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Abstract

The homotopy analysis method (HAM) is implemerdezbtain the approximate

solutions of the nonlinear evolution equations imtimematical physics. The
results obtained by this method have a good agreemvéh one obtained. It

illustrates the validity and the great potentialtbeé homotopy analysis method in
solving partial differential equations.
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1 I ntroduction

The flow in channels and in circular pipes with mpeable walls has received
considerable attention in the past few years. Tdrdiest work of steady flow
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across permeable and stationary walls can be trhaeld to Berman [1], who
showed that the governing equations can be reducesdingle fourth-order
nonlinear ordinary differential equation which indes permeation Reynolds
numberR,., and associated solution can be obtained. Lanfioar studies in
porous pipes or channels with expanding or contrgcwalls have received
considerable attention due to their applicationsbiophysical flows. These
include the model of pulsating diaphragms, filwati blood flow and artificial
dialysis, binary gas diffusion, the model of airdahlood circulation in the
respiratory system. In order to simulate the paltist motion by successive wall
contractions and expansions. Uchida and Aoki [15}t fexamined the viscous
flow inside an impermeable tube with contractingssr sections. Ohki [20]
investigated the unsteady flow in a porous semmiteg tube, whose elastic wall
had a varied length and a stable cross sectiosiniolate the laminar flowed in
cylindrical solid rocket motors, Goto and Uchida] [@nalyzed the laminar
incompressible flow in a semi-infinite porous pipdjose radius varied with time.
Bujurke et al. [3] obtained a series solution te timsteady flow in a contracting
or expanding pipe. Majdalani et al. [6] obtainedeaact similarity solution to the
viscous flow with small wall contractions or expams and weakly permeability.
Dauenhauer and Majdalani [5] obtained a numerichlt®®n and Majdalani and
Zhou [7] got both numerical and asymptotical solos for moderate to large
Reynolds numbers. Srinivasacharya [14] obtainednaemnical solution to the flow
and heat transfer of couple stress fluidin a porchennel with expanding and
contracting walls. Si et al. [13] obtained analyg@utionto the micro-polar-fluid
flow through a semi-porous channel with an expagpdin contracting wall.
Dinarvand [10] studied viscous flow through slowdypanding or contracting
porous walls with lowseepage Reynolds number: a eiddr transport of
biological fluids through vessels.

No-slip condition was no longer valid at the perbleasurface. Some of both
experimental and theoretical studies stated thptcsluld not be ruled out as a
significant element in the understanding of certfliow peculiarities [17].
Beavers, Joseph [2] reported mass efflux experisagalt proved the existence of
a non-zero tangential (slip) velocity on the suefat a permeableboundary. Using
a statistical approach, Saffman [12]derived a féomthe slip velocity. Isenberg
[8] posited slip for all practical purposes in Isisidy of blood flow in capillary
tubes. However, verylittle reports were found imeriture for micropolar fluids
with expanding or contracting walls andslip bourdaondition. Bennett [11]
reported that microscopic examination of blood flogvpasta glass wall shown
slipping (skidding) of red cells in contact withethwall. Chellam et al. [9]
investigated the effect on fluid flow and mass $fan with slip at a uniformly
porous boundary.

Recently, Zhang and Jia [18, 19] discussed thedi&siokes equations with first-
order and second-order accurate slip boundary tondifor describing the two-
dimensional gaseous steady laminar flow between phaies. Ramos [16]
obtained an asymptotic analytical solution of cl@nitows of incompressible
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fluids with a slip length that depended on the gwes and/or the axial
pressuregradient.

The series solutions are presented by HAM develdyyeldao [21-23], which has
been successfully applied to several nonlinear lprosby Hayat, Noor and
Hashim [25, 26]. In this paper, the effects of eliint parameters, especially
expansion ratio and slip coefficient, on velocityaemperature are studied and
shown graphically.

The main goal of this paper is to find the numeérszdutions for the heat transfer
insymmetric porous channel with expanding or caning walls and slip
boundary conditions. Thesecond section will giveteshent of the problem and
governing equations. In section3, computations leynbtopy analysis method.
Finally, the graphs for velocity components andthgansfer presented for
different values of the fluid parameters are ptbead discussed.

