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Abstract

By the symbaks™ ® we denote the class of all X- semilattices of nmiohose

every element is isomorphic to an X- semilattickoah D = {Z;, Zs, Zs5, Z, Zs,
Zo, 24, D}, where

z,02,020200 Z0Z0Zz02%0D z0 %0 Z0 70 D Z0 ZJ 73 Z) |
z,02,02,0200D

212,20, (1)C{(59 (69 ( 3p( 63( 9. 94, 28, 3¢ .2 2 .

In the given paper we give a full description madisubgroups of the complete
semigroups of binary elations defined by semilestiof the classs™

Keywords: Semilattice, Semigroup, Binary Relation, IdempioEement.
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1 | ntroduction

Let X be an arbitrary nonempty sdb, be aX-semilattice of unions, i.e. a
nonempty set of subsets of the Xdhat is closed with respect to the set-theoretic
operations of unification of elements frd f be an arbitrary mapping frotd
into D. To each such a mappihthere corresponds a binary relation on the set

X that satisfies the conditiom, = [ J({x x f(x)) . The set of all sucla, (f: X—D)

xOX

is denoted byBx (D). It is easy to prove th&@x (D) is a semigroup with respect to
the operation of multiplication of binary relationshich is called a complete
semigroup of binary relations defined bX@emilattice of union® (see [1, Item
2.1, p. 34)).

By O we denote an empty binary relation or empty sub$dhe setX. The
condition (x, y)da will be written in the formxay. Further letxydX, v O X,

a0B, (D), TOD, O0#D'0OD andtOb=JY. Then by symbols we denote the

YOD

following sets:

ya ={xOX| yr }, Ya=L4 w, (Do)={ ¥ | YO P,
XD={T|D¢TDX},Df{ZDDlﬂ]Z},Y’={)@)401:]’, (1.9

D, ={z’0D|TOZ}, 0 ={z0OD|ZO%,(D.,7)=0(D\D).

Under symbolr (D, D;) we mean an exact lower bound of the Bein the
semilatticeD.

Definition 1.1: Let e0B, (D). If coe=¢ or ace=a for anyaOB, (D), thene is

called an idempotent element or called right unittbe semigroup B (D)
respectively (see [1], [2], [3]).

Definition 1.2: We say that a complet - semilattice of unionsD is an
XI - semilattice of unions if it satisfies the followitvgp conditions:

a) 0(D,D,)OD for anytOD;
b) z=JO(pb,p) for any nonempty elemenz of D (see [1, Definition

thz

1.14.2], [2, Definition 1.14.2] or [6]).

Definition 1.3: The one-to-one mapping between the complete - semilattices

of unions D' and D"is called a complete isomorphism if the condition
¢(0D,)= | J ¢(T") is fulfilled for each nonempty subset of the semilattice
T'0D,

D' (see [1, Definition 6.2.3], [2, Definition 6.2.3f ¢5]).
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Definition 1.4: We say that a nonempty elem@&nts a nonlimiting element of the
setD' if T\I(D',T)#0 and a nonempty elementis a limiting element of the set

D' if T\I(D',T)=0(see [1, Definition 1.13.1 and 1.13.2] or [2, Defion 1.13.1
and 1.13.2]).

Theorem 1.1: Let X be a finite set and(a) be the set of all those elememtof
the semilatticeQ=V(D,a)\{0O} which are nonlimiting elements of the sgt. A
binary relation o having a quasinormal representationr = | J (YT"’XT) IS an

TOV(D,a)

idempotent element of this semigroup iff

a) V(D,a) is completexI - semilattise of unions;

b) J ¥ OT foranyTOD(a);
T'0D(a),
C) Y* nT=0 for any nonlimiting element of the sét(a). (see [1, Theorem

6.3.9], [2, Theorem 6.3.9] or [9]).

Theorem 1.2: Let D ={|5,zl,z2 ..... Zn_l} be some finite X-semilattice of unions and
C(D)={R.R,B....R_} be the family of sets of pairwise nonintersectingsets of
the set X. If¢ is a mapping of the semilattice D on the familgets C(D) which
satisfies the conditiong(D)=R, and ¢(z)=p for any i=12..m-1 and

D, =D\{TOD|z 0T}, then the following equalities are valid:

D=RORORO..OR.,, Z=RO |J4(7. 1.2)

TOD,
In the sequel these equalities will be called fdrma

It is proved that if the elements of the semilatlir are represented in the form
(1.2), then among the parameteys(i =0,1,2,..m- } there exist such parameters

that cannot be empty sets. Such sets(0<i<m-1) are called basis sources,
whereas setg, (0< j<m-1) which can be empty sets too are called complesenes
sources.

The number the basis sources we denote by symbol

It is proved that under the mappiggthe number of covering elements of the pre-
image of a basis source is always equal to ondewimder the mapping the

number of covering elements of the pre-image obmpmeteness source either
does not exist or is always greater than one (kettdm 11.4], [2, Item 11.4] or

[3D.
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Denote by the symbot, (De) a maximal subgroup of the semigroBg (D)
whose unit is an idempotent binary relatiorof the semigroux (D).

