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1 Introduction

The concept of fuzzy sets was introduced by L. A. Zadeh [24] in 1965, which
became active field of research for many researchers. In 1975, Karmosil and
Michalek [16] introduced the concept of a fuzzy metric space based on fuzzy
sets, this notion was further modified by George and Veermani [11] with the
help of t-norms. Many authors made use of the definition of a fuzzy metric
space in proving fixed point theorems. In 1976, Jungck [14] established com-
mon fixed point theorems for commuting maps generalizing the Banach’s fixed
point theorem. Sessa [23] defined a generalization of commutativity, which is
called weak commutativity. Further Jungck [15] introduced more generalized
commutativity, so called compatibility. Mishra et. al. [21] introduced the con-
cept of compatibility in fuzzy metric spaces. Atanassov [1-8] introduced the
notion of intuitionistic fuzzy sets and developed its theory. Park [22] using the
idea of intuitionistic fuzzy sets to define the notion of intuionistic fuzzy met-
ric spaces with the help of continuous t-norm and continuous t co-norm as a



70 Mona S. Bakry

generalization of fuzzy metric space. Muralisankar and Kalpana [20] proved a
common fixed point theorem in an intuitionistic fuzzy metric space for point-
wise R-weakly commuting mappings using contractive condition of integral
type and established a situation in which a collection of maps has a fixed
point which is a point of discontinuity. Gahler [10] introduced and studied the
concept of 2-metric spaces in a series of his papers. Iseki et. al. [13] investi-
gated, for the first time, contraction type mappings in 2-metric spaces. In 2002
Sharma [18] introduced the concept of fuzzy 2- metric spaces. Mursaleen et.
al. [19] introduced the concept of intuitionistic fuzzy 2-metric space. In this
paper, we prove the existence and uniqueness of common fixed point theorem
for four mappings in complete intuitionistic fuzzy 2-metric spaces

2 Preliminaries

Definition 2.1 (17) A binary operation ∗ : [0, 1]× [0, 1] −→ [0, 1] is called
continuous t-norm if ∗ is satisfying the following conditions:

(TN1) ∗ is commutative and associative;

(TN2) ∗ is continuous;

(TN3) a ∗ 1 = a for all a ∈ [0, 1];

(TN4) a ∗ b ≤ c ∗ d whenever a ≤ c and b ≤ d and a, b, c, d ∈ [0, 1].

Examples of t-norms are a ∗ b = ab and a ∗ b = min{a, b}

Definition 2.2 (16) A binary operation ♦ : [0, 1]× [0, 1] −→ [0, 1] is called
continuous t-conorm if ♦ is satisfying the following conditions:

(TCN1) ♦ is commutative and associative;

(TCN2) ♦ is continuous;

(TCN3) a♦0 = a for all a ∈ [0, 1];

(TCN4) a♦b ≤ c♦d whenever a ≤ c and b ≤ d and a, b, c, d ∈ [0, 1].

Definition 2.3 (16) A fuzzy metric space (shortly, FM-space) is a triple
(X,M, ∗), where X is a nonempty set, ∗ is a continuous t-norm and M is a
fuzzy set on X2× [0,∞) satisfying the following conditions : for all x, y, z ∈ X
and s, t > 0,

(FM1) M(x, y, 0) = 0
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(FM2) M(x, y, t) = 1, for all t > 0 if and only if x = y,

(FM3) M(x, y, t) = M(y, x, t),

(FM4) M(x, y, t+ s) ≥M(x, z, t) ∗M(z, y, s),

(FM5) M(x, y, .) : [0, 1) −→ [0, 1] is left continuous.

Note that M(x, y, t) can be thought of as the degree of nearness between
x and y with respect to t. We identify x = y with M(x, y, t) = 1 for all t > 0
and M(x, y, t) = 0 with ∞.

