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Abstract
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1 Introduction

The concept of fuzzy sets was introduced by L. A. Zadeh [24] in 1965, which
became active field of research for many researchers. In 1975, Karmosil and
Michalek [16] introduced the concept of a fuzzy metric space based on fuzzy
sets, this notion was further modified by George and Veermani [11] with the
help of t-norms. Many authors made use of the definition of a fuzzy metric
space in proving fixed point theorems. In 1976, Jungck [14] established com-
mon fixed point theorems for commuting maps generalizing the Banach’s fixed
point theorem. Sessa [23] defined a generalization of commutativity, which is
called weak commutativity. Further Jungck [15] introduced more generalized
commutativity, so called compatibility. Mishra et. al. [21] introduced the con-
cept of compatibility in fuzzy metric spaces. Atanassov [1-8] introduced the
notion of intuitionistic fuzzy sets and developed its theory. Park [22] using the
idea of intuitionistic fuzzy sets to define the notion of intuionistic fuzzy met-
ric spaces with the help of continuous t-norm and continuous t co-norm as a
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generalization of fuzzy metric space. Muralisankar and Kalpana [20] proved a
common fixed point theorem in an intuitionistic fuzzy metric space for point-
wise R-weakly commuting mappings using contractive condition of integral
type and established a situation in which a collection of maps has a fixed
point which is a point of discontinuity. Gahler [10] introduced and studied the
concept of 2-metric spaces in a series of his papers. Iseki et. al. [13] investi-
gated, for the first time, contraction type mappings in 2-metric spaces. In 2002
Sharma [18] introduced the concept of fuzzy 2- metric spaces. Mursaleen et.
al. [19] introduced the concept of intuitionistic fuzzy 2-metric space. In this
paper, we prove the existence and uniqueness of common fixed point theorem
for four mappings in complete intuitionistic fuzzy 2-metric spaces

2 Preliminaries

Definition 2.1 (17) A binary operation x : [0,1] x [0,1] — [0, 1] is called
continuous t-norm if x s satisfying the following conditions:

TN1) * is commutative and associative;

(TNT)

(TN2) * is continuous;

(TN3) a1 =a for all a € [0, 1];

(TN4) a*b < ¢*d whenever a < cand b < d and a,b,¢,d € [0, 1].

Examples of t-norms are a * b = ab and a * b = min{a, b}

Definition 2.2 (16) A binary operation < : [0,1] x [0, 1] — [0, 1] is called
continuous t-conorm if < is satisfying the following conditions:

Definition 2.3 (16) A fuzzy metric space (shortly, F'M-space) is a triple
(X, M, %), where X is a nonempty set, * is a continuous t-norm and M is a
fuzzy set on X? x [0, 00) satisfying the following conditions : for all z,y,z € X
and s,t > 0,

(FM1) M(x,y,0) =0
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( ) M(z,y,t) =1, for all t > 0 if and only if z =y,
(FM3) M(z,y,t) = M(y,z,t),

(FM4) M(x,y,t+s) > M(z,z,t) * M(z,y,s),

( ) M(x,y,.):[0,1) — [0, 1] is left continuous.

Note that M(z,y,t) can be thought of as the degree of nearness between
x and y with respect to t. We identify x = y with M (z,y,t) =1 for all t > 0
and M (z,y,t) = 0 with oco.

Definition 2.4 (9) The 5-tuple (X, M, N,x,<) is said to be an intuition-
istic fuzzy metric space (shortly, IFM-space) if X is an arbitrary set, * is a
continuous t-norm, < is a continuous t-conorm, and M, N are fuzzy sets on
X? x [0,00) satisfying the following conditions:

(IFM1) M(z,y,t) + N(z,y,t) < 1;

(IFM2) M (z,y,0) =

(IFM3) M(z,y,t) =1, for all ¢ > 0 if and only if z = y;

(IFM4) M(z,y,t) = M(y, z,t);

(IFM5) M (z,y,t+s) > M(z,z,t)* M(z,y,s) for all z,y,z € X and s,t > 0;
(IFM6) M(z,y,.) : [0,00) —> [0, 1] is left continuous.