Theorem 1.3: For any idempotent element0B, (D), the group G, (D¢ is

antiisomorphic to the group of all complete autoptosm of the semilattice
V(D,¢) (see [1, Theorem 7.4.2], [2, Theorem 7.4.2] or)[4]

2 Results

Let X and Z;(X,8) be respectively an any nonempty set and a class
intreisomorphicX-semilattices of unions where every element is ispimo to
someX-semilattice of union® ={z,,7,,7,,2,,Z,, 2, 7, 3, that satisfying the

conditions.
z,0z,02,02,00 Z0O Z0O z0 zO D
z,0z,02,0200D zZ0OzZ0O z0 z0 D
Z,02z,02Z,02Z00D 2.1)
Z\Z,20, Z,\z20, Z,\Z,20, Z,\Zz0,
Z\Z, 20, Z,\Z;#2 0, Z\Z#z 0, Zg\ Z# 0,
Z\Zg#2 0, Zg\Zs#0;

The semilattice satisfying the conditions (2.13h®wn in Figure 1.

Fig. 1

Lemma 2.1: Let DOZ,(X,8). Then the following sets exhaust all subsemiledtic
of the semilatticep ={Z,.2.2,2,2,2.2, 0.

Mz} {2} 423 {2} {2 {2} { 2 { } . (see diagram 1 of the figure 2)

Nz.z}{z.23{z.4{2.4{2.3{33{ 3P
{z.2}{z.2}{z.3{2.9{2.3{23{23.
{z0{z.2}{z.4{z.0{z3{zPD

(see diagram 2 of the figure 2);
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9 {z.2.2}{2.2.2{2.2.3{ 2.2 D{ 2.2.3
2,2.23{2.2.2}{2.2.3{ 2.2.9{ 3.2.3 .
2,2,2}{z.2.8{2.2.3{2.2.9{ 2.2.p.
2,2.00{%.2.2}{%.2.3{2.2.9{ 4.2.p,
2,2.04{2.2,.2}{%.2.34{ 2.2.9{ 3.2.} .
{zz.0{zzd{zz28{z220{z2b,

{z,z.8.
(see diagram 3 of the figure 2);

{
{
{
{
{

4) {2,,2,,2,2}{2.2,2,3{ 2.2.2,9{ 2.%.2,p
{zz,2z ™z 2.2.4{2.2.2.3{2.2.2.p,
{z.2,2,.2}{2.2.2.9{2.2.2.9{ 2.2.2.p.
{zz.z8{z2204{222b{z220.

{zz.z228{z2.29{z2.2.29{z.2.2b.
(see diagram 4 of the figure 2);

5) Ezwzeyzwzz,g{27,26,24,%,1}{ 2.%2.%2.2.9{ 2.2.2.2.p
Z;.25.25.4,,
(see diagram 5 of the figure 2);

6) {2,,2,.2,2}{2.2.2.9{2.2.2.3 |
(2,2.2.0{2.2,2.3{2.2.2.

(see diagram 6 of the figure 2)

7) 12,.2,,2,,2.8 { Z,,
z,.2..2,,2,C {27,
z.,2,,2,,Z,C

(see diagram 7 of the figure 2);

8) {2,.2,,2,.2,,2,.8{2.2.2.2,2, D (see diagram 8 of the figure 2);

9) {27,25,24,23,21,T:} (see diagram 9 of the figure 2);

10) {2,.2,.2,.2,.2} { 2,.2,,2.2. 3 { .%.2.%. P
{z,2,2.2.8{z.2.2.2.9{2.2.2.2,b
(see diagram 10 of the figure 2);

13 {z,.2,.2,.2,,2,8 { 2..%.%.%.2, B (see diagram 11 of the figure 2);
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12){2,,25,25,2,,2. 4 { .2, 2., 3, D{ %.2.%, 2,2, P % % % % %)t
(see diagram 12 of the figure 2);

13) {2,.2,.2,.2,,2,,2.,§ (see diagram 13 of the figure 2);
14) {2, 2,.%,.2,.2,.%, (see diagram 14 of the figure 2);
15) {z7 Zs ., Zs,Z,,Z, ,Zl,i} (see diagram 15 of the figure 2);
16) {Z7 Zy .2, ,Z2,,2,,Z, ,Zl,V[} (see diagram 16 of the figure 2);

i {zz8{z28{z2.24{%.2.3{22}
(see diagram 17 of the figure 2);

18) [26,25,24,3 {2.2.2.2{%.%2.2.3{ 2.2.2.p
z,.2,,2 .0 .
(see diagram 18 of the figure 2);

19){2,.2,,2,,.0 {%.2,.2,.7 (see diagram 19 of the figure 2);
20){z,.2,.2,.2,,8 {2.2.2.2.D (see diagram 20 of the figure 2);

21) {Z6 Z,.Z,,Z, ﬂ (see diagram 21 of the figure 2);

22) {2,2,2,2,24{%.2.2.2.9{ 2.2.2.2,p
(see diagram 22 of the figure 2);

23) {2,.2,.2,,2,2} { 2.2.2.2,${ 2.2.2.2.p
(see diagram 23 of the figure 2);

24) {z6 Zs Z, ,ZS,Zl,T?} . (see diagram 24 of the figure 2);
25) {2,.2,.2,.2,,2,,0 (see diagram 25 of the figure 2);

26) {z6 Z,,2,,2,,Z, T:} (see diagram 26 of the figure 2);
27) {z7 Zs,2,,Z,,Z, E} - (see diagram 27 of the figure 2);

28) {2, 2,.2,.2,,2,,0 (see diagram 28 of the figure 2);
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29) {2, 2,.2,.2,,2,,2,,0 (see diagram 29 of the figure 2);
30) {27 Zy 2, ,Z,,Z, ,Zl,i} (see diagram 30 of the figure 2);

Proof: It is ease to see that, the se®}{z}{z}{Z}{Z4{Z4{3{D are

subsemilattices of the semilattice.

