

Gen. Math. Notes, Vol. 16, No. 2, June, 2013, pp.83-92 ISSN 2219-7184; Copyright ©ICSRS Publication, 2013 www.i-csrs.org Available free online at http://www.geman.in

On a Subclass of Harmonic Univalent Functions Based on a Generalized Operator

Andreea-Elena Tudor

Department of Mathematics, "Babeş-Bolyai" University 1 Kogălniceanu Street, 400084 Cluj-Napoca, Romania E-mail: tudor_andreea_elena@yahoo.com

(Received: 11-3-13 / Accepted: 22-4-13)

Abstract

In this paper, using the operator $\mathcal{L}(n,l,m,\alpha)$ studied in [7], we introduce a subclass of harmonic univalent and sense preserving functions for which we obtain coefficient conditions, extreme points, distortion bounds and inclusion results.

Keywords: Harmonic univalent functions, derivative operator, distorsion bounds, convolution.

1 Introduction

We denote by $S_{\mathcal{H}}$ the family of functions $f = h + \overline{g}$ where

$$h(z) = z + \sum_{k=2}^{\infty} a_k z^k$$
 and $g(z) = \sum_{k=1}^{\infty} b_k z^k$, $|b_1| < 1$, (1)

which are harmonic, univalent and sence preserving in the open unit disk, so that f is normalized by $f(0) = h(0) = f_z(0) - 1 = 0$. Then

$$f(z) = z + \sum_{k=2}^{\infty} a_k z^k + \overline{\sum_{k=1}^{\infty} b_k z^k}, \quad |b_1| < 1.$$
 (2)

We note that the family $S_{\mathcal{H}}$ reduces to the well known class S of normalized univalent functions if the co-analytic part of $f = h + \overline{g}$ is identically zero

 $(g \equiv 0)$. Silverman [6] introduced the subclass of $\mathcal{S}_{\mathcal{H}}$, denoted by $\mathcal{S}_{\overline{\mathcal{H}}}$, which contains functions of the form $f = h + \overline{g}$ where

$$h(z) = z - \sum_{k=2}^{\infty} |a_k| z^k$$
 and $g(z) = \sum_{k=1}^{\infty} |b_k| z^k$, $|b_1| < 1$. (3)

If $f = h + \overline{g}$, where h and g are of the form (3), and $F = H + \overline{G}$ where

$$H(z) = z - \sum_{k=2}^{\infty} |U_k| z^k$$
 and $G(z) = \sum_{k=1}^{\infty} |V_k| z^k$,

then the convolution product of f and F is given by

$$f(z) * F(z) = z - \sum_{k=2}^{\infty} |a_k| |U_k| z^k + \sum_{k=1}^{\infty} |b_k| |V_k| \overline{z}^k, |b_1| < 1.$$

In [7] was introduced the operator $\mathcal{L}(n,l,a,c,\alpha)$ for analytic functions defined by

$$\mathcal{L}(n,l,a,c,\alpha)f(z) = z + \sum_{k=2}^{\infty} \left[\alpha \left(\frac{l+k}{l+1} \right)^n + (1-\alpha) \frac{(a)_{k-1}}{(c)_{k-1}} \right] a_k z^k,$$

where $n, l, a \in \mathbb{N}$, $\alpha \in [0, 1)$, $c \neq 0, -1, -2, \ldots$ and $(x)_k$ the Pochhammer symbol given by

$$(x)_k := \begin{cases} 1, & k = 0 \\ x(x+1)(x+2)...(x+k-1), & k \in \mathbb{N}^* \end{cases}$$

For c = 1 and a = m + 1 we have

$$\mathcal{L}(n,l,m,\alpha)f(z) = z + \sum_{k=2}^{\infty} \left[\alpha \left(\frac{l+k}{l+1} \right)^n + (1-\alpha)C(m,k) \right] a_k z^k, \tag{4}$$

where
$$C(m,k) = \binom{m+k-1}{m}$$
.

