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Abstract

Traditionally graphs can be represented by pictures, relations or matrices.
Now a new technique is available to represent graphs with the help of soft sets.
Cycles, Euler cycles and Hamilton cycles are very important concepts in graph
theory due to their various applications. In this paper it is shown that soft sets
are very handy to determine the presence of Euler’s cycle and Hamilton’s cycle
in a graph.
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1 Introduction

Graph theory is one of the classic branch of mathematics, its applications
in many fields make it a common interest of researchers, engineers and aca-
demicians. Usually graphs have their natural visual representation, however
to study certain properties of graphs sometimes matrix representation is also
very convenient. Ali et al. in [4] have shown that graphs can be represented
with the help of soft sets. In general, soft set over multi-sets can represent
any graph, however simple graphs can also be represented by soft sets over
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ordinary set of vertices. This representation of graphs by soft sets can be very
helpful to deal with many graph theoretic problems.

Moldtsov in [13] introduced the concept of soft sets. It is a new mathe-
matical tool to deal with uncertainty. In soft sets there are enough number
of parameters available so that, these are free from problems associated with
other techniques dealing with uncertainty for details see [10, 13]. This avail-
ability of parameters, makes soft set theory very easy to apply in different
fields. Maji et al. in [10] has defined some operations on soft sets which are
further strengthened by Ali et al. [2, 3] in soft sets and fuzzy soft sets. The
ability of hybridization with other techniques such as fuzzy sets and rough
sets is the beauty of soft set theory. This aspect of soft sets can be viewed in
[2, 3, 7, 10, 6].

Theory of multi-sets allows membership of an element more than once.
Therefore set theory is a particular type of multi-set theory. During recent
years interest of researchers has increased in multi-set theory due to its wide
range of applications, particularly in computer sciences. Moreover, in many
daily life situations multi-set theory can be very useful.

In this paper we study the soft set representation of graphs and discuss
the application of soft sets to study cycles, circuits, cut vertices, bridges and
Hamilton cycles in a graph. Notions studied in this paper are as the following.

In section 2, some basic definitions regarding multi-set theory and soft set
theory are given which will be required in later sections. Moreover notions
about soft set representation of a graph are also given here. Section 3, is
reserved to represent some fundamental concepts of graph theory with the
help of soft sets, especially cycles, circuits, cut vertex and bridges. In section
4, it is seen that soft sets can be very useful to determine the presence or
absence of Hamilton cycles in a given graph.

2 Preliminaries

Some basic notions about multi-sets are presented in the following from [12]. A
crisp multi-set M(V ) of V , where V = {v1, ...vp} is a finite universal set, char-
acterized by a function CountM(.) whereby a non negative integer corresponds
to each v ∈ V : CountM : V → {0, 1, 2...}.

A crisp multi-set can be expressed through different notations, such as

M(V ) = {k1/v1...kp/vp}

and

M(V ) =

{
k1︷ ︸︸ ︷

v1, ..., v1, ...,

kp︷ ︸︸ ︷
vp, ..., vp

}
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Here the element v1 appears k1 times and so on the element vp appears kp
times. Throughout this work both V and M(V ) are finite. Basic relations and
operations for crisp multi-sets are as follow.

(1) M(V ) ⊆ N(V )⇐⇒ CountM(v) ≤ CountN(v), ∀v ∈ V . (inclusion)
(2) M(V ) = N(V )⇐⇒ CountM(x) = CountN(v), ∀v ∈ V . (Equality)
(3) Count(M ∪N)(v) = max{CountM(v), CountN(v)}. (Union)
(4) Count(M ∩N)(v) = min{CountM(v), CountN(v)}. (Intersection)
(5) Count(M ⊕N)(v) = CountM(v) + CountN(v). (Addition)
Now some basic notions related to soft sets are given in the following.

Definition 2.1 [13] A soft set over a universe U is a pair (F,B), where B
is set of parameters and F is a mapping given by F : B → P (U).

Definition 2.2 [11] Let U be a universe and (F,B), (G,A) are two soft
sets over U . Then (F,B) is called soft subset of (G,A) if

(1) B⊂A and
(2) F (b)⊂G(b) for all b ∈ B.

We write (F,B)⊂̃(G,A). Here (G,A) is called soft super set of (F,B).