Definition 2.4 (9) The 5-tuple (X,M,N, ∗,♦) is said to be an intuition-
istic fuzzy metric space (shortly, IFM-space) if X is an arbitrary set, ∗ is a
continuous t-norm, ♦ is a continuous t-conorm, and M,N are fuzzy sets on
X2 × [0,∞) satisfying the following conditions:

(IFM1) M(x, y, t) +N(x, y, t) ≤ 1;

(IFM2) M(x, y, 0) = 0;

(IFM3) M(x, y, t) = 1, for all t > 0 if and only if x = y;

(IFM4) M(x, y, t) = M(y, x, t);

(IFM5) M(x, y, t+ s) ≥M(x, z, t) ∗M(z, y, s) for all x, y, z ∈ X and s, t > 0;

(IFM6) M(x, y, .) : [0,∞) −→ [0, 1] is left continuous.

(IFM7) lim
t−→∞

M(x, y, t) = 1 for all x, y ∈ X;

(IFM8) N(x, y, 0) = 1;

(IFM9) N(x, y, t) = 0, for all t > 0 if and only if x = y;

(IFM10) N(x, y, t) = N(y, x, t);

(IFM11) N(x, z, t+ s) ≤ N(x, y, t)♦N(y, z, s) for all x, y, z ∈ X and s, t > 0;

(IFM12) N(x, y, .) : [0,∞) −→ [0, 1] is right continuous.

(IFM13) lim
t−→∞

N(x, y, t) = 0 for all x, y ∈ X;

Then (M,N) is called an intuitionistic fuzzy metric on X.

The function M(x, y, t) and N(x, y, t) denote the degree of nearness and
the degree of non-nearness between x and y with respect to t respectively.
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Remark 2.5 Every fuzzy metric (X,M, ∗) is an intuitionistic fuzzy metric
space of the form (X,M, 1−M, ∗,♦) such that t-norm ∗ and t-conorm ♦ are
associated [12] i.e., x♦y = 1− ((1− x) ∗ (1− y)) for any x, y ∈ X.

Remark 2.6 In intuitionistic fuzzy metric space X, M(x, y, .) is non-decreasing
and N(x, y, .) is non-increasing for any x, y ∈ X.

Definition 2.7 (10) A 2-metric space is a set X with a real-valued func-
tion d on X3 satisfying the following conditions:

(2M1) For distinct elements x, y ∈ X, there exists z ∈ X such that d(x, y, z) 6=
0.

(2M2) d(x, y, z) = 0 if at least two of x, y and z are equal.

(2M3) d(x, y, z) = d(x, z, y) = d(y, z, x) for all x, y, z ∈ X.

(2M4) d(x, y, z) ≤ d(x, y, w) + d(x,w, z) + d(w, y, z) ∀ x, y, z, w ∈ X.

The function d is called a 2-metric for the space X and the pair (X, d)
denotes a 2-metric space. It has shown by Gähler [10] that a 2-metric d is
non-negative and although d is a continuous function of any one of its three
arguments, it need not be continuous in two arguments. A 2-metric d which
is continuous in all of its arguments is said to be continuous.

Geometrically a 2-metric d(x, y, z) represents the area of a triangle with
vertices x, y and z.

Example 2.8 Let X = <3 and let d(x, y, z) is the area of the triangle
spanned by x, y and z which may be given explicitly by the formula, d(x, y, z) =
[x1(y2z3 − y3z2) − x2(y1z3 − y3z1) + x3(y1z2 − y2z1)], where x = (x1, x2, x3),
y = (y1, y2, y3), z = (z1, z2, z3). Then (X, d) is a 2-metric space.

Definition 2.9 (18) The 3-tuple (X,M,N, ∗) is said to be a fuzzy 2-metric
space (shortly, F2M-space) if X is an arbitrary set, ∗ is a continuous t-norm,
and M is fuzzy sets on X3 × [0,∞) satisfying the following conditions: for all
x, y, z, u ∈ X and r, s, t > 0.