Now, for $f = h + \overline{g}$ given by (2), we introduce the modified operator $\mathcal{L}(n, l, m, \alpha)$ of harmonic univalent function f as

$$\mathcal{L}(n,l,m,\alpha)f(z) = \mathcal{L}(n,l,m,\alpha)h(z) + \overline{\mathcal{L}(n,l,m,\alpha)g(z)},$$
 (5)

where

$$\mathcal{L}(n, l, m, \alpha)h(z) = z + \sum_{k=2}^{\infty} \left[\alpha \left(\frac{l+k}{l+1} \right)^n + (1-\alpha)C(m, k) \right] a_k z^k$$

and

$$\mathcal{L}(n,l,m,\alpha)g(z) = \sum_{k=1}^{\infty} \left[\alpha \left(\frac{l+k}{l+1} \right)^n + (1-\alpha)C(m,k) \right] b_k z^k, |b_1| < 1.$$

We denote by $\mathcal{HL}(n, l, m, \alpha, \gamma)$ the class of harmonic functions f of the form (2), such that

Re
$$\left[\frac{z\left(\mathcal{L}(n,l,m,\alpha)f(z)\right)'}{\mathcal{L}(n,l,m,\alpha)f(z)}\right] \ge \gamma, \quad 0 \le \gamma < 1.$$

For m = l, we obtain the class $\mathcal{HL}(n, l, \alpha, \gamma)$

Re
$$\left[\frac{(l+1)\mathcal{L}(n+1,l,l+1,\alpha)f(z)}{\mathcal{L}(n,l,l,\alpha)f(z)} - l\right] \ge \gamma,$$
 (6)

where $\mathcal{L}(n, l, m, \alpha)$ is defined by (5).

Also, we denote by $\overline{\mathcal{HL}}(n,l,\alpha,\gamma)$ the class of functions $f=h+\overline{g}$ in $\mathcal{HL}(n,l,\alpha,\gamma)$, where h and g are of the form (3).

We notice that the class $\mathcal{HL}(n,l,\alpha,\gamma)$ includes a variety of well-known subclasses of $\mathcal{S}_{\mathcal{H}}$. For example, $\mathcal{HL}(0,0,1,\gamma)$ represent the class of sense-preserving, harmonic, univalent functions f which are starlike of order γ in U and $\mathcal{HL}(1,0,1,\gamma)$ represent the class of sense-preserving, harmonic, univalent functions f which are convex of order γ in U. These subclasses were introduced and studied by Jahangiri in [2]. Other subclasses studied are $\overline{\mathcal{HL}(n,0,1,\gamma)}$ which is the class of Salagean-type harmonic univalent functions studied by Jahangiri and al. in [3] and $\overline{\mathcal{HL}(n,l,0,\gamma)}$, the class of Ruscheweyh-type harmonic univalent functions studied by Murugusundaramoorthy and Vijaya in [5].

2 Main Results

First we determine a sufficient coefficient bound for functions in $\mathcal{HL}(n, l, \alpha, \gamma)$:

Theorem 2.1. Let $f = h + \overline{g}$ be given by (2). If

$$\sum_{k=2}^{\infty} (k - \gamma) \left[\alpha \left(\frac{l+k}{l+1} \right)^n + (1 - \alpha)C(l,k) \right] (|a_k| + |b_k|) + |b_1| \le 1 - \gamma, \quad (7)$$

where $l, n \geq 0$, $a_1 = 1$, $\alpha, \gamma \in [0, 1)$, then f(z) is harmonic univalent, sense preserving in U and $f(z) \in \mathcal{HL}(n, l, \alpha, \gamma)$.

Proof.