Definition 2.3 [11] Let U be a universe and (F,B), (G,A) are two soft
sets over U . Then (F,B) and (G,A) are said to be soft equal if (F,B) is a
soft subset of (G,A) and (G,A) is a soft subset of (F,B).

As graphs have a natural visual representation, however matrices are also
used to represent graphs to study their certain properties. Here is a new tech-
nique, as mentioned above, to represent a graph based on soft sets, which is
introduced by Ali et al in [4] is studied here. As the operations like extended
union, restricted union, extended intersection, restricted intersection and re-
stricted difference are available in soft sets, so these operations are successfully
applied to graphs in [3]. This approach, to use such operations on graph, is
more dynamic and fruitful. In this section representation of graphs, di-graphs,
degree of graph and bi-partite graphs through soft sets are briefly studied.

Theorem 2.4 [4] Every graph G = (U,E) can be represented by a unique
soft set (F,U) over M(U).

Definition 2.5 [4] Let (F,U) and (G, V ) over M(U) represent two graphs.
Then graph represented by (G, V ) is the sub-graph of (F,U) if

(1) V ⊆ U
(2) G(u) ⊆ F (u) for all u ∈ V .

Theorem 2.6 [4] Let M(U) be a multi-set over U , where U is a non-empty
set of vertices. Then every soft set (F,U) over M(U) represents either graph
or a directed graph.
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A very nice criteria to determine whether a soft set (F,U) over M(U) is
representing a graph or a directed graph also given in the following proposition
from [4]

Proposition 2.7 [4] A soft set (F,U) over M(U) represents a di-graph if
for some i 6= j, uj ∈ F (ui) implies that ui /∈ F (uj), where ui, uj ∈ U .

Definition 2.8 [4] Let a soft set (F,U) over M(U) represents graph G.
Then a soft set (H,Y ) over M(U) represents a sub-graph if

(1) Y⊂U
(2) H(y)⊂F (y) for all y ∈ Y .
(3) yj ∈ H(yi) implies that yi ∈ H(yj) for all i 6= j, where yi, yj ∈M(U).

Here the third condition is used to ensure that the sub-graph is not a
directed graph. Without third condition the sub-graph may be a directed
graph. Third condition can be removed if the choice of graph or directed
graph is not concerned.

Proposition 2.9 [4] A soft set (F,U) over M(U) represents a graph. Then
at ui ∈ U graph has a loop if and only if ui ∈ F (ui).

Definition 2.10 [4] Let a soft set (F,U) over M(U) represents a graph.
Then for a vertex u number of vertices adjacent to u is the degree of u.

If there is such a vertex with which no other vertex is adjacent then its
degree is 0 and is called an isolated vertex.

Theorem 2.11 [4] If a soft set (F,U) over M(U) represents a graph G.
Then

∑
vi∈V
|F (ui)| + l is the total degree of G, where |F (ui)| represents the

number of vertices adjacent to ui and l represents number of loops in G.

Proposition 2.12 [4] A graph represented by soft set (F,U) over U , with
ui /∈ F (ui) for all ui ∈ U is a simple graph.

Proposition 2.13 [4] A simple graph represented by a soft set (F,U) over
U , is complete if and only if for all ui ∈ U , F (ui) = U − {ui}.

Proposition 2.14 Let a soft set (F,U) over U represents a graph, where
U = {u1, u2, ...um} be a set of m−vertices with two disjoint subsets U ′ = {u′1,
u′2, ...u′p} and U ′′ = {u′′1, u′′2, ...u′′q} such that U ′ ∪ U ′′ = U . Then graph is a
bi-partite if and only if,

F (u′i) ⊆ U ′′ and F (u′′j ) ⊆ U ′ for all 1 ≤ i ≤ p and 1 ≤ j ≤ q.
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Proposition 2.15 Let a soft set (F,U) over U represents a graph, where
U = {v1, u2, ...um} be a set of m−vertices with two disjoint subsets U ′ = {u′1,
u′2, ...u′p} and U ′′ = {u′′1, u′′2, ...u′′q} such that U ′ ∪ U ′′ = U . Then graph is a
(p, q)−bi-partite if and only if,

(1) F (u′i) = U ′′ and F (u′′j ) = U ′ for all 1 ≤ i ≤ p and 1 ≤ j ≤ q.