2  Statement of the Problem and Governing Equations

Consider the unsteady two-dimensional motion ofredompressible fluid with
heat transfer in a porous semi-infinite channehwitpanding or contracting walls
with slip boundary condition. The distange(t) between the porous walls is
much smaller than the width and length of the clearfne end of the channel is
closed by a complicated solid membrane. Both wia#lse equal permeability
V,and expand or contract uniformaly at a time-depdmaéea(t). As shown in
Fig. 1, a coordinate system may be chosen witlotiggn at the center of channel.
TakeXx andy to be co-ordinate axes parallel and perpendicidathe channel
walls and assum& and¥ to be the velocity components in thendy directions
respectively an@ is the temperature. Under these assumptionsgdkierning
eqguations are expanded as follows [27].
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Figurel: Coordinate system and bulk fluid motion

A general infinitesimal group of transformationsden which given partial
deferential equations are invariant [27], the eguat (1) are a set of linear

deferential equations. Ref [27] completed transfoas

W0

u= lv_ J}
ay ax

And the stream function takes the form, [24, 27]
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Tt (y—+2—)+3€ (G %—3—5%)—0,

He Suggest that the form of temperature take as
0 =0(0xy) =) +x*x),
During the assumption of the third and fourth epprain (1) become

2

X
d_yz-I_Pr

( +R G)dX-I—E d°G 2R i =
ay e dy (o dyz eXdy -

d—f [(ay + R G)d€+4E( )]+2;(_0

With the boundary conditions

dG(1) d’G(1)

dy ~— 7 dy?’

¢)=1 J{W=1 x@)=0

(@)

()

(4)

(5)

)(6



Numerical Study for Heat Transfer in... 59

d26(0)
dy?

=0, G(0) =0, ¢(0) =6, x(0)=0,7)

w UCp

WhereR, =% is permeation Reynolds numb@y,= is Prandtl number

2
andE. = V‘g is Eckart number. The wall permeance or injectioefficientA is
Cpbo

defined asA = %, it is a measure of wall permeability. It will lséarted to solve
the nonlinear equations (4) and (6) with the boupndanditions.

3 Computations by Homotopy Analysis Method [21-23]

From the rule of solution expression and the boondanditions (7) it is
straightforward to choose the following initial gses.

Go(y) = LELH2YD) 3 () = XELBYD andgo(y) = 6 + (1 + 6,)y, ®)

2(1+3 @) 2(1+3 ¢)

The linear operators are selected as

L, = fo,Lz 24 andc, = f;c )
These operators satisfy the following properties:

Li(Cy3+ Cy?+C3y+C,) =0,L,(Csy+ Cg) =0, and

L3(C7y+Cg) =0, (10)

WhereC; (i = 1 — 8) are the constants.

Upon making use of above definitions, we constthet zero-order deformation
problems

(1-p)L,(G—Gy) =paRy(G %) (11)
G'(Lp)=-¢G"(1,p), GO,p) =1,6"(0,p) =0,G(0,p) = 1, (12)
(1=p)L2(R — x0) =p A R,(G, %), (13)
x(1,p) =0,2(0,p) =1, (14)
(1-p)L3(G@—q0) =p R R3(G, %, 0), (15)

(A(l' p) = 1' Z(O, p) = 82) (16)
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A o) _ 0% °Gyp) , ,9°Cyp) N G(yp) _9G(yp)9*G(y.p)
N1( X _6_y4+ ( ay3 +2 9y2 )+R ( G( p) dy ay? )
(17)
A o\ _ 9°20p) 0 .p) 926(y.p)
%o(6,2) = Z2ZE + B ((@y + ReGlyp) ) T2 4 B (T3 52 )? —
. 3¢ (y.p)
2R A, P) =55 (18)
-y 9*G.p) ~ a((y, p) oGy, p), )\ , ..
%a(GR) = 57— + P (ay + RGO p)) 5= + 4B(—5 0)° | + 2RG0p),
(19)

If p€[0,1] is an embedding parameter ahdare the nonzero auxiliary
parameters then the zeroth-order deformation pnoblean be constructed as [15]
respectively. Using Taylor’'s theorem, we can write

GO D) = Go) + Tiams G (IP™, G () = = L202) (20)
ROP) = 2D + Biaea Am (D™, Am(¥) = 0, (21)
$0P) = 6o + Tina G O™ e () = 502 (22)

The convergence of the two series is strongly dég@enupor. Assume thatis
chosen so that the series (20-22) are convergent=at. From Equations (20-
22), we have

G, p) = Go(¥) + Xm=1Gn(¥), (23)
X0,0) = xo¥) + Xm=1Xm (), (24)
(o) =0%O) + 2Xm=1im ), (25)

Differentiating Equations (14) and (16) times with respect {o, then setting
p = 0 and finally dividing them byn!, we obtain the followingn®™ -order
deformation problems.