If we take $|z_1| \leq |z_2| < 1$ and consider the inequality (7), we have

$$|f(z_{1}) - f(z_{2})| \ge |h(z_{1}) - h(z_{2})| - |g(z_{1}) - g(z_{2})|$$

$$\ge |z_{1} - z_{2}| \left(1 - \sum_{k=2}^{\infty} k|a_{k}||z_{2}|^{k-1} - \sum_{k=1}^{\infty} k|b_{k}||z_{2}|^{k-1}\right)$$

$$= |z_{1} - z_{2}| \left(1 - \sum_{k=2}^{\infty} k(|a_{k}| + |b_{k}|)|z_{2}|^{k-1} - |b_{1}|\right)$$

$$\ge |z_{1} - z_{2}| \left(1 - \sum_{k=2}^{\infty} k(|a_{k}| + |b_{k}|) - |b_{1}|\right)$$

$$\ge |z_{1} - z_{2}| \left(1 - \sum_{k=2}^{\infty} \frac{(k - \gamma)}{1 - \gamma} \left[\alpha \left(\frac{l + k}{l + 1}\right)^{n} + (1 - \alpha)C(l, k)\right] (|a_{k}| + |b_{k}|) - |b_{1}|\right)$$

$$\ge |z_{1} - z_{2}| \left[1 - \left(1 - \frac{|b_{1}|}{1 - \gamma}\right) - |b_{1}|\right] = \frac{\gamma}{1 - \gamma}|b_{1}||z_{1} - z_{2}| \ge 0$$

Hence, f(z) is univalent in U. f(z) is sense preserving in U because

$$|h'(z)| \ge 1 - \sum_{k=2}^{\infty} k|a_k||z|^{k-1} > 1 - \sum_{k=2}^{\infty} k|a_k|$$

$$> 1 - \sum_{k=2}^{\infty} \frac{(k-\gamma)}{1-\gamma} \left[\alpha \left(\frac{l+k}{l+1} \right)^n + (1-\alpha)C(l,k) \right] |a_k|$$

$$\ge \sum_{k=2}^{\infty} \frac{(k-\gamma)}{1-\gamma} \left[\alpha \left(\frac{l+k}{l+1} \right)^n + (1-\alpha)C(l,k) \right] |b_k| + \frac{|b_1|}{1-\gamma}$$

$$\ge \sum_{k=2}^{\infty} \frac{(k-\gamma)}{1-\gamma} \left[\alpha \left(\frac{l+k}{l+1} \right)^n + (1-\alpha)C(l,k) \right] |b_k||z|^{k-1} + \frac{|b_1|}{1-\gamma}$$

$$> \sum_{k=2}^{\infty} k|b_k||z|^{k-1} + |b_1| = \sum_{k=1}^{\infty} k|b_k||z|^{k-1} \ge |g'(z)|$$

Finally, we show that $f(z) \in \mathcal{HL}(n, l, \alpha, \gamma)$. Using the fact that $\text{Re } \omega \geq \gamma$ if and only if $|1 - \gamma + \omega| \geq |1 + \gamma - \omega|$, it suffices to show that

$$|(1 - \gamma - l)\mathcal{L}(n, l, l, \alpha)f(z) + (l+1)\mathcal{L}(n+1, l, l+1, \alpha)f(z)| - |(1 + \gamma + l)\mathcal{L}(n, l, l, \alpha)f(z) - (l+1)\mathcal{L}(n+1, l, l+1, \alpha)f(z)| \ge 0.$$