(IFM2) M(x, y, z, 0) = 0,

(IFM3) M(x, y, z, t) = 1, if and only if at least two of the three points are
equal,

(IFM4) M(x, y, z, t) = M(x, z, y, t) = M(y, z, x, t).
(Symmetry about first three variables)
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(IFM5) M(x, y, z, r + s+ t) ≥M(x, y, u, r) ∗M(x, u, z, s) ∗M(u, y, z, t).
(This corresponds to tetrahedron inequality in 2-metric space, the func-
tion value M(x, y, z, t) may be interpreted as the probability that the
area of triangle is less than t.)

(IFM6) M(x, y, z, .) : [0,∞) −→ [0, 1] is left continuous.

Definition 2.10 (19) The 5-tuple (X,M,N, ∗,♦) is said to be an intu-
itionistic fuzzy 2-metric space (shortly, IF2M-space) if X is an arbitrary set, ∗
is a continuous t-norm, ♦ is a continuous t-conorm, and M,N are fuzzy sets
on X3 × [0,∞) satisfying the following conditions:

for all x, y, z, w ∈ X and r, s, t > 0.

(IF2M1) M(x, y, z, t) +N(x, y, z, t) ≤ 1,

(IF2M2) given distinct elements x, y, z of X there exists an element z of X
such that M(x, y, z, 0) = 0,

(IF2M3) M(x, y, z, t) = 1, if at least two of x, y, z of X are equal,

(IF2M4) M(x, y, z, t) = M(x, z, y, t) = M(y, z, x, t),

(IF2M5) M(x, y, z, r + s+ t) ≥M(x, y, w, r) ∗M(x,w, z, s) ∗M(w, y, z, t) ;

(IF2M6) M(x, y, z, .) : [0,∞) −→ [0, 1] is left continuous,

(IF2M7) N(x, y, z, 0) = 1,

(IF2M8) N(x, y, z, t) = 0, if at least two of x, y, z of X are equal,

(IF2M9) N(x, y, z, t) = N(x, z, y, t) = N(y, z, x, t),

(IF2M10) N(x, y, z, r + s+ t) ≤ N(x, y, w, r)♦N(x,w, z, s)♦N(w, y, z, t) ;

(IF2M11) N(x, y, z, .) : [0,∞) −→ [0, 1] is left continuous,

In this case (M,N) is called an intuitionistic fuzzy 2-metric on X. The function
M(x, y, z, t) and N(y, x, z, t) denote the degree of nearness and the degree of
non-nearness between x, y and z with respect to t, respectively.

Example 2.11 Let (X, d) be a 2-metric space. Denote a ∗ b = ab and
a♦b = min{1, a + b} for all a, b ∈ [0, 1] and Md and Nd be fuzzy sets on
X3 × [0,∞) defined by

Md(x, y, z, t) =
htn

htn +md(x, y, z)
, Nd(x, y, z, t) =

d(x, y, z)

ktn +md(x, y, z)

for all h, k,m, n ∈ R+. Then (X,Md, Nd, ∗,♦) is IF2M-space.
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Definition 2.12 Let (X,M,N, ∗,♦) be an IF2M-space.

(a) A sequence {xn} in IF2M-space X is said to be convergent to a point
x ∈ X (denoted by lim

n−→∞xn = x or xn −→ x) if for any λ ∈ (0, 1)
and t > 0, there exists n0 ∈ N such that for all n ≥ n0 and a ∈ X,
M(xn, x, a, t) > 1−λ and N(xn, x, a, t) < λ. That is lim

n−→∞M(xn, x, a, t) =
1 and lim

n−→∞N(xn, x, a, t) = 0, for a ∈ X and t > 0.

