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Abstract 

     The effect of boundary roughness on Rayleigh-Taylor instability (RTI) of a 
couple–stress fluid layer bounded above a clear fluid and below by a rigid 
surface with roughness boundary is studied using linear stability analysis. 
Because of the growing importance of non-Newtonian fluids (Couple-stress fluid) 
in modern technology and industries as well as various practical applications 
investigations on such fluids are desirable. An expression for the growth rate of 
RTI is derived using suitable boundary and surface conditions in addition to 
couple-stress boundary conditions. From this it is clear that the effects of couple-
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stress parameter, roughness parameter and bond number play a significant role 
in maintaining the stability on the two fluid system.  

Keywords: Rayleigh-Taylor instability (RTI), couple-stress fluid, surface 
roughness.      

 
1 Introduction 
 
The Rayleigh-Taylor Instability (RTI) occurs when a heavy fluid is supported by a 
lighter one in a gravitational or equivalently, when a heavy fluid is accelerated by 
a lighter one. Similar to pouring of water into a oil, the heavier fluid, once 
perturbed, streams to the bottom, pushing the light fluid aside. This notion for a 
fluid in a gravitational fluid was first discovered by Lord Rayleigh [1] and later 
applied to all accelerated fluids by Sir Geoffrey Taylor [2]. He RTI has been 
addressed in several studies owing to its importance in science, engineering and 
technology. RTI in hydrodynamics and magnetohydrodynamics has been 
extensively investigated (see Chandrashekar [3]). Bhatia [4] has studied the 
stability of a plane interface separating two incompressible superposed conducting 
fluids of uniform density, when the whole system is under the influence of a 
uniform magnetic field. He has carried out the stability analysis of two highly 
viscous fluids of equal kinematic viscosity and different uniform densities. RTI of 
two viscoelastic (Oldroyd) superposed fluds have been studied by Sharma and 
Sharma [5].  
 
Nevertheless, much attention has not been given in the literature to the study of 
RTI in a poorly conducting non-Newtonian fluid like Couple stress fluid with the 
effect of surface roughness that in spite of frequently occurring in many 
engineering and physical situations namely, inertial fusion energy (IFE), 
geophysics and supernova, the consideration of such fluids is desirable. The 
couple-stress effects are considered as result of the action of one part of a 
deforming body on its neighbourhood. Stokes [6] has formulated the theory of a 
couple-stress fluid. The theory of Stokes [6] allows for the polar effects such as 
the presence of couple-stresses and body couples and has been applied to the 
study of some simple lubrication problems(see Sinha et al. [7], Bujurke and 
Jayaraman [8]). According to Stokes [6], couple-stresses appear in fluids with 
very high molecules. Since the long chain hylauronic acid molecules are found as 
additives in synovial fluids, Walicki and Walicka [9] modeled synovial fluid as 
couple-stress fluid in human joints. The presence of small amounts of additives in 
a lubricant can improve the bearing performance by increasing the lubricant 
viscosity and thus producing an increase in the load capacity. This additive in a 
lubricant also reduces the coefficient of friction and increases the temperature 
range in which bearing can operate. Later Rudraiah et al., [10] have studied the 
RTI in a non-Newtonian (power-law) fluid layer. The RTI of two superposed 
infinitely conducting couple-stress fluids of uniform densities in a porous medium 
in the presence of a uniform magnetic field by Sunil et al., [11]. Recently, 
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Rudraiah et al., [12] have studied the electro hydrodynamic RTI in a couple-stress 
fluid layer bounded above by porous layer. It is clear notice that the profound 
effect of surface roughness with couple-stress fluid in region -1 with proper 
choice of couple-stress parameter and roughness parameter in reducing the 
asymmetry of the two fluid composite systems at the interface. 
 
Keeping in mind the importance of non-Newtonian(couple-stress) fluids in 
modern technology and industries as well as various applications mentioned 
above, the  RTI in a poorly conducting couple-stress fluid layer bounded above by 
a clear fluid with the effect of boundary roughness(surface roughness condition at 
the boundary formulated by  Miksis and Devis [13] in this paper.  The plan of this 
paper is as follows. The mathematical formulation subjected to the boundary and 
surface conditions is given in Section 2. The expression for the dispersion relation 
is derived using the basic equations with boundary and surface conditions in 
section 3. The cutoff and maximum wave numbers and the corresponding 
maximum growth rate are also obtained in section 4 and some important 
conclusions are drawn in final section of this paper.  
 