Definition 2.16 (1, n) complete bipartite graph is called a star graph.

Proposition 2.17 Let a soft set (F,U) over U represents a graph G. Then
G is a star graph if there exists a vertex v ∈ U such that F (v) = U − {v}
and F (ui) = {v} for all ui ∈ U − {v}.

3 Soft Set Representation of Cycles and Cir-

cuits

This work is mainly for the study of connected graphs through soft sets. A
connected graph consists of single component while disconnected graph con-
sists of more than one component. A graph, is connected if a path is there
from any vertex to any other vertex within the graph, otherwise a graph is
disconnected. Following proposition describes how soft sets can represent a
graph having components.

Proposition 3.1 Let a graph G be represented by a soft set (F,U) over U .
Then G has n disconnected components if there are n subsets U1, U2, ...Un

of U , such that U1 ∪ U2... ∪ Un = U and Ui ∩ Uj = ∅ for any i 6= j, where
1 ≤ i ≤ n, 1 ≤ j ≤ n such that for all ui ∈ Ui implies F (ui) ⊆ Ui

Proof: Let a graph G be represented by a soft set (F,U) over U , with
U1 ∪ U2... ∪ Un = U and Ui ∩ Uj = ∅ for any i 6= j. Let ui ∈ Ui be such
that F (ui) ⊆ Ui, for all ui ∈ Ui and uj ∈ Uj such that F (uj) ⊆ Uj for all
uj ∈ Uj. Since F (ui) ⊆ Ui, so F (ui)∩Uj = ∅, therefore for any uj ∈ Uj implies
uj /∈ F (ui). That is, no vertex in Ui is adjacent to any vertex in Uj. Therefore
for each Ui ⊆ U with ui ∈ Ui such that F (ui) ⊆ Ui gives a disjoint component
of graph G.

Corollary 3.2 A graph G, represented by a soft set (F,U) over U , is con-
nected if and only if there exists no proper subset Ui of U with condition
F (ui) ⊆ Ui for all ui ∈ Ui.

Now soft set representation of cycles is given in the following. If all the
vertices of a graph G are connected in a chain, then it is called a cyclic graph.
This means, it consists of a single cycle. In a cyclic graph number of vertices
is equal to number of edges. Usually a cyclic graph with n vertices is denoted
by Cn. In the following soft set representation of a cyclic graph is given.
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Proposition 3.3 Let a connected graph G be represented by a soft set
(F,U) over U . Then (F,U) represents a single cycle if and only if |F (u)| = 2,
for all u ∈ U .

Proof: Let a connected graph G be represented by the soft set (F,U) over
U, with |F (u)| = 2, for all u ∈ U . Since |F (u)| = 2, so every vertex is adjacent
with two other vertices of U . Consider ui ∈ U as |F (ui)| = 2, so ui is adjacent
to two vertices say ui−1, ui+1 ∈ U , that is, F (ui) = {ui−1, ui+1}. Further
as |F (ui−1)| = |F (ui+1)| = 2, so ui−1 is adjacent to ui and ui−2, similarly
ui+1 is adjacent to ui and one more vertex ui+2, continuing this process gives
|F (un)| = 2, so un is adjacent to two vertices un−1, u1 ∈ U , Also |F (u1)| = 2,
so u1 is adjacent to un and u2. Hence this completes the cycle

Conversely, let the graph represented by soft set (F,U) be a single cycle.
Then every vertex approaches a single vertex and at the same time being
approached by a single vertex. Thus every vertex has the degree 2, therefore
|F (u)| = 2, for all u ∈ U . As graph is a single cycle so it is connected.

Proposition 3.4 Let G be represented by a soft set (F,U) over U . Then
G has a cycle through all the vertices if and only if there exists a soft subset
(H,V ) of (F,U) representing a connected sub-graph such that

1. for vi ∈ H (vj) implies vj ∈ H (vi), where vi, vj ∈ V .

2. |H (v)| = 2, for all v ∈ V .