(b) A sequence {xn} in IF2M-space X is called a Cauchy sequence, if for any
λ ∈ (0, 1) and t > 0, there exists n0 ∈ N such that for all m,n ≥ n0

and a ∈ X, M(xm, xn, a, t) > 1 − λ and N(xm, xn, a, t) < λ. That is
lim
m,n→∞M(xm, xn, a, t) = 1 and lim

m,n→∞N(xm, xn, a, t) = 0, for a ∈ X and
t > 0.

(c) The IF2M-space X is said to be complete if and only if every Cauchy
sequence is convergent.

Definition 2.13 Self mappings A and B of an IF2M-space (X,M,N, ∗,♦)
is said be be compatible, if lim

n−→∞M(ABxn, BAxn, a, t) = 1
and lim

n−→∞N(ABxn, BAxn, a, t) = 0 for all a ∈ X and t > 0, whenever {xn} is
a sequence in X such that lim

n−→∞Axn = lim
n−→∞Bxn = z for some z ∈ X

3 Main Results

Lemma 3.1 Let (X,M,N, ∗,♦) be an IF2M-space. Then M(x, y, z, t) is
non-decreasing and N(x, y, z, t) is non-increasing for all x, y, z ∈ X.

Proof: Let s, t > 0 be any points such that t > s. t = s+ t−s
2

+ t−s
2

. Hence
we have

N(x, y, z, t) = N(x, y, z, s+
t− s

2
+
t− s

2
)

≤ N(x, y, z, s)♦N(x, z, z,
t− s

2
)♦N(z, y, z,

t− s
2

)

= N(x, y, z, s)

ThusN(x, y, z, t) < N(x, y, z, s). Similarly, M(x, y, z, t) > M(x, y, z, s). There-
fore, M(x, y, z, t) is non-decreasing and N(x, y, z, t) is non-increasing.

From Lemma 3.1, let (X,M,N, ∗,♦) be an IF2M-space with the following
conditions:

lim
t→∞

M(x, y, z, t) = 1, lim
t→∞

N(x, y, z, t) = 0
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Lemma 3.2 Let (X,M,N, ∗,♦) be an IF2M-space. If there exists q ∈ (0, 1)
such that M(x, y, z, qt+ 0) ≥M(x, y, z, t) and N(x, y, z, qt+ 0) ≤ N(x, y, z, t)
for all x, y, z ∈ X with z 6= x, z 6= y and t > 0. Then x = y.

Proof: Since

M(x, y, z, t) ≥M(x, y, z, qt+ 0) ≥M(x, y, z, t), and

N(x, y, z, t) ≤ N(x, y, z, qt+ 0) ≤ N(x, y, z, t)

for all t > 0, M(x, y, z, .) andN(x, y, z, .) are constant. Since lim
t→∞

M(x, y, z, t) =
1, lim

t→∞
N(x, y, z, t) = 0. Then M(x, y, z, t) = 1 and N(x, y, z, t) = 0.

Consequently, for all t > 0. Hence x = y because z 6= x, z 6= y.

Lemma 3.3 Let (X,M,N, ∗,♦) be an IF2M-space and let lim
t→∞

xn =
x, lim

t→∞
yn = y. Then the following are satisfied for all a ∈ X and t ≥ 0

(1) lim
n→∞ infM(xn, yn, a, t) ≥M(x, y, a, t) and
lim
n→∞ supN(xn, yn, a, t) ≤ N(x, y, a, t)

(2) M(x, y, a, t+ 0) ≥ lim
n→∞ supM(xn, yn, a, t)

and N(x, y, a, t+ 0) ≤ lim
n→∞ infN(xn, yn, a, t)

Proof: (1) For all a ∈ X and t ≥ 0 we have

M(xn, yn, a, t) ≥ M(xn, yn, x, t1) ∗M(xn, x, a, t2) ∗M(x, yn, a, t), t1 + t2 = 0

≥ M(xn, yn, x, t1) ∗M(xn, x, a, t2) ∗M(x, yn, y, t3)