2 Mathematical Formulation 
 

 

Fig. 1: Physical configuration 
 
The physical configuration is shown in Fig.1. It consists of a thin target shell in 
the form of a thin film of unperturbed thickness h (region 1) filled with an 
incompressible, viscous, poorly electrically conducting light couple-stress fluid of 
density 1ρ  bounded below by a rough rigid surface at y=0 and above by dense 

incompressible, viscous poorly conducting clear fluid of density 2ρ  of large 
extent compared to the shell thickness h. The fluid in the thin film is set in motion 
by acceleration normal to the interface whereas in the clear fluid it is assumed to 
be static and small perturbations are amplified when acceleration is directed from 
the lighter fluid in the thin film to the heavy clear fluid above the interface. This 
instability at the interface by definition of Rayleigh-Taylor instability (ERTI). To 
investigate this RTI, we consider a rectangular coordinate system (x, y) with the x-
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axis parallel to the film and y-axis normal to it. The interface between the clear 
fluid and thin film (couple stress fluid) is described by ( , )x tη  as the perturbed 
interface between two fluids in regions -1 and 2, where region-2 is a region of 
dense liquid and region-1 is a region of light couple stress liquid.   
 
To investigate the problems posed in the paper the following combined 
lubrication and Stokes approximations are used. 
 
(i) The clear dense liquid is homogeneous and isotropic. 
(ii) The film thickness h is much smaller than the thickness H of the porous 

layer bounded above the film.  That is, h < < H. 
(iii) The Strouhal number S is assumed to be negligibly small.  
(iv) The surface elevation η is assumed to be small compared to film thickness 

h. That is,  η < < h.       
(v) Nonuniform polarization and electric charge injection are negligible.   
(vi)  The fluid viscosity and thermal conductivity are assumed to be constants.  
 
Following these assumptions and approximations, the basic equations are 
  

0=⋅∇ q
�

        (2.1) 

( ) 2 4
. p

q
q q q q

t
ρ µ λ∇ + ∇ ∇
 ∂ + ∇ = − − 

∂ 

�
� � � �

     (2.2) 

[ ]0 01 ( )h C Cσ σ α= + −                             (2.3) 

 
where ( , )q u v=� the fluid velocity, λ  the couple-stress parameter, eε  the 

dielectric constant, p the pressure, C the concentration, 0σ  the electrical 

conductivity at the reference concentration C0, αh is the volumetric expansion 
coefficient of σ , µ  the fluid viscosity andρ  the fluid density.  
 
Let us non-dimensionalize the equations using  

2 2
, , , ,

/ /

x y u v p
x y u v p

h h h h hδ µ δ µ δ
∗ ∗ ∗ ∗ ∗= = = = =      (2.4) 

Following the assumptions and approximations as stated above (i.e., Stokes and 
lubrication approximations), assuming that the heavy fluid in the porous layer is 
almost static because of creeping flow approximation and substituting Eq.(2.4) 
into Eqs.(2.1) and (2.2), we obtain (after neglecting the asterisks for simplicity) 
   

0
u v

x y
=

∂ ∂
+∂ ∂

                    (2.5) 
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0
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∂
= − ∂             (2.7) 

where 2
0 /M hλ µ=  is the couple-stress parameter. 

 

3 Dispersion Relation 
 
To find the dispersion relation, first we have to find the velocity distribution from 
Eq. (2.6) using the following boundary and surface conditions in addition to 
couple-stress boundary conditions.   
 
(i) Roughness condition 

0at
u

u y
y

β ∂− = =
∂        (3.1) 

(ii) no-shear condition: 

0 1at y
u

y
= =

∂
∂             (3.2) 

(iii)  Couple-stress conditions: 

         
2

2
0 0 & 1

u
at y

y

∂ = =
∂

       (3.3) 

(iv) Kinematic condition: v
t

η∂
= ∂    at   y =1           (3.4) 

(v)  Dynamic condition:       
2

2

1
p

B x

η
η

∂
= − −

∂
  at   y =1.      (3.5) 

Where 2 /B hδ γ=  is the Bond number, β  is the roughness parameter and 
( , , )x y tη η= is the elevation of the interface. 

 
The solution of (2.6) subject to the above conditions is 
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After integrating Eq. (2.5) with respect to y between y = 0 and 1 and using 
Eq.(3.6), we get    

     
1 2

1 2
0

(1)
u p

v v dy N
x x

∂ ∂= = − =
∂ ∂∫                   (3.7) 

Where  
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Then Eq. (3.4), using Eqs. (3.5) and (3.7), becomes    

2 4

2 4

1
N

t Bx x

η η η∂ ∂ ∂
= − +∂ ∂ ∂

 
 
 

.                           (3.8) 

To investigate the growth rate, n, of the periodic perturbation of the interface, we 
look for the solution of Eq. (3.8) in the form 
 
           ( )exp{ }y i x ntη η= +ℓ         (3.9) 

where ℓ  is the wave number and ( )yη is the amplitude of perturbation of the 
interface.  
 