Proof: Let a graph G be represented by a soft set (F,U) over U which
has a cycle, if this cycle consists of vertices say V = {vi, vi+1, vi+2, ...vi+m}
in G. Then it can be represented by soft subset (H,V ) of (F,U). As (H, V )
represents cycle so |H(v)| = 2, for all v ∈ V . Since a cycle is not a directed
graph so (1) is also satisfied.

Conversely, let (H,V ) be a soft subset of (F,U) with above mentioned
conditions, (1) implies (H,V ) represents sub-graph of graph G, (2) implies
(H,V ) is a cycle. As (H, V ) is contained in (F,U) therefore G contains a
cycle.

Now we are able to see how many cycles are there in a graph with the help
of soft sets. So the following proposition will serve the purpose.

Corollary 3.5 Let a graph G be represented by a soft set (F,U) over U and
V be a subset of U , if there are n soft subsets (Hk, V ), 1 ≤ k ≤ n, of (F,U)
such that each (Hk, V ) over V represents a cycle. Then there are n cycles in
G through vertices set V .
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Remark 3.6 Let a graph G with set of vertices U , then for V ⊆ U if there
are n soft subsets (Hk, V ), 1 ≤ k ≤ n, of (F,U) such that each (Hk, V ) over
V represents a cycle. Then V is said to have Cl − Counting = n and it will
be represented as ClC (V ) = n

Remark 3.7 Let G be a graph defined by the soft set (F,U) over U . Then
total number of cycles in G is the sum of Cl − Countings of all subsets of U .

It is well known that, if in a walk from any vertex and trace back the
starting vertex through all vertices without using any edge more than once,
such graph is called an Euler’s circuit. Here is a proposition for an Euler’s
circuit.

Proposition 3.8 Let a connected graph G be represented by a soft set
(F,U) over U . Then G is an Euler’s circuit if and only if |F (u)| = 2n,
n ∈ N , for all u ∈ U.

Proof: Let a connected graph G be represented by soft set (F,U) over U .
Let G be an Euler’s circuit, so in walk from any vertex, the starting vertex
can be traced back walking through all vertices without using any edge more
than once. It is possible only if a vertex is approached by k vertices then it
also approaches k other vertices, this suggests that every vertex has an even
degree, hence |F (u)| = 2n, where n ∈ N , for all u ∈ U .

Conversely, let a connected graph G be represented by soft set (F,U) over
U , with |F (u)| = 2n, n ∈ N , for all u ∈ U , implies every vertex has even
number of edges, therefore total number of edges in G is even. Therefore it
is possible to divide these edges in to two sets, the set of incoming edges and
the set of outgoing edges. Hence there is no point in this sub-graph where we
stuck, hence in our walk from any vertex, the starting vertex can be traced
back, Therefore (F,U) represents an Euler’s circuit.

As a circuit is a closed path in a graph G and it is well known that when
talking about some closed path in a graph, it means a walk through the vertices
of graph that ends on the starting point without repeating any edge, and there
is no such point through which we enter and do not leave it. It suggests us
that in every closed path number of times a vertex is approached is equal to
the number of times the same vertex approach the other vertices. So in every
closed path, that is, in a circuit degree of each vertex is even.

Proposition 3.9 Let a graph G be represented by a soft set (F,U) over U .
Then G has a circuit if and only if there exists a soft subset (H,V ) of (F,U)
such that (H,V ) is a connected sub-graph with |H (vi)| = 2n, for all vi ∈ V ,
n ∈ N .
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Proof: Let G be a graph represented by soft set (F,U) over U having a
circuit. Let V = {v1, v2, ...vp} be the set of vertices on the circuit . Now
consider any vi ∈ V , 0 ≤ i ≤ p. As vi is on a circuit therefore if it has been
approached from n vertices and then n vertices have been approached from vi.
Therefore |H (vi)| = 2n, for all vi ∈ V , n ∈ N . Thus circuit can be represented
by soft subset (H,V ) of (F,U) such that vi ∈ H (vj) =⇒ vj ∈ H (vi) and
|H (vi)| = 2n, for all vi ∈ V , n ∈ N .
Conversely, consider (H, V ) is a soft subset of (F,U) representing a connected
sub-graph, say G′, with |H (vi)| = 2n, for all vi ∈ V , n ∈ N , of graph G .
Since |H (vi)| = 2n implies in G′ every vertex is adjacent to even number of
vertices, so the total edges in G′ are even in number. So, for every vertex, the
edges incident to it can be divided into two categories, the incoming edges and
the outgoing edges. Hence there is no such vertex in this sub-graph where we
are stuck. Therefore if we start a walk from any point, it can be traced back,
so walk becomes closed path, hence (H,V ) represents a circuit. As (H,V ) is
contained in (F,U) therefore G contains a circuit.