The number all subsets of the semilatti3eevery set of which contains two
elements, is equal taz=28. In this caseX- subsemilattices of the semilattibe

are the following sets:

ZZ}{ZZJ{ZZ;{;Z}{zé %{Z}D{%}D[%Z {;}z,v
z.8{z.8{z2{z23{z23(2 2;{ itz 2

Remainder 5 subsets of the semilattize whose every element contains two
elements is not ak-subsemilattice.

The number all subsets of the semilatieevery set of which contains three
elements, is equal ta? =56. In this caseX-subsemilattices of the semilatti€e

are the following sets:

Remainder 20 subsets of the semilatiicewhose every element contains three
elements is not a¥- subsemilattice.

The number all subsets of the semilatti3eevery set of which contains four
elements, is equal & =70. In this caseX- subsemilattices of the semilattite

are the following sets:

(2.2,2,2}12.2,2.4{2.223{ 222 ¥ 22 2|4 2% 2D Z27 7}z
2,2,2,2{2.2,2,0{2.2,2,9{ 2.2.2, | 2.2 2J0, %% %8 % Z Z}D,
2,2,2,08{2.2,2,4 1 2,2,20,12,2,2,8{2.2.2.8{2.2,2,${ 2,.2.2,p,
2,2,2,0{%2.241%22%0{22%3{ 2220 2224 22zlz
lza,zs,zg,;},{ze.zmzzl 42,20 222 pP{ 222 z.20{zz210,
2,2,2,8{%.2.2,1,

Remainder 33 subsets of the semilatiizewhose every element contains four
elements is not a¥- subsemilattice.
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The number all subsets of the semilattideevery set of which contains five
elements, is equal & =56. In this caseX- subsemilattices of the semilattite

are the following sets:

Remainder 29 subsets of the semilatiizewhose every element contains five
elements is not aKk- subsemilattice.

The number all subsets of the semilatti3eevery set of which contains six
elements, is equal & =28. In this caseX- subsemilattices of the semilatti€e

are the following sets:

2,2,2,2.2,3{2.2 2220222229 2222%d 22227
AAAAZMLAAAﬂﬂAAA;Q,;;;;%,Z@;;gt
2,,25,2,2,2,8{%2.2,2,2,8{2%.2,2.2.20{ 2.%.2,.2.2 P} 3.3 % % %|C

Remainder 13 subsets of the semilattime whose every element contains six
elements is not ax - subsemilattice.

The number all subsets of the semilattize every set of which contains seven
elements, is equal tg; =8. In this caseXx - subsemilattices of the semilattice

D are the following sets:

zaaaaamzaé
Z

A.ZEAAA;;ZP
2,,2,2,2,2,2,{ %4, %, 4. % ,

s
’4' Z!

Remainder 3 subsets of the semilattize whose every element contains seven
elements is not ax - subsemilattice.

The number all subsets of the semilatbseevery set of which contains eight
elements, is equal to] =1. This set i$7,,7,,2,2, 2,2, 2,0 .

The Lemma is proved.

From the proven lemma it follows that diagrams shaw fig. 2, exhaust all
diagrams of subsemilattices of the semilattice
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WMW@?

8 9 10 11 3 14 15 16
17 19 20 21@23 24 25 26 27 28
Figure 2

Lemma 2.2: Let DOZ,(X,8) and z,#0. Then any subsemilattices of the
semilatticeD having diagrami7- 30 of the figure 2 are nevexl - semilattice.

Proof: Remark, that the all subsemilattices of semilatticavhich has diagrams
of form 17-30 are never Xl -semilattices. For example we consider the
semilattice which has the diagram of the fosm of the figure3 (see diagram
figure 30).

Let D'={z,.2,2,.2.2,2,§ andC(D)={R,R, B, R, R, R B is afamily sets,

where

P.RB.,B.,B, B, R R are pairwise disjoint subsets of the s& and

¢:(g % Z, és Z, % Z7j is a mapping of the semilattice’ onto the family
0 1

or the formal equalities of the semilattmewe have a form:

Z;=ROROR
Z; =R

Figure3

Here the elementg, P, B, R, are basis sources, the elemen®,, P, is sources of
completenes of the semllattm:E . ThereforglX|=3 and, that
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D', if tOP, Z,,if tOP,
z,,0}, if tOR, Z,, if tOP
z,,2, 0}, if tOP, Z,, if tOP,
D;=112,2,2,2, 8, i toR, A(D.D)=1Z,if tOP,
2,.2,,2, 6, if tOP, Z,, it tUPR,
2,,2,2,,2, 8, it tOR, 57’ :]‘: ESE’
2,,2,,2,2,,2, 3 , if tOR, 7 6

We haveD"={z,,Z,Z,Z} and A(D,D)OD for all tOD. But elementz, is not

union of some elements of the €&t’. So, from the Definition 1.2 follows that
semilatticeD’ which has diagram 41 of the figure 3 neveKkis- semilattice.

In the same manner it can be proved that any sulzgoe of the semilatticed
having diagrams 17-30 are never @n- semilattice.

Lemma is proved.