∗M(x, y, a, t4) ∗M(y, yn, a, t), t3 + t4 = 0

which implies lim
n→∞ infM(xn, yn, a, t) ≥ 1∗1∗1∗M(x, y, a, t)∗1 = M(x, y, a, t)

Also,

N(xn, yn, a, t) ≤ N(xn, yn, x, t1)♦N(xn, x, a, t2)♦N(x, yn, a, t), t1 + t2 = 0

≤ N(xn, yn, x, t1)♦N(xn, x, a, t2)♦N(x, yn, y, t3)

♦N(x, y, a, t4)♦N(y, yn, a, t), t3 + t4 = 0

which implies lim
n→∞ supN(xn, yn, a, t) ≤ 0♦0♦0♦N(x, y, a, t)♦0 = N(x, y, a, t)

(2) Let ε > 0 be given. For all a ∈ x and t > 0 we have

M(x, y, a, t+ 2ε) ≥ M(x, y, xn,
ε

2
) ∗M(x, xn, a,

ε

2
) ∗M(xn, y, a, t+ ε)

≥ M(x, y, xn,
ε

2
) ∗M(x, xn, a,

ε

2
) ∗M(xn, y, yn,

ε

2
)

∗M(xn, yn, a, t) ∗M(yn, y, a,
ε

2
).
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Consequently,

M(x, y, a, t+ 2ε) ≥ lim
n→∞ supM(xn, yn, a, t).

Letting ε→ 0, we have

M(x, y, a, t+ 0) ≥ lim
n→∞ supM(xn, yn, a, t).

Also, we have

N(x, y, a, t+ 2ε) ≤ N(x, y, xn,
ε

2
)♦N(x, xn, a,

ε

2
)♦N(xn, y, a, t+ ε)

≤ N(x, y, xn,
ε

2
)♦N(x, xn, a,

ε

2
)♦N(xn, y, yn,

ε

2
)

♦N(xn, yn, a, t)♦N(yn, y, a,
ε

2
).

Consequently,

N(x, y, a, t+ 2ε) ≤ lim
n→∞ infN(xn, yn, a, t).

Letting ε→ 0, we have

N(x, y, a, t+ 0) ≤ lim
n→∞ infN(xn, yn, a, t).

Lemma 3.4 Let (X,M,N, ∗,♦) be an IF2M-space and let A and B be con-
tinuous self mappings of X and [A,B] are compatible. Let xn be a sequence in
X such that Axn → z and Bxn → z. Then ABxn → Bz.

Proof: Since A,B are continuous maps, ABxn → Az, BAxn → Bz and
so, M(ABxn, Az, a,

t
3
) → 1 and M(BAxn, Bz, a,

t
3
) → 1 for all a ∈ X and

t > 0.
Since the pair [A,B] is compatible, M(BAxn, ABxn, a,

t
3
) → 1 for all or all

a ∈ X and t > 0. Thus

M(ABxn, Bz, a, t) ≥ M(ABxn, Bz,BAxn,
t

3
) ∗M(ABxn, BAxn, a,

t

3
)

∗M(BAxn, Bz, a,
t

3
)

≥ M(BAxn, Bz,ABxn,
t

3
) ∗M(BAxn, ABxn, a,

t

3
)

∗M(BAxn, Bz, a,
t

3
)

→ 1
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Also we have

N(ABxn, Bz, a, t) ≤ N(ABxn, Bz,BAxn,
t

3
)♦N(ABxn, BAxn, a,

t

3
)

♦N(BAxn, Bz, a,
t

3
)

≤ N(BAxn, Bz,ABxn,
t

3
)♦N(BAxn, ABxn, a,

t

3
)

♦N(BAxn, Bz, a,
t

3
)

→ 0

for all a ∈ X and t > 0.
Hence ABxn → Bz.