A cycle is a special case of circuit and it is called a simple circuit.

Remark 3.10 Let a graph G with vertices set U , and V ⊆ U be a set of
some of the vertices from G, and if there are n soft subsets (Hk, V ), 1 ≤ k ≤ n,
of (F,U) such that each (Hk, V ) over V represents an Euler’s circuit. Then
there are n Euler’s circuits in G through vertices set V .

Remark 3.11 Let a graph G with vertices set U , and V ⊆ U be a set of
some of the vertices from G, and if there are n soft subsets (Hk, V ), 1 ≤ k ≤ n,
of (F,U) such that each (Hk, V ) over V represents an Euler’s circuit. Then V
is said to have C − Counting = n and it will be represented as CC (V ) = n

Remark 3.12 Let G be a graph defined by soft set (F,U) over U . Then
total number of circuits in G is the sum of C −Countings of all subsets of U .

As every graph is not complete, but there might be some set of vertices
within the graph which constitute a complete sub-graph. A complete sub-
graph of graph G is called clique of G. Here is a proposition to represent
clique using soft sets.

Proposition 3.13 Let G be a graph defined by soft set (F,U) over U . Then
sub-graph defined by soft subset (H,V ) of (F,U) is clique of G if and only if
H (vi) = V − {vi} for all vi ∈ V .

Proof: Since (H, V ) is soft subset of (F,U) and H (vi) = V − {vi} for all
vi ∈ V implies every vertex of sub-graph represented by soft subset (H,V ) is
adjacent to all other vertices of the sub-graph. So this sub-graph is a complete
sub-graph of G, hence is clique of G, so (H, V ) represents clique of G.



Application of Soft Sets to Determine Hamilton... 73

Conversely, let soft subset (H,V ) of (F,U) represents clique G′ of G then G′

is a complete sub-graph of G. Since G′ is complete sub-graph so every vertex of
G′ is adjacent to all other vertices of G′ except itself implies H (ui) = V −{vi}
for all vi ∈ V .

Concept of removal of an edge or a vertex is very important in graph theory.
Soft set theory can be very handy to study related concepts. If uk is a vertex
which is required to remove from a graph G along with all its adjacencies and
remaining graph unchanged, then the resulting graph is denoted by G−uk. In
fact G − uk is the sub-graph of G which is induced by U − {uk}, that is, the
graph induced by removing vertex uk from the given graph G.

Let a graph G represented by soft set (F,U) over U . Then G− uk, where
uk ∈ U , is represented by soft set (Fu′

k
, U − {uk}) over U − {uk} and defined

as Fu′
k
(ui) = F (ui)− {uk} if i 6= k for all ui ∈ U .

A cut vertex of a graph G is a vertex that splits a connected graph into
disconnected components. For instance, a vertex u in graph G is a cut vertex
if G− u has greater components then G.

Proposition 3.14 Let G be a connected graph defined by soft set (F,U)
over U then uk ∈ U is cut vertex in G if and only if the soft subset (Fu′

k
, U −

{uk}) of (F,U), gives a partition of U − {uk} such that U1, U2, U3, ...Un ⊆
U − {uk}, Ui ∩ Uj = ∅, where i 6= j, and

n
∪
i=1

Ui = U − {uk},1 ≤ i ≤ n and, for

any u′ ∈ Ui, F (u′) ⊆ Ui.