So, if we set

$$A_k := \left[\alpha \left(\frac{l+k}{l+1} \right)^n + (1-\alpha)C(l,k) \right],$$

$$B_k := \left[\alpha \left(\frac{l+k}{l+1} \right)^{n+1} + (1-\alpha)C(l+1,k) \right] = \frac{l+k}{l+1} A_k,$$

we have

$$\begin{split} &\left| (1-\gamma-l)z + \sum_{k=2}^{\infty} (1-\gamma-l)A_k a_k z^k + \sum_{k=1}^{\infty} (1-\gamma-l)A_k \overline{b_k z^k} \right| \\ &+ (l+1)z + \sum_{k=2}^{\infty} (l+1)B_k a_k z^k + \sum_{k=1}^{\infty} (l+1)B_k \overline{b_k z^k} \right| \\ &- \left| (1+\gamma+l)z + \sum_{k=2}^{\infty} (1+\gamma+l)A_k a_k z^k + \sum_{k=1}^{\infty} (1+\gamma+l)A_k \overline{b_k z^k} \right| \\ &- (l+1)z - \sum_{k=2}^{\infty} (l+1)B_k a_k z^k - \sum_{k=1}^{\infty} (l+1)B_k \overline{b_k z^k} \right| \\ &\geq (2-\gamma)|z| - \sum_{k=2}^{\infty} (1-\gamma+k)A_k|a_k||z|^k - \sum_{k=1}^{\infty} (1-\gamma+k)A_k|b_k||z|^k \\ &- \gamma|z| - \sum_{k=2}^{\infty} |1+\gamma-k|A_k|a_k||z|^k - \sum_{k=1}^{\infty} |1+\gamma-k|A_k|b_k||z|^k \\ &= 2|z| \left\{ (1-\gamma) - \sum_{k=2}^{\infty} (k-\gamma) \left[\alpha \left(\frac{l+k}{l+1} \right)^n + (1-\alpha)C(l,k) \right] (|a_k|+|b_k|)|z|^{k-1} - |b_1| \right\} \\ &> 2|z| \left\{ (1-\gamma) - \sum_{k=2}^{\infty} (k-\gamma) \left[\alpha \left(\frac{l+k}{l+1} \right)^n + (1-\alpha)C(l,k) \right] (|a_k|+|b_k|) - |b_1| \right\}. \end{split}$$

The last expression is non-negative by (7), and so the proof is complete.

If we take $n, l, \gamma = 0$ and $\alpha = 1$ in the previous theorem, we obtain the following theorem, proved by Jahangiry and Silverman in [4]

Corollary 2.2. Let $f = h + \overline{g}$ given by (2). If

$$\sum_{k=2}^{\infty} k(|a_k| + |b_k|) \le 1 - |b_1|,$$

then f is sense-preserving, harmonic univalent in U and $f \in \mathcal{S}_{\mathcal{H}}^*$ (the functions in $\mathcal{S}_{\mathcal{H}}$ which are starlike in U).

The harmonic function

$$f(z) = z + \sum_{k=2}^{\infty} \frac{1 - \gamma}{(k - \gamma)A_k} x_k z^k + \sum_{k=1}^{\infty} \frac{2(1 - \gamma)}{[(1 - \gamma + k) + |1 + \gamma - k|]A_k} \overline{y_k z^k}, \quad (8)$$

where

$$A_k = \left[\alpha \left(\frac{l+k}{l+1}\right)^n + (1-\alpha)C(l,k)\right],$$

and

$$\sum_{k=2}^{\infty} |x_k| + \sum_{k=1}^{\infty} |y_k| = 1,$$

shows that the coefficient bound given by (7) is sharp.

The functions of the form (8) are in $\mathcal{HL}(n,l,\alpha,\gamma)$ because

$$\sum_{k=2}^{\infty} (k - \gamma) A_k(|a_k| + |b_k|) + |b_1|$$

$$= \sum_{k=2}^{\infty} (k - \gamma) A_k |a_k| + \sum_{k=1}^{\infty} \frac{(1 - \gamma + k) + |1 + \gamma - k|}{2} A_k |b_k|$$

$$= (1 - \gamma) \left(\sum_{k=2}^{\infty} |x_k| + \sum_{k=1}^{\infty} |y_k| \right) = 1 - \gamma.$$

In the next theorem we will prove the necessity of condition (7) for functions of the form $f = h + \overline{g}$, where h and g are of the form (3).