(IFM7) lim M(z,y,t) =1 for all 2,y € X;

(IFMS) N(z,y,0) = 1

(IFM9) N(z,y,t) =0, for all ¢ > 0 if and only if x = y;

(IFM10) N(z,y,t) = N(y,x,t);

(IFM11) N(z, z,t+s) < N(z,y,t)ON(y, z,s) for all z,y,z € X and s,t > 0;
(IFM12) N(z,y,.) : [0,00) — [0, 1] is right continuous.

(IFM13) lim N(z,y,t) =0 for all z,y € X;

Then (M, N) is called an intuitionistic fuzzy metric on X.

The function M (z,y,t) and N(z,y,t) denote the degree of nearness and
the degree of non-nearness between x and y with respect to t respectively.
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Remark 2.5 FEvery fuzzy metric (X, M, x) is an intuitionistic fuzzy metric
space of the form (X, M,1 — M, ,<) such that t-norm x and t-conorm < are
associated [12] i.e., xQy =1— (1 —x) x (1 —y)) for any z,y € X.

Remark 2.6 In intuitionistic fuzzy metric space X, M (z,y, .) is non-decreasing
and N(z,y,.) is non-increasing for any x,y € X.

Definition 2.7 (10) A 2-metric space is a set X with a real-valued func-
tion d on X? satisfying the following conditions:

(2M1) For distinct elements z,y € X, there exists z € X such that d(z,y, z) #
0.

(2M2) d(z,y, z) = 0 if at least two of x,y and z are equal.
(2M3) d(x,y,2) = d(z, z,y) = d(y, z,x) for all z,y,z € X.
(2M4) d(z,y,2) < d(z,y,w) + d(z,w,2) + d(w,y,2) V x,y,z,w € X.

The function d is called a 2-metric for the space X and the pair (X, d)
denotes a 2-metric space. It has shown by Gahler [10] that a 2-metric d is
non-negative and although d is a continuous function of any one of its three
arguments, it need not be continuous in two arguments. A 2-metric d which
is continuous in all of its arguments is said to be continuous.

Geometrically a 2-metric d(z,y, z) represents the area of a triangle with
vertices x,y and z.

Example 2.8 Let X = R3 and let d(z,y,z) is the area of the triangle
spanned by z,y and z which may be given explicitly by the formula, d(z,y, z) =
(21 (Y223 — ys322) — T2(y123 — ys321) + T3(v122 — y221)], where v = (x1, 29, T3),
y = (y1,Y2,93), 2 = (21, 22, 23). Then (X,d) is a 2-metric space.

Definition 2.9 (18) The 3-tuple (X, M, N, x) is said to be a fuzzy 2-metric
space (shortly, F2M-space) if X is an arbitrary set, * is a continuous t-norm,
and M s fuzzy sets on X3 x [0,00) satisfying the following conditions: for all
x,y,z,u € X and r,s,t > 0.

(IFM2) M(z,y,2,0) =0,

(IFM3) M (z,y, z,t) = 1, if and only if at least two of the three points are
equal,

(IFM4) M(z,y,2,t) = M(z, z,y,t) = M(y, z,z,t).
(Symmetry about first three variables)
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(IFM5) M (z,y,z,7+s+1t) > M(z,y,u,r)* M(x,u,z, ) * M(u,y, z,1).
(This corresponds to tetrahedron inequality in 2-metric space, the func-
tion value M (z,y,z,t) may be interpreted as the probability that the
area of triangle is less than t.)

(IFM6) M(z,y,z,.): [0,00) —> [0, 1] is left continuous.