Proof: Let G be a connected graph represented by soft set (F,U) over U
and uk ∈ U is a cut vertex in G this implies G − uk is represented by soft
subset

(
Fu′

k
, U − {uk}

)
of (F,U) defined by Fu′

k
(ui) = F (ui)− {uk}, i 6= j for

all ui ∈ U is disconnected so a partition of U − {uk} arises such that U1, U2,

U3, ...Un ⊆ U − {uk}, Ui ∩ Uj = ∅, for i 6= j,
n
∪
i=1

Ui = U − {uk},1 ≤ i ≤ n .

and, for any u′ ∈ Ui, F (u′) ⊆ Ui.
Conversely, consider a soft set (F,U) over U represents a connected graph

and for the soft subset
(
Fu′

k
, U − {uk}

)
a partition of U − {uk} arises such

that U1, U2, U3, ...Un ⊆ U − {uk}, Ui ∩ Uj = ∅,
n
∪
i=1

Ui = U − {uk}, 1 ≤ i ≤ n

and, for any u′ ∈ Ui, F (u′) ⊆ Ui. As
(
Fu′

k
, U − {uk}

)
represents G− uk and is

disconnected so uk is a cut vertex.
In visual representation, adjacency relations between the vertices are de-

noted by edges. If two vertices ui, uj ∈ U are adjacent in a graph G, that is,
(ui, uj) edge is there in graph G. For the soft set (F,U) representing graph
G, ui ∈ F (uj) if and only if uj ∈ F (ui) implies (ui, uj) edge in G [4]. In this
subsection the removal of an edge from a graph and the bridge in graph is
studied using soft sets. If (ui, uj) is an edge which is to be removed from G,
remaining graph unchanged, the resulting graph is denoted by G− (ui, uj).
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Proposition 3.15 Let a graph G be represented by soft set (F,U) over U
then soft subset (F−(u,v), U) represents (u, v) − edge − free sub-graph of G
containing all vertices and edges of G except (u, v) edge if and only if

1. F−(u,v)(ui) = F (ui) if ui 6= u, ui 6= v

2. F−(u,v)(ui) = F (ui)− {u} if ui = v

3. F−(u,v)(ui) = F (ui)− {v} if ui = u, for all ui ∈ U .

Proof: Let a graph G be represented by a soft set (F,U) over U . Then
soft subset (F−(u,v), U) of (F,U) over U satisfies the following

(1) F−(u,v)(ui) = F (ui) if ui 6= u, ui 6= v
(2) F−(u,v)(ui) = F (ui)− {u} if ui = v
(3) F−(u,v)(ui) = F (ui)− {v} if ui = u for all ui ∈ U
(1) implies sub-graph represented by soft subset (F−(u,v), U) has all the

adjacencies for all the vertices as in graph except u and v. (2) implies that v
also has all the adjacencies with all other vertices in G but is not adjacent to u.
Whereas (3) implies that u also has all the adjacencies with all other vertices
in G but is not adjacent to v. So (F−(u,v), U) over U with above conditions
represents (u, v)−edge−free sub-graph of G containing all vertices and edges
of G except (u, v) edge.

Conversely, consider (F−(u,v), U) over U represents (u, v) − edge − free
sub-graph of G containing all vertices and edges of G except (u, v) edge. Then
it is obvious that (F−(u,v), U) over U has all the adjacencies as (F,U) over
U except (u, v). Therefore F−(u,v)(ui) = F (ui) if ui 6= u, ui 6= v. As v has
all the adjacencies with all other vertices as in G. except with u. Therefore
F−(u,v)(ui) = F (ui) − {u} if ui = v. Lastly as u has all the adjacencies with
all other vertices as in G. except with u. Therefore F−(u,v)(ui) = F (ui)− {u}
if ui = v.

An edge is called a bridge whose deletion increases the number of compo-
nents in the graph, if graph G is connected then removal of the bridge edge
splits it into two disjoint components. For instance, an edge (u, v) in graph G
is a bridge if G− (u, v) has greater components than G.

Proposition 3.16 Let G be a connected graph represented by soft set (F,U)
over U then (u, v) edge is a bridge in G if and only if for the soft subset
(F−(u,v), U), a partition of U arises such that U ′, U ′′ ⊆ U , U ′ ∩ U ′′ = ∅, U ′ ∪
U ′′ = U , for all u′ ∈ U ′, F (u′) ⊆ U ′, and for all u′′ ∈ U ′′, F (u′′) ⊆ U ′′ .