Theorem 2.3. Let $f = h + \overline{g}$ be given by (3). Then $f \in \overline{\mathcal{HL}}(n, l, \alpha, \gamma)$ if and only if

$$\sum_{k=2}^{\infty} (k - \gamma) \left[\alpha \left(\frac{l+k}{l+1} \right)^n + (1 - \alpha)C(l,k) \right] (|a_k| + |b_k|) + |b_1| \le 1 - \gamma.$$
 (9)

Proof

Since $\overline{\mathcal{HL}}(n,l,\alpha,\gamma) \subset \mathcal{HL}(n,l,\alpha,\gamma)$, we only need to prove the 'only if' part of the theorem. So, for the function f of the form (3), the condition (6) is equivalent to

Re
$$\left\{ \frac{(1-\gamma)z - \sum_{k=2}^{\infty} (k-\gamma)A_k |a_k| z^k}{z - \sum_{k=2}^{\infty} A_k |a_k| z^k + \sum_{k=1}^{\infty} A_k |b_k| \overline{z}^k} - \frac{\sum_{k=1}^{\infty} (k-\gamma)A_k |b_k| \overline{z}^k}{z - \sum_{k=2}^{\infty} A_k |a_k| z^k + \sum_{k=1}^{\infty} A_k |b_k| \overline{z}^k} \right\} \ge 0$$

The above condition must hold for all values of z, |z| = r < 1. Choosing the values of z on the positive real axis, where $0 \le z = r < 1$, we must have

$$\operatorname{Re}\left\{\frac{(1-\gamma)-\sum_{k=2}^{\infty}(k-\gamma)A_k|a_k|r^{k-1}-\sum_{k=1}^{\infty}(k-\gamma)A_k|b_k|r^{k-1}}{1-\sum_{k=2}^{\infty}A_k|a_k|r^{k-1}+\sum_{k=1}^{\infty}A_k|b_k|r^{k-1}}\right\} \ge 0. (10)$$

If the condition (7) does not hold then the numerator in (10) is negative for r sufficiently close to 1. Hence, there exists a $z_0 = r_0$ in (0,1) for which

the quotient in (10) is negative. This contradicts the required condition $f \in \overline{\mathcal{HL}}(n,l,\alpha,\gamma)$.

Theorem 2.4. Let f be given by 3. Then $f \in \overline{\mathcal{HL}}(n, l, \alpha, \gamma)$ if and only if

$$f(z) = \sum_{k=1}^{\infty} (X_k h_k(z) + Y_k g_k(z)), \qquad (11)$$

where

$$h_1(z) = z, \ h_k(z) = z - \frac{1 - \gamma}{(k - \gamma)A_k} z^k, \ k \ge 2,$$

$$g_k(z) = z + \frac{2(1 - \gamma)}{((1 - \gamma + k) + |1 + \gamma - k|)A_k} \overline{z}^k, \ k \ge 1,$$

$$\sum_{k=1}^{\infty} (X_k + Y_k) = 1, \ X_k \ge 0, \ Y_k \ge 0.$$

Proof.

For functions f of the form (11), we may write

$$f(z) = \sum_{k=1}^{\infty} (X_k h_k(z) + Y_k g_k(z))$$

$$= \sum_{k=1}^{\infty} (X_k + Y_k) z - \sum_{k=2}^{\infty} \frac{1 - \gamma}{(k - \gamma) A_k} X_k z^k$$

$$- \sum_{k=1}^{\infty} \frac{2(1 - \gamma)}{((1 - \gamma + k) + |1 + \gamma - k|) A_k} Y_k \overline{z}^k.$$

Then

$$\sum_{k=2}^{\infty} \frac{(k-\gamma)}{1-\gamma} A_k |a_k| + \sum_{k=1}^{\infty} \frac{(1-\gamma+k) + |1+\gamma-k|}{2(1-\gamma)} A_k |b_k|$$
$$= \sum_{k=2}^{\infty} X_k + \sum_{k=1}^{\infty} Y_k = 1 - X_1 \le 1$$

so $f \in \overline{\mathcal{HL}}(n, l, \alpha, \gamma)$.