Lemma 2.3: Let DO3,(X,8) and z,z0. Then the following sets are afl-
subsemilattices of the given semilatti2e

1) {2} {2z} {2 {2z} {24 {2} { 4 { D (see diagram 1 of the figure 2);

2) {z;.23{2,.24{2.2}{2.3{2.3{ 2.3{ z.P{ 2.3{ % %
{zs.2} {78 {z.2} {z.4 { %.3{ 252}{25}3 { 2.3 24%,
{z.0}{zzz} {zz0{z0{za0;:

(see diagram 2 of the figure 2);

3) {272624}{272622}{27262}{27

{Z7ZSD} Z7Z4Z;}{Z7Z42}{Z7Z4P{, %z,%.%1 z, v b, Z?} ,
{26202} {2.2,.3 { %.2.9{ %.2.D{ %.2.P{2.2,.2} {%.2. 4 { % 2., D,
{2322} {%.2.0{%.2.0{%2.9{ 2.2.p{ 2.2.p 2.2.p:

(see diagram 3 of the figure 2);

4){2,,26,2,,2}{2,.%,2,.3 { 2.%.2.9{ 2.%.2.P{ 2.% 2.
{2;.25.2,.2} {2.%.2,.3 { 2.%,2.9{ %.%,%.4{ % % %D
{z.25.2,8{2.2,.2.8{2.2.2.9{ 2.2.2.b{ .2.2.p
{262,.2,0} {262, 2.8 { 2.2, 2.8 { z.2.2.D{ . %2, 2.

(see diagram 4 of the figure 2);

8) {220,220 {2.2.2.2.9{ %.%.2.2.p{ 2.2.2.3.0( 2.2 3 z)C
(see diagram 5 of the figure 2);
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6) {27.2.2.24{%.2.2%.4{ %.2.5.3{ 2.2.2P{ 2.2 3)p
{261221211[)} {25’2412311} { 251231221|}>{1 25122121!}:){' 24’2214}[);
(see diagram 6 of the figure 2);

N {z2228{%%2.22{2%%%Pp| 2.2232pP
{27 ,24,22121,D} {2612412:21"-1}’{ 25124122121'}3 ;
(see diagram 7 of the figure 2);

8) {2;.25,24.2,,2.8 { 2,.%:. 2., 2,2, (see diagram 8 of the figure 2);

9) {2;.25.24.2,, 2,8 ; (see diagram 9 of the figure 2);

10) {2,252,,2,,23{2%.%.%.2,3{ 2.%.%.2,P{ 2.2.2 3)p
{27 ,Ze,ZayzlyD} {25’24’23,21-[} ;
(see diagram 10 of the figure 2);

13 {2,.24.2:.2,.2,,.8 { ,.%:.%,.2,,2, D (see diagram 11 of the figure 2);

12) {27.26.25.2,,2.244 { 4.%.%.2.2,9{ %.2.%2.%.3, P 3.%.3, 2 Z|C
(see diagram 12 of the figure 2);

19) {2, .25.2,.2;.2,.%, 1 ; (see diagram 13 of the figure 2);
14) {2;.,2,.25.2,,2,,%,0 (see diagram 14 of the figure 2);
15) {2;.25.Z5.2,.2,.%,1 : (see diagram 15 of the figure 2);

16) {2;.25.25.2,.%.2,,2.,1 : (see diagram 16 of the figure 2);

> o000
© N

11 12 13

Figure4
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Proof: The statements), 2), 3, 4 5) immediately follows from the Theorems
[1] 11.6.1, [2] 11.6.1, the statemen&3, 7)., 9 10 1) immediately follows
from the Theorems [1] 11.6.3, [2] 11.6.3 the staeh12) immediately follows
from the Theorems [1] 11.7.2 and the statemersls immediately follows from
the Theorems [1] 13.11.1.

Now we will proof the statemens). Let D :{27, Zs,2.,2,,2,, 2, Z, VII} where

Z,0Z02,02z00 202020 20 D
z,0202,0200 z0 Z0 20 20 D
Z,02,02,00 0D Z\ Z#0, Z\ z#0,
Z\ 2320, Z;\ 2,20, %\ Z# 0, 4\ Z#0,
Z6025=2, 2,0 Z3= 4, 1 2= D

Let C(D)={R,R,R, R, B, R R B is a family sets, wherer,R

are pairwise disjoint subsets of the setand ¢ :(D 2 2, Z5 2y gs

mapping of the semilattic® onto the family setsc(D). Then for the formal
equalities of the semilattice we have a form:

0RO RORIRI R

RO RO RO A

RO RO RO A

RO RU B

RO R, (2.5)

D, if tOPR,, -
s i,
ZS’Zl'D}’ if :[}D P, Z,, if tOPR,,
- Hze.2,.2,,2, 8, if tOPR, _ |z, if tOPR,
Di=1lz..2,.z,. 0}, if tOP, A(b.b,) = Zz, it tOP,,
26.2,,2,,Z,,Z, B, if tOR, 71 if tOR,,
2..2,.2,,2,, 2, B, if tOPR, Zs' 'I‘; :g';fw
24252425, 2,2, 8, if 0P v &

We haveD”={z,,%,%,2,2}, O(D,0)0OD for all tandz,=2z,02, 2z =207,

D=2z,0Z,. So, from the Definition 1.2 follows that semile¢ D which has
diagram of the figure 4 iXI - semilattice.
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In the same manner it can be proved that any sulzgoe of the semilatticed
having diagrams 13 and 14 are an- semilattice.