Proof: Let a connected graph G be represented by soft set (F,U) over U .
Let (u, v) be the edge which is a bridge in G, this implies G−(u, v) represented
by (F−(u,v), U) is disconnected, so a partition of U consisting of two subsets
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arises such that U ′, U ′′ ⊆ U , U ′ ∩ U ′′ = ∅, U ′ ∪ U ′′ = U , for all u′ ∈ U ′,
F (u′) ⊆ U ′, and for all u′′ ∈ U ′′, F (u′′) ⊆ U ′′ .

Conversely, consider a soft set (F,U) over U represents a connected graph
and for the soft subset (F−(u,v), U) with a partition of U such that U ′, U ′′ ⊆ U ,
U ′ ∩ U ′′ = ∅, U ′ ∪ U ′′ = U , for all u′ ∈ U ′, F (u′) ⊆ U ′, and for all u′′ ∈ U ′′,
F (u′′) ⊆ U ′′ . As (F−(u,v), U), representing G− (u, v), is disconnected therefore
(u, v) edge is a bridge in G .

4 Hamilton Cycle

As in a graph, the cycle through all the vertices is called a Hamilton’s cycle.
To determine a Hamilton cycle in a graph is not straight forward. In the
following it is seen that soft set theory may help to find presence or absence
of Hamilton’s cycle in a graph.

Proposition 4.1 Let G be a connected graph represented by a soft set
(F,U) over U , then G has a Hamilton’s cycle if and only if there exists a
soft subset (H,U) of (F,U) such that (H,U) represents a connected sub-graph
with |H (ui)| = 2, for all ui ∈ U .

Proof: Let G be a connected graph represented by a soft set (F,U) over
U . Let G has a Hamilton’s cycle, that is, if a walk is started from any vertex,
then it can be traced back the starting vertex through all vertices without
using any vertex more than once. Consequently G has a cycle through all the
vertices. This cycle can be represented by soft subset (H,U) of (F,U), such
that, |H (ui)| = 2, for all ui ∈ U .

Conversely, let a graph G be represented by soft set (F,U) over U , and G
has cycle through all the vertices which is represented by soft subset (H,U) of
(F,U), such that, |H (ui)| = 2, for all ui ∈ U . This implies there is a cycle in
G such that if a walk is started from any vertex, then it can be traced back
the starting vertex through all vertices without using any vertex more than
once. As such a walk in a graph represents a Hamilton’s cycle. So G has a
Hamilton’s cycle.

In a graph, if there is a walk from any vertex to the starting vertex, walking
through all vertices without using any vertex more than once. This implies
that Hamilton’s cycle is there in the graph. Here is a proposition using soft
sets for this case.

Proposition 4.2 Let G be a connected graph represented by a soft set
(F,U) over U . Then the necessary condition that G has a cycle through all the
vertices is |F (u)| ≥ 2, for all u ∈ U .
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Proof: Let G be a connected graph represented by a soft set (F,U) over
U . If G has a cycle through all the vertices then it is represented by a soft
subset (H,U) of (F,U) such that |H (u)| = 2, for all u ∈ U . Since (F,U) is
soft super set of (H,U) therefore without any loss of generality |F (u)| ≥ 2,
for all u ∈ U .

Proposition 4.3 Let G be a connected graph represented by a soft set
(F,U) over U . If u ∈ U is a vertex adjacent to at least three more vertices say
ui, ui+1 and ui+2 such that |F (ui)| = |F (ui+1)| = |F (ui+2)| = 2. Then G has
no Hamilton’s cycle.

Proof: Let G be a connected graph represented by a soft set (F,U) over
U with a vertex u in G such that |F (u)| ≥ 3. Let ui, ui+1 and ui+2 be adjacent
to u such that |F (ui)| = |F (ui+1)| = |F (ui+2)| = 2. If possible let G has
a Hamilton’s cycle. This implies there exists a soft subset (H,U) of (F,U)
such that |H (u′)| = 2, for all u′ ∈ U . In order to obtain this soft subset
(H,U) of (F,U) at least one of the vertices from ui, ui+1 and ui+2 is to be
removed. Therefore u must be removed from any one of F (ui), F (ui+1) or
F (ui+2). Without any loss of generality let ui is removed from F (u) as a result
u will be deleted from the set F (ui). This removal of u from F (ui) will make
|H (ui)| = 1. Which is a contradiction to Proposition 4.1. Hence (H,U) can
not represent a cycle. Consequently the graph G has no Hamilton’s cycle.