Li(Gn(¥) = ZmGm-1(¥)) = AR5, (26)
Gm(1) = = G (1), G (1) = 0,6, (0) =0, andG,(0) =0, (27)
RE (y) = G )1 +a(y Gmq +2Gpn1) + X750 Re(Gmk—1Gr' — Gh—k—1Gr),  (28)

Ly Um(¥) = ZmXm-1(¥)) = R RE D), (29)



Numerical Study for Heat Transfer in... 61

xm(0) =0, xn(1) =0, (30)
REG) = Xm-1 + Pe((a X1 + Re Zieo (Gmok—1Xm — 2Xm—k-1Gi) +
EcGioi—1Gio), 1§3
L3Gn®) = Zmlm-1()) = AREG), (32)
(m(0) =0, Lu(D) =1, (33)
Ren () = Uiy + Pl AP Tnoio1 + Re ZI0 (nieo18in + 4EcGinic_1Gi +
ZX;rll—ll (34)
Where

Zo={y oSy (35)

The general solutions of Equations (26), (29) &1#) are

Gn(Y) = G () + 1 + Coy + C3y? + Cuy?), 6§3
Xm (@) = xm(¥) + Cs + Cey), (37)
m(y) =G () +C; + Cgy), (38)

in which G}, (), xm (y) and i, (y)denote the special solutions of Equations (26),
(29) and (32) and the integral constafitgi = 1 — 8) are determined by
employing the boundaryconditions (27),(30) and(83jhis way, it is easy to
solve the linear nonhomogeneous. Equations (26)) éhd (32) by using
Mathematicaone after the other in the onder 1,2,3,....

- (Y _ 2 _ 4 _ _
GO = Grerenoragy (—3880800(=3 +y? — 6¢)(1 + 3¢)* — 55440(—1 +

YA +30)*(Re(-2+y? +y* +3(=6 +y* + y")¢) + 21a(1 + 3¢)(~1 -
7¢ +y2(1+3P)h+ (=1 + y*)(—2772a(1 + 3¢)*(25y*a(1 + 3¢)? —
210(1 + 3¢)(1 + 7¢) — 2¥?(1 + 3¢)(—105 + 19a + 15(—21 + 8a)¢) +
a(13 + 3¢ (52 + 285¢))) + 6R%(703 + 14y8(1 + 3¢)? — 7y°(1 +

3¢)2(53 + 110¢) — y?(1 + 3¢)(173 + 7¢(71 + 330¢)) — y*(1 +

3¢)(173 + 7¢(71 + 330¢)) + ¢ (11248 + 21¢(2063 + 3630¢))) —

77R(1 + 3¢)(65y°a(1 + 3¢)? + y2(1 + 3¢)(360(1 + 3¢) + a (227 +
681¢ + 3240¢2)) + y*(1 + 3¢)(360(1 + 3¢) + @(389 + 15¢(121 +
216¢))) — 3(240(1 + 3¢)(1 + 9¢) + (227 + $(3178 + 3¢(3793 +

6480¢))))))h*)), (39)
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If we taked — 0, we get

—y3 5 3 7 3 9
GQy) = <L+3—y+3a(y——y—+l) + R, (3’__3L+L+a(_133€ey a_
2 2 40 20 40 280 280 140 20160

9y’ n 9yS  227y3 227y ))) 2( y11 R?y° 3y’ 73y3 703y )
2800 5600 25200 33600 €%92400 3360 19600 107800 1293600
7 5 3
2.~y 9y 51y 13y
(35 + 205 " 3500+ 2500 (40)

112 400 2800 2800

4 Numerical Results and Discussion

Our computations show that the series solutionsyege in the whole region of
ywhemi; = g = —1,. This section deals with the graphics and therpnéation
of the dimensionless wall dilation ratand the slip coefficiedt, on thex andy
components of the fluid velocity and heat translistributions. Table (1), figures
2(a) and 2(b) present the comparison of self-axgdbcity u/x profiles between
the HAM solutions and Ref. [24] analytical resudtisa = +0.5, ¢ = 0.

Figures (3-5) show the effect of slip coefficiemt the velocity components and
the temperature distributions. We can observe that slip coefficientd has
obvious influence on the velocity and the tempegatéig.2 shows that the axial
velocity is a decreasing function ¢f near to the center. However, it is an
increasing function op near to the walls. However, with the increase in the
influence of ¢ on the velocity and the temperature becomes smalle can also
find that the radial velocity is a deceasing fumctdfp in fig. 3. Fig.4 show that
the effect of the slip coefficienp on temperatur®, it is obvious that ag
increasing the temperatudedecreasing.The influence of the wall expansioro rat
a on velocity component u/x is given in Figures (6)}-for fixed ¢ in case of
injectionR, = 1 and suctioR, = —1. With the expansion of the wall, the axial
velocity increases. The maximum of streamwise vgldies at the center of the
channel whethex is positive and the lower near the wall; howewdnethera is
negative (contracting wall), increasing contractitio leads to lower axial
velocity near the center, and the higher near ttal. Wwihe axial velocity
distribution, in all cases, approaches a cosinélerd-igs. (8 and 11) shows that
the effect of the wall expansion raticon the temperatur® It is shown that the
temperature is increasing function wittor injection and suction. Figs. (12-14)
shows that the effect of the Eckert numbBgr Prandtel numbeP.and the
initialtemperatur@, on the temperature distribution, we find that téeperature
is increasing function witf., P. and6,.
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Tablel: Comparison between present work solutions and[R4f for self-axial
velocity atR, = 5, for¢p = 0,0 = —0.5 anda = 0.5

oa=-0.5 o=0.5,
Percentage error Per centage
Y Ref[24] Present (%) Ref[24] Present error (%)