Theorem 3.5 Let (X,M,N, ∗,♦) be a complete IF2M-space with contin-
uous t-norm * and continuous t-conorm ♦. Let S and T be continuous self
mappings of X. Then S and T have a unique common fixed point in X if and
only if there exists two self mappings A,B of X satisfying

(1) AX ⊂ TX, BX ⊂ SX,

(2) the pair {A, S} and {B, T} are compatible,

(3) there exists q ∈ (0, 1) such that for every x, y, a ∈ X and t > 0
M(Axn, By, a, qt) ≥min{M(Sx, Ty, a, t),M(Ax, Sx, a, t), M(By, Ty, a, t),
M(Ax, Ty, a, t)}.
N(Axn, By, a, qt)≤ max{N(Sx, Ty, a, t), N(Ax, Sx, a, t), N(By, Ty, a, t),
N(Ax, Ty, a, t)}. Then A,B, S and T have a unique common fixed point
in X.

Proof: Suppose that S and T have a (unique) common fixed point say
z ∈ X. Define A : X → X be Ax = z for all x ∈ X, and B : X → X be
Bx = z for all x ∈ X.
Then one can see that (1)-(3) are satisfied.

Conversely, assume that there exist two self mappings A,B of X satisfying
condition (1)-(3). From condition (1) we can construct two sequences xn and
yn of X such that y2n−1 = Tx2n−1 = Ax2n−2 and y2n = Sx2n = Bx2n−1 for
n = 1, 2, 3, .... Putting x = x2n and x = x2n+1 in condition (3), we have that
for all a ∈ X and t > 0

M(yx2n+1, yx2n+2, a, qt) = M(Ax2n, Bx2n+1, a, qt)

≥ min{M(Sx2n, Tx2n+1, a, t),M(Ax2n, Sx2n, a, t)
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M(Bx2n+1, Tx2n+1, a, t),M(Ax2n, Tx2n+1, a, t)}
≥ min{M(yx2n, yx2n+1, a, qt),M(yx2n+1, yx2n+1, a, qt)}

and

N(yx2n+1, yx2n+2, a, qt) = N(Ax2n, Bx2n+1, a, qt)

≤ max{N(Sx2n, Tx2n+1, a, t), N(Ax2n, Sx2n, a, t)

N(Bx2n+1, Tx2n+1, a, t), N(Ax2n, Tx2n+1, a, t)}
≤ max{N(yx2n, yx2n+1, a, qt), N(yx2n+1, yx2n+1, a, qt)}

which implies M(yx2n+1, yx2n+2, a, qt) ≥M(yx2n+1, yx2n+1, a, qt) and
N(yx2n+1, yx2n+2, a, qt) ≤ N(yx2n+1, yx2n+1, a, qt),
by Lemma 3.1, Also, letting x = x2n+2 and y = x2n+1 in condition (3), we have
that
M(y2n+2, y2n+3, a, qt) ≥M(y2n+1, y2n+2, a, t) and
N(y2n+2, y2n+3, a, qt) ≤ N(y2n+1, y2n+2, a, t), for all a ∈ X and t > 0.

In general we obtain that for all a ∈ X and t > 0 and n = 1, 2, ...

M(yn, yn+1, a, qt) ≥M(yn−1, yn, a, t) and
N(yn, yn+1, a, qt) ≤ N(yn−1, yn, a, t). Thus, for all a ∈ X and t > 0 and
n = 1, 2, ...

M(yn, yn+1, a, t) ≥M(y0, y1, a,
t

qn
) (3.1)

and

N(yn, yn+1, a, t) ≤ N(y0, y1, a,
t

qn
) (3.2)

We now show that {yn} is a Cauchy sequence in X.
Let m > n. Then for all a ∈ X and t > 0 we have

M(ym, yn, a, t) ≥ M(ym, yn, yn+1,
t

3
) ∗M(yn+1, yn, a,

t

3
) ∗

M(ym, yn+1, a,
t

3
)

≥ M(ym, yn, yn+1,
t

3
) ∗M(yn+1, yn, a,

t

3
) ∗

M(ym, yn+1, yn+2,
t

32
) ∗M(yn+2, yn+1, a,

t

32
)

M(ym, yn+2, a,
t

32
)
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.