Lemma is proved

Corollary 2.1: Let DO3,(X,8) and z,=0. Then the following sets are all
Xl - subsemilattices of the given semilattioce

1) {0} (see diagram 1 of the figure 2);

2) {0z} {Dzd {0z} (0.4 {o.z3 {0 4 {0

(see diagram 2 of the figure 2);

3) {0262 {0.2.2} {0.2.4 {0.2.0{0 .3 {0 .%.3{0 %.3{0 3.%
(0z.0{02.2}{02.3{0 200 2230 250 2 b0 2.

(see diagram 3 of the figure 2);

4){0.25.2,.2} {02522 {0 . 2.2, D {0 .%.2. {0 .%.2.p
{022,z {0.%.2.4{0.%2%{0.%23{0.22p
{pzz0{0zz8{0z20{0z23{0 22

(see diagram 4 of the figure 2);

8) {0.26.2:.2.0 {0.%.2,,2.8 {0 .%.%.2.9{0 .%z.2.2.p{0 .2.2.3.p
(see diagram 5 of the figure 2);

6) {02,224 {0.2.2.2 {0 .2.2.2 {0 .2.2.p{0 .2.3.p
(see diagram 6 of the figure 2);

N {022.2.0{02%2.22}{0 222p0.2223pp 223])
(see diagram 7 of the figure 2);

8) {0.26.2,,.2,,2,.8 {0 .%.2,,2.2., (see diagram 8 of the figure 2);

9) {0.25.2,.2,.2.0 ; (see diagram 9 of the figure 2);

10) {026.25.24,23 {0 25,2, 2.4 {0 .%.%.2.p{0 .2.%.2.p{7 %.2.3.f
(see diagram 10 of the figure 2);

10) {026 .25.2,.2,.§ {0 % .Z,.2,.2. D (see diagram 11 of the figure 2);

12) {0.25.,25,2,,2,,24 {0 .%.%2.2.4, 9 {0 .2.%.%.3,F
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(see diagram 12 of the figure 2);

139) {0.25.2,.2,.2,.2,8 ; (see diagram 13 of the figure 2);
14) {02 .25.2,.2,,2,,0 (see diagram 14 of the figure 2);
15) {0.2¢.25.2,.2,.2,,0 : (see diagram 15 of the figure 2);
16) {025 Z5.2,.25.2,,%,.0 (see diagram 16 of the figure 2);

Proof: This corollary immediately follows from the lemmag.

The corollary is proved.

Theorem 2.1: Let DU5,(X,8), Z,#0 and a0B, (D). Binary relationa is an

idempotent relation of the semigroy (D) iff binary relationa satisfies only
one conditions of the following conditions:

1) a=XxT, whereTOD;

2) a=(%xT)o(¥xT), where T, TOD, TOT, ¥,% O{0}, and satisfies the
conditions:YY OT, Y/ nT 20 ;

3) a=(%xT)O(¥xT)o(¥x T), whereT,T,T0D, TOTOT, ¥, ¥, ¥ 0{0},
and satisfies the conditiony? OT, VY OY OT, Y nT 20, Yo nT 20;

4) a=(yxT)O(¥xT)O( ¥x T)O( ¥x 1), where TT,T,TOL, TOTOTOT,
Y%, ¥, Y 0{0}, and satisfies the conditions:Y OT, Y OYWOT,
YOO OT, Y nT20,Y nT 20, Y. nT"£20;

5) a=(vxz)O(¥x0( ¥x )0( ¥x HO( ;% ), where

z,0TOTOTOD, Y., ¥,¥, ¥, yO{O}, and satisfies the condition¥’ 0 Z,,
YOYOT, YOYOYOT, YOYO¥YOYOT, YnT20, Y nT20,
YinT 20, Y nDz0;

6) a:(YT”’XT)D(\;?XT)D(\ﬁx T)D( Yex( D ”U),Where
TT, 70D, TOT,TOT", T\T'20, T"\T20, ¥.¥, ¥ and satisfies the
conditions:YY OY OT, Y OY OT, ¥ nT20, Y nT20;
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7) a=(y>xT)0(¥ > 1o ¥x )0 Fx YO &, "0 7)), where,TOTOT, TOT OT",
T\T"20, T"\T'20 Y,Y,¥,¥O0 and satisfies the conditionsy OT
YOYOT, YOYOYoT, YOYO¥YOdT YnTz0, YnTzO,
YonT 20.

8) a=(v/x2)0(¥x7)0(¥x 0( ¥x 30 ¥ g0 &), where  THZ.2},
YO, Y, Y, YO{0}  and satisfies the conditions:Y' 0z, Y/ OYOT,
YOYOYOoZ,YoyoyoYyo z Yovoyoyosz Y nTz0, ¥nzz0
Y, nZz0, Y nZ#0,

9) a=(%xz)0(¥*2z)0(¥x z)0( ¥x 20( ¥x 20( % ). where z,0z,0 z,
z,0z,02z,, z,\z,#0, z,\zZ,z0 Y ¥, Y¥.Y¥,¥Y, yo{O} and satisfies the
conditions: YOz, YOY0Oz, YOYOYOZ YOYOYOZ Ynzz0O,
YYnzz0, YYnz=z0, Y nDz0;

10) a=(¥xT)O(¥ x T)O( ¥x T)O( % x( T )O( &< "), whereToT, T O T",
T\T"20, T\T=z0, TOTOT" Y, ¥, ¥ ¥O{OB and satisfies the
conditions: ¥ O¥ O T, YO¥OT, ¥ nT20, Y nT 20, ¥ nT20;