Definition 2.10 (19) The 5-tuple (X, M, N,*,$) is said to be an intu-
itionistic fuzzy 2-metric space (shortly, IF2M-space) if X is an arbitrary set, *
s a continuous t-norm, { is a continuous t-conorm, and M, N are fuzzy sets
on X3 x [0,00) satisfying the following conditions:

for all z,y,z,w € X and r,s,t > 0.
(IF2M1) M (z,y,z,t) + N(x,y,2,t) <1,

(IF2M2) given distinct elements z,y, z of X there exists an element z of X
such that M(z,y,z,0) =0,

x,y, z,t) =1, if at least two of x,y, z of X are equal,
x’ y? Z? t) - M<m7 Z’ y? t) = M(y? Z? x? t)?

(
(
(x,y,z,m+s+t) > M(z,y,w,r)*x M(z,w,z s)* Mw,y,z,t) ;
(

z,y,2,.): [0,00) — [0, 1] is left continuous,
N(z,y,2,0) =
[F2M8) N(z,y,z,t) =0, if at least two of z,y, z of X are equal,
IF2M9) N(z,y,z2,t) = N(z,2,y,t) = N(y, 2z, x, 1),

IFQMlO) N(l‘7 Y, 2,7+ 5+ t) < N(Z’, Y, w, T)ON(‘Ta w, z, S)ON(UJ, Y, z, t) )
[F2M11) N(z,y,z2,.) : [0,00) — [0, 1] is left continuous,

In this case (M, N) is called an intuitionistic fuzzy 2-metric on X. The function
M (z,y, z,t) and N(y,x, z,t) denote the degree of nearness and the degree of
non-nearness between z, y and z with respect to ¢, respectively.

Example 2.11 Let (X,d) be a 2-metric space. Denote a x b = ab and
ab = min{l,a + b} for all a,b € [0,1] and My and Ny be fuzzy sets on
X3 % [0,00) defined by

ht" d(z,y, 2)

M, t Ny t
(2.9,2,1) = ht" +md(z,y, z)’ (7,y,2,t) = kt™ + md(z,y, 2)

for all hyk,m,n € R*. Then (X, My, Ny, *,<) is IF2M-space.
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Definition 2.12 Let (X, M, N, *,$) be an IF2M-space.

(a) A sequence {z,} in IF2M-space X is said to be convergent to a point
r € X (denoted by [im x, = x or x, — ) if for any A € (0,1)
and t > 0, there exists ng € N such that for all n > ng and a € X,
M(zy,x,a,t) > 1=Xand N(z,,z,a,t) < A. That is lim_M(x,,z,a,t) =
1 and lim_N(xn,2,a,t) =0, for a € X and ¢t > 0.

(b) A sequence {z,} in IF2M-space X is called a Cauchy sequence, if for any
A € (0,1) and ¢t > 0, there exists ny € N such that for all m,n > ny
and a € X, M(zp,xn,a,t) > 1 — X and N(zp, T, a,t) < A. That is
lim M (zm, zn,a,t) = 1 and Jim N (2, Tn,a,t) = 0, for a € X and

m,n— oo

t > 0.

(¢) The IF2M-space X is said to be complete if and only if every Cauchy
sequence is convergent.

Definition 2.13 Self mappings A and B of an IF2M-space (X, M, N, *, )
is said be be compatible, if lim_M(ABx,, BAz,,a,t) =1
and lim_N(ABx,, BAz,,a,t) =0 for alla € X and t > 0, whenever {x,} is
a sequence in X such that lim_ Az, = lim_Bx, = z for some z € X

3 Main Results

Lemma 3.1 Let (X, M, N,*,${) be an IF2M-space. Then M (z,y, z,t) is
non-decreasing and N(x,y, z,t) is non-increasing for all z,y,z € X.

Proof: Let s,t > 0 be any points such that t > s. t = s+ ’5775 + ’5775 Hence
we have
t—s n t— s)
2 2

t—
< N(x’y7z78)<>N<xaz7zv ?S)ON(Z):UVZ)

N(z,y,z,t) = N(z,y,2z,8+

t—s
—5)

= N(z,y,25)

Thus N(z,y, z,t) < N(z,y, z,s). Similarly, M (z,y, z,t) > M(x,y, z,s). There-
fore, M(x,y, z,t) is non-decreasing and N(x,y, z,t) is non-increasing.