Conversely, suppose that $f \in \overline{\mathcal{HL}}(n, l, \alpha, \gamma)$. Setting

$$X_k = \frac{(k-\gamma)\left[\alpha\left(\frac{l+k}{l+1}\right)^n + (1-\alpha)C(l,k)\right]}{1-\gamma}|a_k| \qquad n \ge 2,$$

$$Y_k = \frac{((1 - \gamma + k) + |1 + \gamma - k|) \left[\alpha \left(\frac{l+k}{l+1}\right)^n + (1 - \alpha)C(l,k)\right]}{2(1 - \gamma)} |b_k| \quad n \ge 1,$$

where

$$\sum_{k=1}^{\infty} (X_k + Y_k) = 1,$$

we obtain the required condition.

The following theorem gives the distortion bounds for functions in the class $\overline{\mathcal{HL}}(n,l,\alpha,\gamma)$.

Theorem 2.5. Let $f \in \overline{\mathcal{HL}}(n, l, \alpha, \gamma)$. Then, for |z| = r < 1, we have

$$|f(z)| \le (1+|b_1|)r + \frac{1}{\alpha \left(\frac{l+2}{l+1}\right)^n + (1-\alpha)(l+1)} \left(\frac{1-\gamma}{2-\gamma} - \frac{1}{2-\gamma}|b_1|\right)r^2$$

and

$$|f(z)| \ge (1 - |b_1|)r - \frac{1}{\alpha \left(\frac{l+2}{l+1}\right)^n + (1-\alpha)(l+1)} \left(\frac{1-\gamma}{2-\gamma} - \frac{1}{2-\gamma}|b_1|\right)r^2$$

Proof.

$$|f(z)| = \left| z + \sum_{k=2}^{\infty} a_k z^k + \sum_{k=1}^{\infty} \overline{b}_k \overline{z}^k \right| = \left| z + b_1 \overline{z} + \sum_{k=2}^{\infty} \left(a_k z^k + \overline{b}_k \overline{z}^k \right) \right|$$

$$\leq |1 + b_1| |z| + \sum_{k=2}^{\infty} |a_k + b_k| |z|^k \leq (1 + |b_1|)r + \sum_{k=2}^{\infty} |a_k + b_k| r^k$$

$$\leq (1 + |b_1|)r + \sum_{k=2}^{\infty} |a_k + b_k| r^2$$

$$\leq (1 + |b_1|)r + \frac{1 - \gamma - |b_1|}{(2 - \gamma)A_k} \sum_{k=2}^{\infty} \frac{(2 - \gamma)A_k}{1 - \gamma - |b_1|} (|a_k| + |b_k|)r^2$$

$$\leq (1 + |b_1|)r + \frac{1 - \gamma - |b_1|}{(2 - \gamma)A_k} \sum_{k=2}^{\infty} \frac{(k - \gamma)A_k}{1 - \gamma - |b_1|} (|a_k| + |b_k|)r^2$$

$$\leq (1 + |b_1|)r + \frac{1}{\alpha \left(\frac{l+2}{l+1}\right)^n + (1 - \alpha)(l+1)} \left(\frac{1 - \gamma}{2 - \gamma} - \frac{1}{2 - \gamma} |b_1|\right) r^2.$$

Similarly we obtain the other inequality.

Theorem 2.6. Let $f(z) \in \overline{\mathcal{HL}}(n, l, \alpha, \gamma)$ and $F(z) \in \overline{\mathcal{HL}}(n, l, \alpha, \delta)$, for $0 \le \delta \le \gamma < 1$. Then $f(z) * F(z) \in \overline{\mathcal{HL}}(n, l, \alpha, \gamma) \subset \overline{\mathcal{HL}}(n, l, \alpha, \delta)$.