.

.

M(ym, ym−n, a,
t

3m−n
)

and

N(ym, yn, a, t) ≤ N(ym, yn, yn+1,
t

3
)♦N(yn+1, yn, a,

t

3
)♦

N(ym, yn+1, a,
t

3
)

≤ N(ym, yn, yn+1,
t

3
)♦N(yn+1, yn, a,

t

3
)♦

N(ym, yn+1, yn+2,
t

32
)♦N(yn+2, yn+1, a,

t

32
)

N(ym, yn+2, a,
t

32
)

.

.

.

N(ym, ym−n, a,
t

3m−n
)

letting m,n→∞ we have
lim
n→∞ M(ym, yn, a, t) = 1, lim

n→∞ N(ym, yn, a, t) = 0. Thus {yn} is a Cauchy
sequence in X.
It follows from completeness of X that there exists z ∈ X such that lim

n→∞ yn =
z. Hence lim

n→∞ y2n−1 = lim
n→∞ Tx2n−1 = lim

n→∞ Ax2n−2 = z and lim
n→∞ y2n = lim

n→∞ Sx2n
= lim

n→∞ Bx2n−1 = z. From Lemma 3.4, ASx2n+1 = Sz and BTx2n+1 = Tz
(3.3)
Mean while, for all a ∈ X with a 6= Sz and a 6= Tz and t > 0.

M(ASx2n+1, BTx2n+1, a, qt) ≥ min{M(SSx2n+1, TTx2n+1, a, t),

M(ASx2n+1, SSx2n+1, a, t),

M(BTx2n+1, TTx2n+1, a, t),

M(ASx2n+1, TTx2n+1, a, t)}
and

N(ASx2n+1, BTx2n+1, a, qt) ≤ max{N(SSx2n+1, TTx2n+1, a, t),

N(ASx2n+1, SSx2n+1, a, t),

N(BTx2n+1, TTx2n+1, a, t),

N(ASx2n+1, TTx2n+1, a, t)}.
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Taking limit as n → ∞ and using (3.3), we have for all a ∈ X with a 6= Sz
and a 6= Tz and t > 0.

M(Sz, Tz, a, qt+ 0) ≥ min{M(Sz, Tz, a, t),M(Sz, Sz, a, t),

M(Tz, Tz, a, t),M(Sz, Tz, a, t)}
M(Sz, Tz, a, t)

and

N(Sz, Tz, a, qt+ 0) ≤ max{N(Sz, Tz, a, t), N(Sz, Sz, a, t),

N(Tz, Tz, a, t), N(Sz, Tz, a, t)}
N(Sz, Tz, a, t)

By Lemma 3.2, we have S z = T z (3.4)
From condition (3), we get for all a ∈ X with a 6= Az, a 6= Tz and t > 0

M(Az,BTx2n+1, a, qt) ≥ min{M(Sz, TTx2n+1, a, t),M(Az, Sz, a, t),

M(BTx2n+1, TTx2n+1, a, t),M(Az, TTx2n+1, a, t)}

and

N(Az,BTx2n+1, a, qt) ≤ max{N(Sz, TTx2n+1, a, t), N(Az, Sz, a, t),

N(BTx2n+1, TTx2n+1, a, t), N(Az, TTx2n+1, a, t)}

Taking limit as n→∞ and using condition (3), and Lemma 3.3, we have for
all a ∈ X

M(Az, Tz, a, qt+ 0) ≥ min{M(Sz, Tz, a, t),M(Az, Sz, a, t),

M(Tz, Tz, a, t),M(Az, Tz, a, t)}
M(Az, Tz, a, t)

and

N(Az, Tz, a, qt+ 0) ≤ max{N(Sz, Tz, a, t), N(Az, Sz, a, t),

N(Tz, Tz, a, t), N(Az, Tz, a, t)}
N(Az, Tz, a, t)

By Lemma 3.2, we have, Az = Tz (3.5)
And for all a ∈ X with a 6= Az and a 6= Bz, and t > 0.

