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Abstract
In this paper, we have given two theorems for |A, p,; 8|, summability which
generalize recent theorems on |A,py|, summability. Study also reveals many
factor theorems for other summability methods.
Keywords: Absolute matrix summability, quasi power increasing sequences,
infinite series.

1 Introduction

A positive sequence (7,) is said to be quasi S-power increasing sequence if
there exists a constant K = K(3,v) > 1 such that Kn®v, > mP,, holds for
all n > m > 1 (see [4]). A sequence ()\,) is said to be of bounded variation,
denote by (A\,) € BV, if 300 |AN, ]| = 300 [ A — Aus1] < o0

Let Y a, be a given infinite series with the partial sums (s,) and let
A = (any) be a normal matrix, i.e., a lower triangular matrix of nonzero diago-
nal entries. Then A defines the sequence-to-sequence transformation, mapping
the sequence s = (s,) to As = (A,(s)), where

An(s) =D anysy, n=0,1,... (1)
v=0
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The series ) a, is said to be summable |A],, k > 1, if (see [9])

o

Z AA,(s)F < oo, (2)

where
AA,(5) = An(s) — An_1(s).

Let (p,) be a sequence of positive numbers such that

Pnzzpvéoo as n — oo, (sz:p—z:(),121) (3)
v=0

The series Y- a,, is said to be summable |A, p,|,, k > 1, if (see [8])

0o k—1
> (Z‘) [AA,(s)]" < oo, (4)

The series Y- a, is said to be summable |A,d],, k > 1, if (see [7])

o0

S nFEAA, (s)]F < oo (5)

and it is said to be summable |A, p,;6|,, k > 1 and § > 0, if (see [5])

o Sk+k—1
> (%) ank <o ©)

In the special case when p,, = 1, |A, p,;d|, summability is the same as |A, J],
summability. Also if we take 6 = 0, then |A, p,; §|, summability is the same as

|A, pp|,, summability. Finally, when a,,, = %Z the method reduces to ‘N  Pni O i

summability method (see [3]) and when a,,, = 2=, 0 = 0it reduces to ’N , pn‘k
summability method (see [1]).

Now, we will introduce some further notations necessary for our main the-
orems.
Given a normal matrix A = (a,,), we associate two lower semimatrices A=

(Gny) and A= (Gny) as follows:
7. :Zam, n,v=0,1,... (7)

and

ago = Qgp = Ao, COpy = Gpy — Ap—1,, N =1,2,.. (8)
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It may be noted that A and A are the well-known matrices of series-to-sequence
and series-to-series transformations, respectively. Then, we have

An(s) — Z AnySy = Z anvav (9)
v=0 v=0
and

AA,(s) = Z Ay Oy - (10)
v=0

2 Main Result

In [6], Ozarslan and Yavuz have proved two theorems for |A, Pnl, summability
method by using quasi S-power increasing sequences. The aim of this paper
is to generalize their theorems to |A, p,;d|, summability. Now, we state our
main theorems.

Theorem 2.1 Let A = (ay,) be a positive normal matriz such that

=1 mn=0,1,.. (11)

Un—1p > Qpy, for n>v+1, (12)

o = O (?;) , (13)

m+1 P ok P 0k—1
Z <pn> |Ayan,| = O { (;) ) (14)
n=v+1 n v

m+1 Pn ok Pv ok
Z () |Gnpi1] = O { () (15)
n=v+1 Dn Py
and let there be sequences (f3,) and (\,) such that

(An) € BV, (16)
AN < B, (17)

Bn =0 as n— oo, (18)
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> n|ABL| X, < oo, (19)
n=1
IAn| X =0O(1) as n— oo, (20)

where (X)) is a quasi B-power increasing sequence for some 0 < f < 1.

If
> (5 ) I _ox,), (o1)

Py v

m (P Sk—1
> (;) 50" = O(Xi), m — o0, (22)
n=1 n

then Y- an A, is summable |A, py; 0|, , k>1 and 0 < § < 1/k.
Theorem 2.2 Let conditions (11)-(20) and (22) of Theorem 2.1 be satis-
fied. If

n=1

5k’ ‘k
(2 o, 1)

then Y- apAy, is summable |A,py; 0], k> 1 and 0 <0 < 1/k.

We need following lemmas for the proof of our theorems.