From Lemma 3.1, let (X, M, N, %, ) be an IF2M-space with the following
conditions:

lim_ _M(z,y,2,t)=1, lim__N(z,y,2,t)=0

t—o0
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Lemma 3.2 Let (X, M, N,*,$) be an IF2M-space. If there exists ¢ € (0,1)
such that M (z,y,z,qt +0) > M(x,y, z,t) and N(z,y, z,qt +0) < N(z,y, z,1)
forall x,y,z € X with z # x, z# y and t > 0. Then x = y.

Proof: Since
M(z,y,z,t) > M(x,y,z,qt +0) > M(z,y,2,t), and

N(z,y,z,t) < N(z,y,2z,qt + 0) < N(z,y, z, 1)
forallt > 0, M(z,y,2,.) and N(x,y, z, .) are constant. Sincelim___ M (x,y,z,t) =
1, lim__N(x,y,2,t) = 0. Then M(z,y,2,t) = 1 and N(z,y,2,t) = 0.
Consequently, for all £ > 0. Hence z = y because z # x, z # y.

Lemma 3.3 Let (X, M,N,*,$) be an [F2M-space and let lim __x, =
z,lim .y, =y. Then the following are satisfied for alla € X and t >0

(1) firm infM {2y, g a,t) > M(z,y,a,t) and
lim  supN(xp, yn,a,t) < N(x,y,a,t)

(2) M(z,y,a,t +0) > lim supM(zp, Yn, a,t)
and N($7yvaat+ 0) SHZL@ Z.an(xnaynaa'a t)

Proof: (1) For all a € X and ¢ > 0 we have

M (@, Yn, a,t) > M(xy, Yn, x, t1) * M(z,, 2, a,15) * M(2,yn,a,t),ty + 1t =0
Z M(xnyyna CEftl) * M(l‘n, x,a, tZ) * M(w7ynayat3)

*M(x7y7a7t4) * M(yayn7a7t)7t3 +t4 =0

which implies lim infM (2, yn,a,t) > 1x1x1xM(x,y,a,t)x1 = M(x,y,a,t)

Also,

8

N(zp, Yn,a,t) N(xp, Yn, x, t1)ON (T, 2, a, t2) ON (2, Y, a, t), t1 + 1o =0
N<xn7 Yn, xvtl)QN<xna x, a,tg)QN(Qf, Yn, y7t3)

ON(z,y,a,t4) ON (Y, yn, a, 1), b5 + 14 = 0
which implies lim  supN(2p, yn, a,t) < 0G0O0ON (2, y, a,t)O0 = N(x,y, a,t)
(2) Let € > 0 be given. For all @ € x and t > 0 we have
M(z,y,a,t+2¢€) > M(x,y,wn,g) *M(:z;,:cn,a,f) « M(x,,y,a,t+€)

2
> M(a,y,@0,5) * M(e, 20,0, 5) * M0, Y. o 5)

* M (L, Yn, a, t) ¥ M(yn, y, a, %)-
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Consequently,

M(z,y,a,t+2€) > lim supM(xy, yn, a,t).
Letting € — 0, we have

M(z,y,a,t+0) > lim supM(x,, Yn,a,t).
Also, we have

N(z,y,a,t+2¢) < N(x,y,xn,%)ON(:c,xn,a,%)ON(mn,y,a,t—i—e)
€ € €
S N<x7y7xn7§)<>N(x7xn7a7§><>N(xn7yayn75)

€

<>N($n7 Yn, A, t)<>N<yn7 y,a, 5)

Consequently,
N(z,y,a,t+2¢) < lim infN(zn,Yn,a,t).
Letting € — 0, we have

N(z,y,a,t+0) < lim infN(x,,yn,a,t).