11) a=(¥xz)0(¥*z)0( ¥x 20( ¥x 20( ¥ JO( & ), where
THz,.2z}, Y. X, ¥, Y, y0O0 and satisfies the conditions; 0¥ 07, Y,y OY O Z
YOYOYoOYDYOo ,YnzZ#0,¥nZz0 Y nTz0, Y nDzO;

12) a=(WxT)O(¥xT)0( ¥x T)0( Forx( T B)0( ¥ VO Yoo x('D "D "),
where TOT, TOT", T\T'#0, T'\T=#0O, T'OT", (TOTN©\T" 20,
™\(TOT)20, , ¥.Y¥. ¥, ¥, %.00 and satisfies the conditionsyy O O T,
YOV OT YOYOYOoT, Y nT20, ¥nT20 YInT 20;

19) a=ly2)ol¥x 20 ¥x 30 < 30 3 [ % o %), where

z.0z,, 2,0z, ZzZ\z,#0, Zz\Z,#0, Zz,02, z\z,z0, z,\z=#0,
Y.YX.X. Y. Y ¥ ddd and satisfies the conditions:Yy 0z, YOYOZ
YOYovynoz YoO¥Yoyoz, YoO¥oyoyosz Y¥nzz0 Y,'nZz0,
Y nZz0 Y'nZ#0,

14) o=y <2)olex 2ol ¥ 3 1 gl 3 ol & e ), where
z,0z,, ¥.¥. Y. Y. Y. ¥ &0 and satisfies the condition$:0¥ 0 Z, ¥y OY¥ O Z,
YO¥OYOZ YWnzz20,YnzZ#20,Y ' nZ#0 YV nDz0O;
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18) a={¥xz) o ¥x 2 ¥x 4o 3 4o 3 o 2 e o). where
Y. ¥, Y. Y. Y. ¥d0 and satisfies the conditions, 0¥ 07, YOYOZ,
YOYoYoyoyo z YOYOYOYOYO : YWnzz0, Y'nz=z0O,
Yynz 20 Y nZz0;

16) a=oz) e wx 3 v 3 3¢ 3 3% J{ 2%l o Yo o), where,
Y.X. Y. Y. Y ¥ & odd and satisfies the conditiong’ 0z Y OY OZ, ¥,yOY O Z,
YO¥OYODZ YO¥YOYOYOYO z Ynzz0, YnZz0, Ynzz0,
Y, nZ#0,;

Proof: The statements 1), 2), 3), 4) and 5) immediateljofvs from the
Corollary [1] 13.1.1, [2] 13.1.1, the statementsBl) immediately follows from
the Corollary [1] 13.3.1, [2] 13.3.1, the statemnes) immediately follows from

the Theorem [1] 13.7.2, [2] 13.7.2.

Now we will prove statement 16 ={Z,.2,,2,2,.2,2, 2, to begin with, we

note thatDis an XI-semilattice of unions(see lemma 2.2}Yhen It is easy to
see, that the se&¥(a)={Z,,.Z,,Z,Z, 7, 2, 4 is a generating set of the semilattioe
Then the following equalities are hold:

O(a), ={z}. D(a), ={z.2} . Na), ={ 2.4 . Ya),={ 2.2.%2.3 ,
O(a), ={2,%.2}, Na), =(2,2.2.2,.3 . Ba), ={ 2.2, 2. 2.2,

By statemenb) of the Theorem 1.3 follows that the following céiahs are

true:
V02, ¥0¥03 Y0 Y0 2 ¥0 30 20 70
V0¥ 0¥ 03 Y0 Y0 §0 y0 o0 2
VoY OY¥oYoYo yo z

For last conditions we have:

YOYoYoys=(yo ¥)o( ¥0 %0 &0

07,00 =2020Y= 20 Y0 3
YOYOYoYyoyo y=( ¥o &0 No( 0 50 90 v
0z,0TL0Y0Y=203%0Y0 Y= 2 YO Y0 Z

Since ¢ is isomorphism. Further, it is to see, that tHBWing equality are true:
1(0,,.2)=0(D,, {Zs}) = Z,, Z\I(D,, . Z5) = 2\ 2,2 0;
1(D,,.2,)=0(0,, {z}) = Z,, Z\I(D,,.Z,) = z,\ 2,2 0;
1(0,,.2,)=0(5,, {z.})=0{z,. 2., 2} = 2, Z\(D,.2)= Z\ Z=0;
(8,,2,)=0(0, {z})=0{Z,. 2} = 2, Z\((D,.2)= Z\ Z#D0;
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1(B,,.2,)=0(5,, \{2})=0{2,.2,, .2} = Z, 2\ (D, .2)= 2\ 2z D;
1(B,,.2,)=0(0, {2})=0{Z,, 2, 2. 2. 2} = 2. 2\ (,. Z)= Z\ Z=0

We have the elementg,,z,,z, and z, are nonlimiting elements of the sets
B(a),, B(a),, B(a), andB(a), respectively. By statement) of the Theorem

1.1.3 it follows, that the conditions’nz =0, Y'nZ#0, Y nZ#0 and
Yo nz 20 are hold.

z; ! Zy

Therefore the following conditions are hold:

Y0z, YoyYoz Yoyo z
Y OYwOY oz YO Y0 y0 Y0 Y0 2 (2.11)
YYnZ#0, ¥ n Z£z0, ¥'n Zz0, ¥Yn Zz0O.