Substituting Eq. (3.9) into Eq.(3.8), we obtain the dispersion relation in the form 
 

22
1n

B
N= −

 
 
 

ℓ
ℓ .                             (3.10) 

In the absence of couple-stress parameters, that is 0 0M → , the growth rate given 

by Eq.(3.10) reduces to 
b

n . Now the dispersion formula can be expressed in the 

form  

b a
n n vβ= − ℓ                      (3.11) 
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Setting n = 0 in Eq.(3.10), we obtain the cut-off wavenumber, ctℓ  in the form  

ct
B=ℓ .          (3.12) 

The maximum wave number, mℓ  obtained from Eq.(3.10) by setting / 0n∂ ∂ =ℓ  

is   

22
ct

m

B
= =ℓ

ℓ
.                    (3.13) 

The corresponding maximum growth rate, nm for applied voltage opposing gravity 
is  

    
4m

n
B

N= .                             (3.14) 

Similarly, using   / 2m B=ℓ ,   we obtain   

      bm
B

n =
12

.         (3.15) 

Therefore, 

                                      3m
m

bm
G

n
N

n
= = .        (3.16) 

 
The growth rate given by Equation (3.10) is computed numerically for different 
values of parameters and the results are presented graphically in Figures 2-4.  
 

4 Results and Discussion  
 
In this study we have shown the effect of boundary roughness on RTI in couple-
stress fluid above by a clear dense fluid and below by rigid rough surface. 
Numerical calculations were performed to determine the growth rate at different 
wave numbers for various fluid properties like couple stress parameter M0, Bond 
number B and roughness parameterβ . We have plotted the dimensionless growth 
rate of the perturbation against the dimensionless wavenumber for some of the 
cases only.  
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Figure 2: Growth rate, n versus the wavenumber, ℓ  for different values 

of couple stress parameter, M0 when B = 0.02 and
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Figure 3: Growth rate, n versus the wavenumber, ℓ  for different values of 

Bond number B when M0 =0.3 and 
3

3.3 10β
−

= ×  
 



74                                                                                 Krishna B. Chavaraddi et al. 

 

0 .0 0 0 .0 5 0 .1 0 0 .1 5

-0 .0 0 4

-0 .0 0 2

0 .0 0 0

0 .0 0 2

0 .0 0 4

0 .0 0 6

0 .0 0 8

n

ℓ

0 .5

0 .3 3

0 .0 3 3

β  = 0

 

Figure 4: Growth rate, n versus the wavenumber, ℓ  for different values of 
Roughness parameter, β  when B = 0.02 and M0=0.3 

 
When we fix all the input parameters except the ratio of the Hartmann number M, 
we find that the higher the couple –stress parameter the more stable the interface 
is. In Figure 2, we have plotted the growth rate against the wavenumber in the 

case where B = 0.02 and
3

3.3 10β
−

= × for different values of the couple-stress 
parameter M0. Increasing the couple-stress ratio results in slightly increasing the 
critical wavenumber and decreasing the maximum growth rate this is because of 
the action of the body couples on the system. Thus it has a stabilizing effect for 
the selected values of input parameters due to the increased in couple-stress 
parameter.  
 
In addition, we have investigated the effect of the surface tension of the fluid on 
the instability of the interface.  In our sample calculations, we have taken M0 =0.3 

and 
3

3.3 10β
−

= ×  and varied the Bond number B. For this input parameters, 
the critical   wavenumber and maximum growth rate decreased as the ratio of the 
Bond number B decreased from 0.4 to 0.1 as observed in Figure 3. The Bond 
number is reciprocal of surface tension and thus showing that an increase in 
surface tension decreases the growth rate and hence make the interface more 
stable. 
 
However, in order to understand the effect of surface roughness properties on the 
instability, we now fix values of other parameters B = 0.02 and M0=0.3 and vary 
the ratios of the roughness parameterβ .  We note that an increase in surface 
roughness parameter decreases the growth rate of the interface; this is because the 
resistance offered by the surface roughness should be overcome, in that process a 
part of kinetic energy is converted into potential energy. Hence the effect of 
surface roughness is to reduce the growth rate of the interface and hence to make 
the system stable. 
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