Proposition 4.4 Let G be a connected graph represented by a soft set
(F,U) over U . if there are two overlapping subsets U ′ and U ′′ of U such
that U ′ ∩ U ′′ 6= ∅, and (H,U ′) represents cycle, such that for u′ ∈ U ′ and
u′ /∈ U ′ ∩ U ′′, u′ /∈ F (u′′), for any u′′ ∈ U ′′. Then G has no Hamilton’s cycle.

Proposition 4.5 Let a connected graph G be represented by soft set (F,U)
over U . If G has a cut vertex then G has no Hamilton’s cycle.

Proof: Let G be a connected graph represented by a soft set (F,U) over
U , with cut vertex v in G. Therefore there exist two subsets U ′ and U ′′ of U ,
such that, U ′ ∪ U ′′ = U and U ′ ∩ U ′′ = {v} and for any u′ other than v in U ′,
u′ /∈ F (u′′) for all u′′ other than v in U ′′. As v is cut vertex so v ∈ F (u′i) for some
u′i ∈ U ′, and v ∈ F (u′′j ) for some u′′j ∈ U ′′. If possible let G has a Hamilton’s
cycle. This implies that there exists a soft subset (H,U) of (F,U) such that
|H (u)| = 2, for all u ∈ U . Therefore |H (v)| = 2. Let u′i+1, u

′′
i+2 ∈ H (v), where

u′i+1 ∈ U ′, and u′′i+2 ∈ U ′′. The vertex v provides us a way to shift form vertices
of U ′ to U ′′. Now to complete the cycle, there is no other vertex, say w, such
that |H (w)| = 2, and u′j+1 ∈ H (w) and u′′j+2 ∈ H (w), such that u′j+1 ∈ U ′,
and u′′j+2 ∈ U ′′. Hence (H,U) can not represent a cycle. Consequently the
graph G has no Hamilton’s cycle.
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Example 4.6: Let G be a graph represented by a soft set (F,U) over
U = {u1, u2, u3, u4, u5, u6, u7}, as shown in figure 1,defined as F (u1) = {u3, u7},
F (u2) = {u6, u7}, F (u3) = {u1, u4, u7}, F (u4) = {u3, u5, u7}, F (u5) = {u4, u6, u7},
F (u6) = {u2, u5}, F (u7) = {u1, u2, u3, u4, u5, u6}. To find the Hamilton cy-
cle in G let’s start from u1. Here F (u1) = {u3, u7} let’s chose u3 next to
u1 to start walk. As F (u3) = {u1, u4, u7}, Here exclude u1, also u7, be-
cause u7 ∈ F (u1). So the sub set of our interest, of F (u3), is {u4}. Now
F (u4) = {u3, u5, u7} ignoring u3 and u7, the sub set of our interest, of F (u4),
is {u5}. F (u5) = {u4, u6, u7} ignoring u4 and u7, the sub set of our interest,
of F (u5), is {u6}. Again F (u6) = {u2, u5, u7} ignoring u5 and u7, the sub
set of our interest, of F (u6), is {u2}. F (u2) = {u6, u7} ignoring u6, the sub
set of our interest, of F (u2), is {u7}. And F (u7) = {u1, u2, u3, u4, u5, u6} ig-
noring u2, u3, u4, u5 and u6, the sub set of our interest, of F (u7), is {u1}. At
the end when all vertices are used u7 approaches the first vertex. So we have
the soft subset, say (H,V ), such that, H(u1) = {u3, u7}, H(u2) = {u6, u7},
H(u3) = {u1, u4}, H(u4) = {u3, u5}, H(u5) = {u4, u6}, H(u6) = {u2, u5},
H(u7) = {u1, u2}, which represents the cycle, as shown in figure 2.

Figure 1: Graph G having Hamilton Cycle

Figure 2: Hamilton Cycle in graph G



78 Zia Ul Hussain et al.

5 Conclusion

In the present paper, it is shown that graphs particularly cycles can be repre-
sented by soft sets. This representation has many advantages due to operations
available in soft sets. On the other hand this representation helps us to deter-
mine existence of Euler’s cycle and Hamiltons cycle in graphs.
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