In the same manner it can be proved that any sulzgoe of the semilatticed
having diagrams 13 and 14.

Theorem is proved.

Corollary 2.2: Let DO2,(X,8), Z,=0 and a0B, (D). Binary relationa is an
idempotent relation of the semigrous (D) iff binary relation « satisfies only
one conditions of the following conditions:

1) a=0;

2) a=(Yy*x0)O(¥xT), whereO#TOD, ¥ 0{0}, and satisfies the conditions:
Y oo, YinT#0;

3 a=(%x0)O(WxT)o(¥x T), whereD#TOT'OD, ¥, ¥ O{0}, and satisfies
the conditionsy, 00, VY OY O T, Y nT20,Y nT£0;

4) a=(Y=0)0(¥xT)O(¥ > 7)0( ¥x 1), where
D£TO0TOTOD, Y,¥,¥0{0O}, and satisfies the conditionsy’ 00,
YOV OT, Y OYOYOT, Y nT20,Y nT20,YnT20;

5) &= x0) o x o ¥ 13( x 9o( s . where

D£TO0TOTOD, Y, ¥, ¥, ¥Y0O{O}, and satisfies the conditionsty 00,
YYOYWOT, YOYOYOT, YOYOYOoYoT, Y¥nT£0, YinTz0,
YonT 20, Y nDz0;

6) a={r <)o <0 ¥x G £, x( D 1), where
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DT, 70D, T\Tz0, T\T'20, Y, ¥0O{O} and satisfies the conditions:
YOV OT, YO OT, Y¥nT20, Y nT20;

7) a=(yx0)0(¥xT0( ¥x YO ¥x VO( %X D 1), where, 0=TOT, O2TOT,
TA\T" 20, T"\T'20 ¥.¥,¥OO and satisfies the conditionsr 00 v Oy OT,
YOV OYOT, YOWOYOT YaT20,Y nT20,YnT20.

6) a=(x2)o(¥x90( ¥x 2)o( ¥x 4o 3¢ Jo( 3w ) where

THZ.z}, Y., ¥,YO{O} and satisfies the conditions,” 00, vyoOy OT,
YOYoY oz, YOvYoyoYyoz YOYoYyoYyoz Y aT£0, YnzZz0
2022¢D,Y1‘7’021¢D,

9) a=(Vxz)0(¥x2z)0(¥x z)0( ¥x 20( ¥x F0( % L, where D%z 0z,
0#z,0z,, Z,\z,#0, z\zZ,z0 Y.Y.¥,Y,¢0{0} and satisfies the
conditions: v 00O, YOYOZ, YO¥YOYODZ YOYOYODZ Ynz#0O,
YnzZ 20, YYnzz0, Y nDz0O;

10) a=(Yx0) (¥ xT)o( ¥ x 7)0( ¥ x( T 9)0( ¥x 7, where,
O=7T,T", T\T'20, T\T#£0, TOTOT Y, ¥, ¥O{0O} and satisfies the
conditions:y" OV O T, YOY OT, ¥ nT20, Y nT 20, YInT =20,

1) a=(x0)(¥x2)0( ¥x 0 ¥x 40( 4 Jo{ 55 ), where
THz,z}, ¥.¥.¥.y04 and satisfies the conditionsyy 0¥ 0z, VY OY O z
YYOYOYOYOYOD L,Ynz#0,¥YnZz0 Y nT20, Y nDz0;

12) a=(¥x0) 0(¥ < )O( ¥x 1)O( Lox( T )0 3 FO( Meoex( T W ),
where, 07,7, T\T'#0, T\Tz20, TOT", (TOT)\T=z0, T\(TOT)=0, ,
Y. Y. ¥, ¥.00 and satisfies the conditions:yy oy oOT, v oyoT
YOY OV OT,YnT20,¥nT20 YInT 20;

19) a=(wx0)0(¥xZ)0( Yx 20 ¥x 30( ¥ 70( % J ), where

z.0z, 202, zZ\Z,#0, Z\zZ#0, z,0Z,, Z\z#0, Z\zZ#O, ,
¥.Y. Y. Y. Y ¥d0 and satisfies the conditions:yy 00, Y OvYOz
YOYoYoz YOYOoYOoz, YOYOYOYOZ Ynzzd, YYnZzz0O,
Yy nZz0 Y nZ %0,

14) a=(v'x0)0(¥xz)0( ¥x 20 v 200 ¥ 7 % [ ), where,
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z,02z,, ¥.X.Y.Y. ¥ ydO0 and satisfies the conditionss 0y 0z, YYOY O Z,
Y OYOY Oz, ¥Wnzz0,Y'nzZ#20,Y nZ#0 Y nDz0O;

15) a=(¥'x0) 0¥ xz)0( ¥x Z0( ¥x 20( 9 #0( % J( %), where

YO ¥, Y, Y, YO{O} and satisfies the conditonsy'0y 0z, YOYUOZ,
YOYOYoYoyYOo Z, YOYO¥YOoOYODYOo z Ynzz0, Y nz=z0,
Y nzZ#0 Y nz#0,;

16) eyl el 9 3cf < 4 3¢ & 9 ] ), where,

z0z, Y.X.Y.Y. ¥ ¥ &0 and satisfies the conditionsy 0z Y 0OY O 3z,
YoyYoz, YO¥YoYoDz YOoOYoYyoyoyosz Y nzz#z0, Ynz#0,
YnzZz0,Y'nZ#0;

Proof: This corollary immediately follows from the theor&m.
The corollary is proved.