Lemma 3.4 Let (X, M, N,*,{) be an IF2M-space and let A and B be con-
tinuous self mappings of X and [A, B] are compatible. Let x,, be a sequence in
X such that Az,, — z and Bx, — z. Then ABx, — Bz.

Proof: Since A, B are continuous maps, ABx,, — Az, BAx, — Bz and
S0, M(Aan,Az,a,é) — 1 and M(BAz,, Bz, a,%) — 1 for all ¢ € X and
t>0.

Since the pair [A, B] is compatible, M(BAz,, ABx,,a,t) — 1 for all or all
a € X and t > 0. Thus

t t
M(ABx,,Bz,a,t) > M(ABz,, Bz, BAz,, §> « M(ABx,, BAzr,,a, §)

«M(BAx,, Bz, a, ;)

> M(BAz,, Bz, ABz,, ;)) x M(BAz,, ABz,, a, ;)
t
xM(BAx,, Bz, a, §)
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Also we have

N(ABz,,Bz,a,t) < N(ABx,, Bz, BAx,, ;)(}N(Aan,BAxn,a, ;)
ON(BAx,, Bz, a, ;)
< N(BAx,, Bz, ABx,, ;)ON(BAxm ABuz,,a, ;)
ON(BAx,, Bz, a, ;)
— 0

for all a € X and t > 0.
Hence ABx,, — Bz.

Theorem 3.5 Let (X, M, N,x, <) be a complete IF2M-space with contin-
uous t-norm * and continuous t-conorm . Let S and T be continuous self
mappings of X. Then S and T have a unique common fixed point in X if and
only if there exists two self mappings A, B of X satisfying

(1) AX € TX, BX C SX,
(2) the pair {A, S} and {B, T} are compatible,

(3) there exists ¢ € (0,1) such that for every z,y,a € X and t > 0
M(Azx,, By, a,qt) > min{M(Sz,Ty,a,t), M(Ax, Sz, a,t), M(By, Ty, a,t),
M(Az, Ty, a,t)}.
N(Ax,, By, a,qt) < max{N(Sz,Ty,a,t), N(Az,Sx,a,t), N(By, Ty, a,t),
N(Az,Ty,a,t)}. Then A, B, S and T have a unique common fixed point
in X.

Proof: Suppose that S and T have a (unique) common fixed point say
z€ X. Define A: X - X be Av = zforallz € X, and B: X — X be
Bxr =z forall x € X.

Then one can see that (1)-(3) are satisfied.

Conversely, assume that there exist two self mappings A, B of X satisfying
condition (1)-(3). From condition (1) we can construct two sequences z,, and
yn of X such that yo,_1 = Tx9,_1 = ATo,_5 and yo, = Sx2, = Bxy,_ 1 for
n =1,2,3,.... Putting x = x9, and = x9,,; in condition (3), we have that
forallae X and t >0

M(ny'rH—l? YZon+2,a, qt) - M(AIQ'R? Ban—‘rla a, qt)
> min{M (Sxon, Txon11,a,t), M(Aza,, Sxopn, a,t)
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M(Bxopi1, Txopg1, a,t), M(Axg,, Txopi1, a,t)}

> min{M (yzon, YTont1, a, qt), M (YToni1, YToni1, a, qt)}
and
N(yzont1, YToni2, a,qt) = N(Aza,, Bropi1,a,qt)
< max{N(Sxon, Txopyi1,a,t), N(Azxy,, Sxop, a,t)
N(Bx2n+1, TiL‘QnJrl, a, t), N(A$2n, Tx2n+1, a, t)}
< maz{N(nyn, YTon+1, @, qt)v N(y$2n+1, YTon+1, 4, qt)}

which implies M(y$2n+17y56’2n+2, a, qt) > M(y372n+17y552n+1> a, qt) and
N(yx2n+17 YTon42, A, qt) S N(yx2n+17 YTon+1, Q, qt)a

by Lemma 3.1, Also, letting z = x9,.2 and y = 5,41 in condition (3), we have
that

M(y2n+27 Yon+3, @, qt) Z M(y2n+17 Yon2, a, t) and
N(y2n+27 Yon+3, @, qt) < N<y2n+17 Yon+2, @, t)? for all @ € X and t > 0.