M(Az,Bz, a, qt) ≥ min{M(Sz, Tz, a, t),M(Az, Sz, a, t),

M(Bz, Tz, a, t),M(Az, Tz, a, t)}
≥ min{M(Tz, Tz, a, t),M(Tz, Tz, a, t),

M(Bz,Az, a, t),M(Tz, Tz, a, t)}
M(Az,Bz, a, t)
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and

N(Az,Bz, a, qt) ≤ min{N(Sz, Tz, a, t), N(Az, Sz, a, t),

N(Bz, Tz, a, t), N(Az, Tz, a, t)}
≤ max{N(Tz, Tz, a, t), N(Tz, Tz, a, t),

N(Bz,Az, a, t), N(Tz, Tz, a, t)}
N(Az,Bz, a, t)

By Lemma 3.2, Az = Bz (3.6)
It follows that Az = Bz = Sz = Tz. For all a ∈ X with a 6= Bz and a 6= z,
and t > 0.

M(Ax2n, Bz, a, qt) ≥ min{M(Sx2n, T z, a, t),M(Ax2n, Sx2n, a, t),

M(Bz, Tz, a, t),M(Ax2n, T z, a, t)}

and

N(Ax2n, Bz, a, qt) ≤ max{N(Sx2n, T z, a, t), N(Ax2n, Sx2n, a, t),

N(Bz, Tz, a, t), N(Ax2n, T z, a, t)}

Taking limit as n→∞ and using (3.3) and Lemma 3.3, we have for all a ∈ X
with a 6= Bz, a 6= z and t > 0.

M(z,Bz, a, qt+ 0) ≥ min{M(z, Tz, a, t),M(z, z, a, t),

M(Bz,Bz, a, t),M(z, Tz, a, t)}
≥ M(z, Tz, a, t) ≥M(z,Bz, a, t)

and

N(z, Bz, a, qt+ 0) ≤ max{N(z, Tz, a, t), N(z, z, a, t),

N(Bz,Bz, a, t), N(z, Tz, a, t)}
≤ N(z, Tz, a, t) ≤ N(z, Bz, a, t),

and so we have, M(z,Bz, a, qt) ≥M(z, Bz, a, t) andN(z,Bz, a, qt) ≤ N(z,Bz, a, t),
and hence Bz = z. Thus, z = Az = Bz = Sz = Tz, and so z is a common
fixed point of A,B,C and T .
For uniqueness, let w be another common fixed point of A,B, S, T . Then, for
all a ∈ X with a 6= z , a 6= w and t > 0.

M(z, w, a, qt) = M(Az,Bw, a, qt)
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≥ min{M(Sz, Tw, a, t),M(Az, Sz, a, t),

M(Bw, Tw, a, t),M(Az, Tw, a, t)}
≥ min{M(z, w, a, t),M(z, z, a, t),

M(w,w, a, t),M(z, w, a, t)}
≥ M(z, w, a, t).

and

N(z, w, a, qt) = N(Az,Bw, a, qt)

≤ max{N(Sz, Tw, a, t), N(Az, Sz, a, t),

N(Bw, Tw, a, t), N(Az, Tw, a, t)}
≤ max{N(z, w, a, t), N(z, z, a, t),

N(w,w, a, t), N(z, w, a, t)}
≤ N(z, w, a, t).

which implies thatM(z, w, a, qt) ≥M(z, w, a, t) andN(z, w, a, qt) ≥ N(z, w, a, t),
hence z = w. This complete the proof of.
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