Lemma 3.1: The number of automorphisms of those semilattiedsch are
defined by the diagrams 1), 2), 3), 4), 5), 12), 13) and 16) in fig. 2 is equal to
1, those semilattices which are defined diagrams5)8), 9), 10) and 11) in fig.
2 is equal to 2 and that semilattice which is wiedi by the diagram 15) in fig. 2 is
equal to 4.

Proof: Let us prove the given lemma in case of the sémeawhich is defined
by the diagram 16) in fig. 2. The proofs of theasthases are almost identical of
the ongoing one.

Fig. 5

Suppos® ={T,. ... T, T. . T. § (see fig. 5). Our purpose is to prove that the
number of automorphisms of the given semilattize is equal to 1. Indeed, if
T(n.m) denote the element of the semilatticey such thatn =|q. |, m =|Q|(see
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(1.1)) andyg is arbitrary automorphism of the semilattioe then¢(T,) =T, only if
n=nandm=m,i.e. (ni,m):(r],rrja).

For the semilattic& we have:

To=To(L8), T,=T,(2,6), T, =T,(2,5, T, =T4(3,3),
T,=T4(44), T5=T5(6.2), Ts=Ts(5.2), T, =T5(8,9),

So, we havep(T;) =T for everyi=0,1,2,...¢ becausdn,m)=(n, m) equality is
satisfied if and only if whem=j.

Therefore the number of automorphisms of the gaemilatticeQ is equal to 1.

Lemma is proved.

Denote by the symbot, (Dg) a maximal subgroup of the semigrou (D)
whose unit is an idempotent binary relatiorof the semigroufs, (D).

Theorem 3.1: For any idempotent binary relatioa of the semigroups, (D),
the order a subgrougs, (D,¢) of the semigrougs, (D) is one, or two, or four.

Proof: Let € be an arbitrary binary relation of the semigragig D) . Now, if we
denote bye the group of all complete automorphisms of theikstite V(D,¢),
then by virtue of Theorem 1.3. We have that theigsas, (D,£) and @ are anti-
isomorphic.

To prove the theorem, we will consider the follogiinases with regard to the
idempotent binary relation:

1) The idempotent binary relatione satisfies the conditions
1),2,3,4,.5%,1p, 133, ) and 16)of the Theorem 2.1 and theorem

2.2., then the diagram of the semilatticgD,¢) has form 1, 2, 3, 4, 5, 12,

13, 14 and 16 in Fig. 2. Therefore in this case thenber of
automorphisms of the semilattisg D, ¢) is equal to one (see Lemma 3.1).

Now, taking into account Theorem 1.3, we obtain(D,s)| =1.

2) The idempotent binary relation satisfies the conditions), 7), § , 9), 10

and 11) of the Theorem 2.1 and theorem 2.2. Sotlleatliagram of the
emilattice V(D,¢) has form 6-11 in Fig. 2. Therefore in this case th

number of automorphisms of the semilatticgD,¢) is equal to two (see



Maximal Subgroups of the Semigroup(B)... 89

3)

Lemma 3.1). Now, taking into account Theorem 1.3g¢ wbtain
6. (D) =2

The idempotent binary relation is of typ®) so that the number of
automorphisms of the semilattisg D, ) has form 15 in Fig. 2. Clearly, in
this case the number of automorphisns of the s#indav(D,¢) is four

(see Lemma 3.1). Now, taking into account Theote) we obtain
|G, (D.g)| = 4.

Since the diagrams shown in Fig. 2 exhaust all thagrams of the
XI - subsemilattices of the semilattiace, the idempotent binary relations of the
semigroupB, (D) are exhausted by types 1-16 from Theorem 2.1 @hdorem

2.2. Hence it follows that for any idempotentof the semigroups, (D), the
order a subgrougs, (D,¢) of the semigrougs, (D) is one, or two, or four.

References

[1]
[2]
[3]

[4]

[5]

[6]
[7]

Ya. Diasamidze and Sh. Makharadfzymplete Semigroups of Binary
Relations Monograph, Kriter, Turkey, (2013), 1-520.

Ya. Diasamidze and Sh. Makharadfzymplete Semigroups of Binary
Relations Monograph M., Sputnik+, (2010), 657 (Russian).

Ya. |. Diasamidze, Complete semigroups of binatgti@ns, Journal of
Mathematical SciencePlenum Publ. Cor., New York, 117(4) (2003),
4271-43109.

Ya. Diasamidze and Sh. Makharadze, Maximal subgroafpcomplete
semigroups of binary relationBroc. A. Razmadze Math. Inst31(2003),
21-38.

Ya. Diasamidze, Sh. Makharadze and |. Diasamiddempotents and
regular elements of complete semigroups of binatstions,Journal of
Mathematical SciencePlenum Publ. Cor., New York, 153(4) (2008),
481-499.

Ya. Diasamidze, Sh. Makharadze and N. Rokva, XDn semilattices of
union,Bull. Georg. Nation. Acad. Sck(1) (2008), 16-24.

G. Tavdgiridze, Ya. Diasamidze and O. Givradzemigdetent elements of
the semigroupss, (D) defined by semittices of the clagg(X,8), when

z,#0, (To appea).