In general we obtain that for alla € X andt >0 and n=1,2, ...

M (Y, Ynt1, @5 qt) = M(Yn—1,Yn, a,t) and
N (Yn, Yns1,a,qt) < N(Yn—1,Yn,a,t). Thus, for all @ € X and t > 0 and
n=12,..

t
M(ynayn+17aat) 2 M(yanh@,q*) (31)

n

and ;
N(ynayn—l—lyaat) S N(y07y17a7q7) (32)

We now show that {y,} is a Cauchy sequence in X.
Let m > n. Then for all a € X and ¢t > 0 we have

b,

t
M<ym7yn7a7t) 2 M(ym;ynyyn+1;7>*M(yn+1;yn7a73

3
t
M(yma Yn+1, 4, g)

b,

t
*) * M<yn+1a Yn, a, 3

3
t

t
M(yma Yn+1, Yn+2, ?) * M(yn—i—Qa Yn+1, Q, ?)

v

M(yma Yns Yn+1,

t
M(?er Yn+2, Q, ?)
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t

M msy Im—ny Wy 5
(Yms Ym—n @ 2=

and

t t
N(yma Yn, G, t) S N(ym7 Yns Yn+1, §)<>N(yn+17 Yn, a, §><>

t
3)

t
N(yma Yns Yn+1, g)oN(yn-Ha Yn, Q,

N(ym7 Yn+1, Q,

t
§)<>
t t
N(yma Yn+1, Yn+42, ?)QN(yn—&—% Yn+1, @, ?)
t

N(yma Yn+2, A, ?)

IN

t
N(ymu Ym—n, @, 3m7—n)

letting m,n — oo we have

lim M (Ym, Yn,a,t) = 1, lim N(Ym,Yn,a,t) = 0. Thus {y,} is a Cauchy

sequence in X.

It follows from completeness of X that there exists z € X such that lim y, =

z. Hence lim yan—1 = lim Txo,_1 = [tim  Axg,_o = z and lim yo, = [im S,

= lim Bwy,—, = z. From Lemma 3.4, ASz3,41 = Sz and BTy, = Tz

(3.3)

Mean while, for all @ € X with a # Sz and a # Tz and t > 0.

M(ASxopi1, BT wony1,a,qt) > min{M(SSxami1,TTTop41,0,t),

M(ASI2n+1, SSJZ2n+17 a, t),
M(BT.I‘Qn+1, TTJIQnJrl, a, t),

M(ASx9p i1, TTx541,0a,1)}
and

N(ASzoni1, BTxon1,a,qt) < mar{N(SSxeni1, TTxo41,a,t),
N(ASzop11,SSxonyi1,a,t),
N(BTxopi1, TTxon41,0a,t),
N(ASzop11, TTxon1,a,1)}.
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Taking limit as n — oo and using (3.3), we have for all a € X with a # Sz
and a # Tz and t > 0.

M(Sz,Tz,a,qt +0) > min{M(Sz,Tz,a,t), M(Sz, Sz a,t),
M(Tz,Tz a,t), M(Sz, Tz a,t)}

M(Sz,Tz,a,t)
and
N(Sz,Tz,a,qt +0) < max{N(Sz, Tz a,t), N(Sz, Sz, a,t),
N(Tz,Tz,a,t),N(Sz,Tz,a,t)}
N(Sz, Tz, a,t)
By Lemma 3.2, we have Sz =T z (3.4)

From condition (3), we get for all a« € X with a # Az, a # Tz and t > 0

M(Az, Bl xoni1,a,qt) > min{M Sz, TTxops1,a,t), M(Az, Sz, a,t),
M(BTZL’Qn+1, TTIQ,H_l, a, t), M(AZ, TTI2n+1, a, t)}

and

N(Az, BTzon41,a,qt) < max{N(Sz, TTxs,.1,a,t), N(Az, Sz, a,t),
N(BT$2n+1, TTQIQnJrl, a, t), N(AZ, TTx2n+1, a, t)}

