K and

convert the set of constraintsof problem (MOIQP), into the set of constraints
X (u,0) of problem(MOINLP ).

K
Step 3: Choosew = w; [ RX such thatwy @0 and Zwk =1 and then solve the
k=1
resulting single-objective integer nonlinear prmbl@(w* )using GINO software
package [16] together with the Branch-and-Boundhoet[17]. Let X be a
unique optimal integer solution of probleﬁ(w* )

Step 4: Determine the stability sélt(x* Py utilizing the Kuhn-Tucker necessary
optimality conditions corresponding to the parameinteger nonlinear problem
P(w) at the optimal integer solution.

Step 5: Choose another vector of nonnegative weigmsw** ORK and then go
to Step 4 again.

A systematic variation of the nonnegative weightt lwad to a set of optimal

integer solutions of proble®(w .)

5 Anlllustrative Example

In this section, an illustrative numerical examje provided to clarify the
suggested solution algorithm. The problem under idenstion is a bicriterion
integer quadratic programming problenr{BIQP jand having random

parametery,, yo andby,b, in the objectives and in the constraints, respelsti
For the purpose of illustration, let us conside(BIQP) as follows:

(BIQP): min F)=[ f2(x,y); f2(x y)1,
subject to
x X,

where the feasible solution s¢is defined by:
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P(X1+X2S b_I_)Z 095,
X =| xOR? |P (% +2%,<30,) =090
X1, X 20 andintegers

and

f1(x, y) =2x +X5 - y1xq, f2 (6 Y) =X +35G ~ VoXo.

Step 1: Assume that the random variableg,y,,byandb, are normally
distributed with the following means and variangespectively.

th=mean(y;) =3, Mo =mear(y;) =4,

012 =variancgy) =4, 022 =variancgy,) =16,
and

E(b)=9, E(by)=1 Var(by)=4, Var(b,) =25

Step 2 The deterministic bicriterion integer quadratic gnamming problem
equivalent to the above problefBIQP) can be written in the following form:

min F(x)=[ f(x); f,(X],

subject to
xU )~(
Where
X +X%,<12.29,
X =| xO R| x+2 x< 22.275,
X, %20 and integer
and

1) =2x¢ +33 =3B ~2B%; 12(X) =X +3x5 ~ 4812 ~4fB5%,,
Provided that 3;, 5> 20 and are supposed to Be £, <5 and0< 5, <6.

Step 3: Using the nonnegative weighted sum approach [h&) tve have:
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P(W): min[w (2 +X5 ~ 364 — 28%) *Wp (4 + 3% —4B1x ~462%)],
subjecto

xOX,
where w,wo @0 andwy +w, =1

Step 4: Choosevv{ = W; = 05therefore we get:

« .3 3
P(W): min (¢ +2x3 == Brx = B = 2B1x2 =~ 2B2%e,

subjetto
x4 X.

The optimal integer solution of probld?@w* , Wsing the Branch-and Bound
method [17], has been found (ag* : x;) = 55).

Step 5: The nonlinear programming problem equivalent tobfmP(w), in its
parametric form, can be written as follows:

P(W): min[wy (2x¢ +x5 =381 = 2B2%) + W (45" +3x5 ~4B1xa = 4B2%)],
subjectto
X1 +Xp <1229
X1 +2Xp < 22279
X1 25,
Xp =5.

It should be noted that the constraings=>5 and x, =5are additional and that

have been added to the constraint Xetof problem P(w* Yo find its optimal
integer solution through the Branch-and- Bound essc

Step 6: The Kuhn-Tucker necessary optimality conditionsregponding to

problemP(w) will take the following form:
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AXaWy =361y — 25wy +2Woxq + Ay + Ay —vp =0,
2XoWy —4B1Wy — 4LBoWy + +6WoXo + Ay + 245 Vo =0,
A1 (xq + X9 —1229) =0,
Ao (Xq +2x5 — 22279 =0,
V1(=x% +5) =0,
Va(X2 =5) =0,
X1 + Xo < 1229,
X1 + 2%y < 22275
X1 25,
Xo =5,
M,Ap,v1,v0 20.

where the relations of the above system are ewaduat the optimal integer
solution (X, X5) = (5,5).

Also, it can be shown that; = A, =0 and v4,V, = 0and therefore, the stability
setT (55) is given by:

T (595 :{WD R2|—7vv1 +10w, = 0, 10wy +14w, = 0 andwy, Wy = 0, wherewy +ws, :1}

Clearly,
T(55) 0 S(5,5).

On the other hand, choosifg1, w2) = (é%) OT (55) gives the optimal integer

solution (x1,x2) = (3,6). This will yield A =1, =0 and vy,v, 20 with the

stability sefT (3,6), which is given by:

T (36) ={WD RZ‘ 5wy — 2w, = 0, 3wy + 2w, >0 andwy, w, > 0, wherew; +w, =1}.

andclearly T (36)0S (36).

5] Conclusions

The main objective of this study was to presentlat®n algorithm for solving
multiobjective integer quadratic programming profde having random
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parameters in the objective functions and in tghtrhand side of the constraints.
Some basic stability notions of the problem of @nchave been defined and
characterized.

Certainly, there are many other aspects and qumsssibould be explained in the
field of stochastic multiobjective integer quadcabtrogramming problems. This
study was an attempt to establish underlying reswttich hopefully will help
other researchers to discuss such problems frdereiit directions.

However, there remain several open points for disiotm and should be solved in
future. Some of these points are the following:

0] A procedure is needed to enlarge the'léet* such thatT(x* )becomes

S(x).

(i) An algorithm is required for solving largeae stochastic multiobjective
integer quadratic programming problems.

(i)  Computer codes should be introduced for tigplementation of the
solution for these problems and the computatiomahplexity must be
discussed.
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