Lemma 2.3 (see [/]). Let (X,,) be a quasi B-power increasing sequence for
some 0 < f < 1. If conditions (18) and (19) are satisfied, then

nX, 0, =0(1) as n — oo, (25)
i X0 < 0. (26)
n=1

Lemma 2.4 Let (X,,) be a quasi B-power increasing sequence for some
0 < B < 1. If conditions (18) and (23) are satisfied, then

ipnﬁan < 00. (28)
n=1

The proof of Lemma 2.4 is similar to that of Bor in [2] and hence omitted.
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3 Proof of Theorem 2.1

Let (7,) denotes A-transform of the series Y a,\,.

Then, by (9), (10) and

applying Abel’s transformation we have

n
AT, = 3 antsh
v=1
n—1 v n
= Z Av (anv/\v) Z ay + ann)‘n Z Gy
v=1 k=1 v=1
n—1
- Z (anv/\v - an,v+1/\v+1) Sy + annAnSn
v=1
n—1
= Z (dnv)\v - &n,v+1/\v+1 - &n,v—‘rl)\v + dn,v—i—l)\v) Sy + ann)\nsn
v=1
n—1 n—1
= Z Av(dnv>>\v5v + Z dn,’qulA)\vSv + ann>\n5n
v=1 v=1
= Tn,l + Tn,Z + Tn,S say.
Since

[Tt + Tz + Tosl® < 3% (|10 |F + Tal® + Toglt),

to complete the proof of Theorem 2.1, it is sufficient to show that

ST (Bo/pa) T F < 00, for 7 =1,2,3.
n=1

Firstly, applying Holder’s
&+ =1, we get that

m41 P 0k+k—1
n=2 Prn

(29)

inequality with indices k& and k', where k& > 1 and

IA

mtl /p \TRHR=L k
3 () (Z |Avam||xv||sv|)

n=2 Pn v=1
m+1 P Ok+k—1 /p—1

0n)'S (p) (Z \Avammv\k\svrk)
n=2 n v=1

n—1 k-1
X (Z |Av&nv|>
v=1
m—+1 P 6k /n—1
O(1) Z (p) <Z |Av&nv|’)‘v|k’3v|k>

n=2 n v=1

m L N m—+1 Pn ok A
O3 st S () Ay

v=1 n=v+1 n
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by virtue of the hypotheses of Theorem 2.1 and Lemma 2.3. Since ()\,) € BY
by (16), applying Holder’s inequality with the same indices above, we have

Ok+k—1
) Tl

m+1

>

n=2

¢

b,

n

<

<(Z a0l

Hikmet Seyhan Ozarslan et al.

v:l r=1

m—1
1) Y BuXy + O(1)| A | X
_ O(l) v=

b,

Pn

v=1

o)

o)

(D)D" Bulsol® >

v=

1

oy

v=1

oy

<

3
[

<

3

v

—

1

—_

[y

sy

as m — 00,

n—1

k
5 |AAU||an,v+1||sv|)

Ok+k—1 _
) <v:1

Ok+k—1 /p_1
P, .
() (Z A G [2]*
Pn

m+1

n=v+1

(if’:):
()
(vBy) 2
won 3 G

A(vfy) Xy

k
|50]% B,
k

|3v|k

(e
)

v=1

g

m+1 ok n—1
0 S (L) (S i) « (L1801

Pn ok X
’an,v+1|
Pn

(vBy)

) EXk

O()mfB, X

)

k—

1
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m—1

m—1
= 0(1) Z v|AB| Xy + O(1) Z Bot1Xvt1
v=1

v=1
+ O()mfpn Xm
= O(1) as m— oo,

by virtue of the hypotheses of Theorem 2.1 and Lemma 2.3.
Finally, by following the similar process as that in 7}, ; we have that

ok+k—1 ok+k—1
n=1 n

n=1 Pn
m_/ p \Pk=1
= O(l)Z(;) Allsnl® =0(1) as m — oco.
n=1 n

So, we get
Z (Pn/pn)ékJrkil ‘Tn,r|k < 00, fOff’ r = 1, 2, 3.
n=1

This completes the proof of Theorem 2.1.

4 Proof of Theorem 2.2

Using Lemma 2.4 and proceeding as that in the proof of Theorem 2.1, replac-
ing >, (P, /py) |08, by Soory (P,/p,)°* % (6,P,) we can easily prove
Theorem 2.2.

5 Conclusion

We have proved theorems dealing with |A, p,; [, summability factors of infi-
nite series. In these theorems, if we take p, = 1 then we have two new results
dealing with |A,d|r summability factors of infinite series. Also, if we take
any = $-, then we have another two new results concerning |N, pp; 8| summa-
bility. Finally, when (X,,) is taken as almost increasing sequence, new factor
theorems for | A, p,; d|; summability are obtained.
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