Taking limit as n — oo and using condition (3), and Lemma 3.3, we have for
alla € X

M(Az, Tz a,qt +0) > min{M(Sz,Tz,a,t), M(Az, Sz, a,t),
M(Tz, Tz a,t), M(Az, Tz, a,t)}

M(Az,Tz, a,t)
and
N(Az,Tz,a,qt +0) < max{N(Sz,Tz,a,t), N(Az, Sz a,t),
N(Tz Tz a,t), N(Az, Tz a,t)}
N(Az, Tz, a,t)
By Lemma 3.2, we have, Az =Tz (3.5)

And for all a € X with a # Az and a # Bz, and t > 0.

M(Az,Bz,a,qt) > min{M(Sz,Tza,t), M(Az, Sz, a,t),
M(Bz,Tz,a,t), M(Az,Tz,a,t)}
> min{M(Tz,Tz,a,t), M(Tz,Tz,a,t),
M(Bz,Az,a,t), M(Tz,Tz,a,t)}
M(Az, Bz, a,t)
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and
N(Az,Bz,a,qt) < min{N(Sz,Tz,a,t), N(Az,Sz,a,t),
N(Bz,Tz,a,t), N(Az,Tz,a,t)}
< max{N(Tz,Tz,a,t), N(Tz,Tz,a,t),
N(Bz,Az,a,t), N(Tz,Tz,a,t)}
N(Az,Bz,a,t)
By Lemma 3.2, Az = Bz (3.6)

It follows that Az = Bz = Sz = Tz. For all @« € X with a # Bz and a # z,
and t > 0.

M(Axon, Bz,a,qt) > min{M(Sxon, Tz, a,t), M(Axsn, Stay, a,t),
M(Bz,Tz,a,t), M(Azy,, Tz, a,t)}

and

N(Azxs,, Bz,a,qt) < max{N(Sxo,, Tz, a,t), N(Axo,, Ston, a,t),
N(Bz,Tz,a,t), N(Axon, Tz, a,t)}

Taking limit as n — oo and using (3.3) and Lemma 3.3, we have for all a € X
with a # Bz, a # z and t > 0.

M(z,Bz,a,qt +0) > min{M(z,Tz,a,t), M(z,z,a,t),
M(Bz,Bz,a,t), M(z,Tz,a,t)}
M(z,Tz,a,t) > M(z, Bz, a,t)

v

and

N(z,Bz,a,qt +0) < max{N(z,Tza,t),N(z, z,a,t),
N(Bz,Bz,a,t),N(z,Tz,a,t)}
< N(z,Tz,a,t) < N(z,Bz,a,t),

and so we have, M (z, Bz,a,qt) > M(z, Bz,a,t) and N(z, Bz,a,qt) < N(z, Bz, a,t),
and hence Bz = z. Thus, 2z = Az = Bz = Sz = Tz, and so z is a common
fixed point of A, B,C and T.

For uniqueness, let w be another common fixed point of A, B, S,T. Then, for
alla € X witha # 2 ,a# wand t > 0.

M(z,w,a,qt) = M(Az, Bw,a,qt)
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v

min{M(Sz,Tw,a,t), M(Az, Sz, a,t),
M(Bw,Tw,a,t), M(Az, Tw,a,t)}
min{M (z,w,a,t), M(z, z,a,t),
M(w,w,a,t), M(z,w,a,t)}
M(z,w,a,t).

v

v

and

N(z,w,a,qt) = N(Az, Bw,a,qt)
max{N(Sz,Tw,a,t), N(Az, Sz, a,t),
N(Bw,Tw,a,t), N(Az,Tw,a,t)}
max{N(z,w,a,t), N(z, z,a,t),
N(w,w,a,t), N(z,w,a,t)}

< N(z,w,a,t).