Proof. Suppose that $f(z) \in \overline{\mathcal{HL}}(n, l, \alpha, \gamma)$ and $F(z) \in \overline{\mathcal{HL}}(n, l, \alpha, \delta)$ then, by Theorem 2.3, we have

$$\begin{split} & \sum_{k=2}^{\infty} \frac{(k-\gamma)}{1-\gamma} A_k |a_k| |U_k| + \sum_{k=1}^{\infty} \frac{((1-\gamma+k)+|1+\gamma-k|)}{2(1-\gamma)} A_k |b_k| |V_k| \\ & \leq \sum_{k=2}^{\infty} \frac{(k-\gamma)}{1-\gamma} A_k |a_k| + \sum_{k=1}^{\infty} \frac{((1-\gamma+k)+|1+\gamma-k|)}{2(1-\gamma)} B_k |b_k| \leq 1, \end{split}$$

$$as |U_k| < 1, |V_k| < 1.$$

So $f(z) * F(z) \in \overline{\mathcal{HL}}(n, l, \alpha, \gamma)$.

Let now $f(z) \in \overline{\mathcal{HL}}(n, l, \alpha, \gamma)$. We will show that $f(z) \in \overline{\mathcal{HL}}(n, l, \alpha, \delta)$.

$$\begin{split} & \sum_{k=2}^{\infty} \frac{(k-\delta)}{1-\delta} A_k |a_k| + \sum_{k=1}^{\infty} \frac{((1-\delta+k)+|1+\delta-k|)}{2(1-\delta)} A_k |b_k| \\ & \leq \sum_{k=2}^{\infty} \frac{(k-\gamma)}{1-\gamma} A_k |a_k| + \sum_{k=1}^{\infty} \frac{((1-\gamma+k)+|1+\gamma-k|)}{2(1-\gamma)} B_k |b_k| \leq 1, \end{split}$$

for
$$0 \le \delta \le \gamma < 1$$
.

Therefore $f(z) * F(z) \in \overline{\mathcal{HL}}(n, l, \alpha, \gamma) \subset \overline{\mathcal{HL}}(n, l, \alpha, \delta)$.

3 Acknowledgements

This work was possible with the financial support of the Sectoral Operation Programme for Human Resources Development 2007-2013, co-financed by the European Social Fund, under the project number POSDRU/107/1.5/S/76841 with the title "Modern Doctoral Studies: Internationalization and Interdisciplinarity".

References

- [1] N.E. Cho and H.M. Srivastava, Argument estimates for certain analytic functions defined by a class of multiplier transformation, *Math. Comput Modelling*, 37(1-2) (2003), 39-49.
- [2] J.M. Jahangiri, Harmonic functions starlike in the unit disc, *J. Math. Anal. Appl.*, 235(1999), 470-477.
- [3] J.M. Jahangiri, G. Murugusundaramoorthy and K. Vijaya, Sălăgeantype harmonic univalent functions, *South. J. Pure and Appl. Math.*, 2(2) (2002), 77-82.

92 Andreea-Elena Tudor

[4] J.M. Jahangiri and H. Silverman, Harmonic univalent functions with varying arguments, *Int. J. of Appl. Math.*, 8(3) (2002), 267-275.

- [5] G. Murugusundaramoorthy and K. Vijaya, On certain classes of harmonic univalent functions involving Ruscheweyh derivatives, *Bulletin of the Calcutta Mathematical Society*, 96(2) (2004), 99-108.
- [6] H. Silverman, Harmonic univalent functions with negative coefficients, *J. Math. Anal. Appl.*, 220(1) (1998), 283-289.
- [7] A.E. Tudor, A subclass of analytic functions, *Stud. Univ. Babes-Bolyai Math.*, 57(2) (2012), 277-282.