0.00 1.5151 1.50268 0.0124254 1.556324 1.5439 Y4500
0.05 1.51134 1.49901 0.0123324 1.551780 1.53945 126324
0.10 1.50005 1.488 0.0120513 1.538164 1.52611 (0109/1¢%
0.15 1.48118 1.4696 0.0115757 1.515522 1.50395 1678/
0.20 1.45465 1.44376 0.0108947 1.483935 1.47304 108917
0.25 1.42038 1.41039 0.00999335 1.443517 1.4335200909335
0.30 1.37826 1.36941 0.00885233 1.394421 1.3855700885233
0.35 1.32817 1.32072 0.00744968 1.336839 1.3293900784968
0.40 1.27002 1.26426 0.00576282 1.271006 1.2652400506282
0.45 1.20371 1.19994 0.00377264 1.197207 1.1934300307264
0.50 1.1292 1.12773 0.00146993 1.115778 1.11431 0186993
0.55 1.04651 1.04764 0.00113512 1.027110 1.02824001@3512
0.60 0.955722 0.959722 0.00399957 0.931656  0.9356860399957
0.65 0.857047 0.864077 0.00702959 0.829933  0.83696200702959
0.70 0.750818 0.760875 0.0100568 0.722523 0.73258.0100568
0.75 0.650349 0.650349 0.0128079 0.610078  0.622885K0128079
0.80 0.532795 0.532795 0.0148669 0.493322  0.50818R0148669
0.85 0.408567 0.408567 0.0156289 0.373046  0.38867100156289
0.90 0.278066 0.278066 0.014244 0.250109 0.264353.014R44
0.95 0.141729 0.141729 0.00955104 0.125435  0.134988)0955104
1.00 -3.470E-18 0.00000 3.470E-18 3.470E-18 0.00000 3.470E-18
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Fig (2a): Comparison betweenl present work solutions and Ref.
[24] for self-axial velocity profiles ait = 0.5 andR, = 5.0.

¥
Fig. 3:The effect of the slip coefficier on the self-
axial velocity component witlR,=0.5,a=0.2

Fig. 5: The effect of the slip coefficiedt on temperture
distribution withR.=1,a =0.5,Ec = 0.5,Pr =0.7,0, =

0,x=3.
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Fig.4: The effect of the ‘slip coefficiert on the
radial velocity component witkR,=0.5,«=0.2
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Fig. 6: The effect of the wall expansion ratioonthe

self-axialvelocity component witR.=1, ¢ =0.2.
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Fig. 8: The effect of the‘ wall expansion ratimn
temperature distribution witR,= 1,¢ = 0.2,
Pr=0.7,Ec=0.5,6, = 0,x =3.

10Fyr +~ + =~ T T T T T —r r r 1 r . r 1]
[ =1 |
== =05
0.5 J
= -a=0
@ =05
0.0
0.5
“10k L
-1.0 —0.5

Fig. 10: The effect of the wall expansion rattoon
the radial velocity component witR, = -0.5,
$=0.2.
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Fig. 12:The effect of the Eckart numbgg on
temperaturedistribution witR.= 1, ,¢ = 0.2a =0.5,
Pr=0.7,6, = 0,x =3.
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Fig. 13: The effect of Prandle numbBr on

I

¥ Fig. 14: The effect 0@, on temperature

distribution withR.= 0.5, = 0.2, a =0.5,Ec =

temperature distribution witR,= 0.5,¢p = 0.2, a 0.5Pr=0.7x=3.
=0.5,Ec = 0.50, = 0,x =3.

5

Conclusion

In this paper, the Homotopy Analysis Method hasnbaeplied to study the heat
transfer in symmetric porous channel with expandingontracting walls and slip
boundary condition equation. The explicit seriedutsons our problem are
obtained, which are the same as those results fyémne group analysis method
[27]for A = —1. In conclusion, HAM provides accurate numericalutioh for
nonlinear problems in comparison with other methdtislso does not require
large computer memory and discretization of theabdesxandy. The results
show that HAM is powerful mathematical tool for \wWaly nonlinear partial
differential equations. Mathematica has been useddmputations in this paper.
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