IN

IN

which implies that M (z,w, a,qt) > M(z,w,a,t) and N(z,w,a,qt) > N(z,w,a,t),
hence z = w. This complete the proof of.

References

[1] K. Atanassov and S. Stoeva, Intuitionistic fuzzy sets, Polish Symp. on
Interval and Fuzzy Mathematics, Poznan Proc., August(1983), 23-26.

[2] K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets Systems, 20(1986), 87-
96.

[3] K. Atanassov, Remarks on the intuitionistic fuzzy sets, Fuzzy Sets and
Systems, 51(1) (1992), 117-118.

[4] K. Atanassov and Ch. Georgiev, Intuitionistic fuzzy prolog, Fuzzy Sets and
Systems, 53(1) (1993), 121-128.

[5] K. Atanassov, New operations defined over the intuitionistic fuzzy sets,
Fuzzy Sets Systems, 61(1994), 137-42.

[6] K. Atanassov, An equality between intuitionistic fuzzy sets, Fuzzy Sets and
Systems, 79(2) (1996), 257-258.

[7] K. Atanassov, Two theorems for intuitionistic fuzzy sets, Fuzzy Sets and
Systems, 110(2) (2000), 267-269.

[8] K. Atanassov, A new intuitionistic fuzzy modal operator, Notes on Intu-
itionistic Fuzzy Sets, 9(2) (2003), 56-60.



Common Fixed Theorem on Intuitionistic... 83

[9] A. Cihangir, T. Duran and Y. Cemil, Fixed points in intuitionistic fuzzy
metric spaces, Chaos, Soliton and Fractals, 29(2006), 1073-1078.

[10] S. Gahler, 2-Metrische Raume and ihre topologische structure, Math.
Nachr., 26(1983), 115-148.

[11] A. George and P. Veeramani, On some results in fuzzy metric spaces,
Fuzzy Sets Systems, 64(1994), 395-9.

[12] O. Hadzic and E. Pap, Fized Point Theory in Probabilistic Metric Spaces,
Kluwer Academic Publishers, Dordrecht, (2001).

[13] K. Iseki, P.L. Sharma and B.K. Sharma, Contrative type mappings on
2-metric space, Math. Japonica, 21(1976), 67-70.

[14] G. Jungck, Commuting mappings and fixed points, Amer. Math. Monthly,
83(1976), 261-263.

[15] G. Jungck, Commuting mappings and fixed points, Internat. J. Math. and
Math. Sci., 9(4) (1986), 771-779.

[16] I. Kramosil and J. Michalek, Fuzzy metric and statistical metric spaces,
Kybernetika, 11(1975), 326-334.

[17] B. Schweizer and A. Sklar, Statistical metric spaces, Pacific Journal of
Mathematics, 10(1) (1960), 313-334.

[18] S. Sharma, On fuzzy metric spaces, Southeast Asian Bull. of Math, 26(1)
(2002), 133-145.

[19] M. Mursaleen and Q.M. Danishlohani, Baire’s and Cantor’s theorems in
intuitionistic fuzzy 2-metric spaces, Chaos, Solitons and Fractals, 42(4)
(2009), 2254-2259.

[20] S. Muralisankar and G. Kalpana, Common fixed point theorem in intu-
itionistic fuzzy metric spaces using general contractive condition of integral
type, Int. J. Contemp. Math. Sciences, 4(11) (2009), 505-518.

[21] S.N. Mishra, N. Sharma and S.L. Singh, Common fixed points of maps
on fuzzy metric spaces, Internat. J. Math. and Math. Sci., 17(2) (1994),
253-258.

[22] J.H. Park, Intuitionistic fuzzy metric spaces, Chaos, Solutions and Frac-
tals, 22(2004), 1039-1046.

[23] S. Sessa, On a weak commutativity condition of mappings in fixed point
consideration, Publ. Inst. Math., 32(1982), 149-153.



84 Mona S. Bakry

[24] L.A. Zadeh, Fuzzy Sets, Inform Control, 189(1965), 338-353.



