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Abstract

This paper aims to show that the amenability of K1 x Ky is equivalent to
the following condition: “If ¢ is a continuous positive definite function defined
on Ky X Ky and ¢ > 0 then the constant function 1k, «k, belongs to the spec-
trum of ¢”, which Ky and Ky are locally compact hypergroups as defined by R.
Jewett [1], with convolutions xi, % respectively. Our study deals with the cases
of exponentially bounded product hypergroups and discrete solvable product hy-
pergroups. And study of conditionally exponential convex functions.
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1 Introduction

Let K be a locally compact Hausdorff space, M (K) denote the space of all
bounded radon measures, M'(K) be the subset of all probability measures
and €, be the point mass measure of x € K. The support of a measure p is
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denoted by supp pu. C(K) denotes the space of continuous functions on K.
The space K is called a hypergroup if the following conditions are satisfied:

(H1) There exists a map: K x K — MYK), (z,y) — &, * ¢,, called
convolution, which is continuous, where M!(K) bears the vague topology.

(H2) supp €, * £, is compact.

(H3) There exists a homomorphism K — K, x — z~, called involution,
such that = (7))~ and (g, x€,)” = gy~ * £,

(H4) There exists an element e € K, called unit element, such that e.*e, =
Eg ¥ E¢ = Eg.

(H5) e esupp ¢, * ¢~ if and only if z = y.

(H6) The map (x,y) — supp €, *x ¢, of K x K into the space of nonvoid
compact subset of K is continuous, the latter space with topology as given in
[2,7].

Let K7 and K, are locally compact hypergroups, with convolutions i, %o
respectively. The cartesian product of K; and K, will take the form

K1XK2:{(ZE1,JZ2) X € Kl,and To € KQ}

with convolution * defined on M (K; x Ky)by

E(z1,22) * E(y1,y2) — (€y ¥18y1) X (Eap *2 Eyy)

where €(;, 2,y is the one point mass measure. And the involution of the
product hypergroups is defined by

(x1,229)” = (2], 25),Y(x1,29) € K1 X Ko

finally, the identity element of the product hypergroups is (ej, es), which
e; and ey are the identites of K7 and K, respectively.

A map ¢ define on (K; x K5)? on to R* is called positive definite function
if

Z ciCip( (w1, 22); % (21,22); ) 2 0.

ij=1
where {c1,¢s,...,c,} € C, {(21,22),, (z1,22)y, ..., (¥1,22),,} € K1 X K.

For an example of positive, positive definite functions on a product hy-
pergroups K; x K, are given by a functions of the form f % f~, where f
is a positive function on K; x Ky with compact support, f~ is defined by
f~(z1,22) = f(x1,22)~" and * is the convolution, it is easy to see that the
function f * f~ is positive definite.



Spectrum of Positive Definite Functions on... 61

If P(K; x K3) be the convex set of all continuous positive-definite functions
¢ on K; x Ky with ¢ (e1,e2) = 1. The spectrum spp  of ¢ € P (K; x Kj)
can be defined as the set of all indecomposible ¢ € P(K; x K;) which are
limits, in the sense of the topology of uniform converges on compact subsets
of K1 x Ks, of functions of the form

(1, 22) = Z CiCj E(z1,22); * E(a1,2); ¥ (21, 22)

t,j=1

where {c1,...,cn} € C{(21,72),, (21, 22)y -y (71, 22),, } € K1 X K.

If w, denotes the cyclic unitary representation of K; x K3 associated with
@, then spy consists of all ¢ € P(K; x K) for which 7y is irreducible and
weakly contained in 7y [2].

Our main subject here is to prove that exponentially bounded product
hypergroups and solvable discete hypergroups satisfy the followig property
(which we denote by (P)):

(P) If ¢ € P(K; x K3) and if ¢ is positive in usual sense, then the constant
positive- definite function 1 on K7 X Ko, 1k, xk,, belongs to spp. For connected
hypergroups we show that the condition that the hypergroup is amenable is
equivalent to the following weaker version (P*) of P:

(P*) if ¢ € P(K; x K3) and if ¢ is positive, then 1, «x, € spa(¢), where
spa(¢) is the spectrum of ¢ when the domain of ¢ is (K7 X Ks), ( the discrete
product hypergroups).

2 Exponentially Bounded Hypergroups

Let m be a continuous unitary representation of K; x K5 in the Hilbert space
(Hr, (.,.)). A unit vector £ € H, will be called a positive vector for 7, if

Re (m(x1,72)&,&) >0

for all (x1,29) € Ky X K.
So,
Re <7T () f,é-) € P(Kl X KQ)

Now, it is easy to translate (P) into a property of unitary representations
with positive vectors. In fact, condsider the following property (P’) of K x K
which is formally stronger than (P):

(P") If 7 is a unitary representation of K; x Ky with a positive vector, then
7 contains weakly 1x, xx,.
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Theorem 2.1 (P) and (P’') are equivalent for every product hypergroups
Kl X KQ.

Proof: Let 7 be a unitary representation of Ky x Ky with a positive vector
€ € Hy. Let ¢ (21,29) = Re (7 (21,22) £, §), (1,22) € Ky X Ky. If (P) holds,
then 1x, xk, is weakly contained in 7, which is the subrepresentation of = @ m
and this implies that 1, «k, is weakly contained in 7.

A locally compact product hypergroups is called Exponentially bounded if
lim, |G| = 1

for each compact neighbourhood G of (e, e;), where |.|denotes the Haar
measure and G = {g1,...,gn; 9; € G}. Exponentially bounded hypergroups
are amenable[4].

Theorem 2.2 Fxponentially bounded product hypergroups satisfy property

(P).

Proof: Let K; x Ky be an exponentially bounded product hypergroups
and let p € P (K, x Kj), with ¢ > 0. Let G be a compact neighbourhood of
(€1, e3) with the condition G = G™1, and € > 0. Then there is an n € N such
that

/ E1w2) * E(zy,20)~ (@) d(yr, y2)d(21, 22)

Gn+1 XGn+1

S (1 + €> /G o 5(:‘/1»112) * g(zl,z2)7 (90) d(yla yZ)d(Zla 22) (1)
TLX n

where d(y1,y2), and d(z1, z2)are Haar measures on K; x Kj.
In fact, otherwise

112
|G H} 2 /G it Eyrw2) * €(zy,20)” (@) d<ylay2)d(21, 2'2)
n >< n
> (1+ G)n/ Ey1.2) * €(zy,20)” () d(y1,y2)d(21, 22)
GnxGn

for all n € N.
Since

/ €(y1,y2)*5(z1,zQ)‘ (90) d<y17 y2)d(217 Z2> > O,
G xGn
this would be a contradiction with

lim |G"|" = 1.
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Now choose n € N such that (1) holds.

Let f = xgn be the characteristic function of G™. Let m be the unitary
representation of K; x Ky associated to ¢ with Hilbert space H,. Let £ € H,
be such that ¢ (z1,29) = (7 (1,22) &, &) , (71, 72) € K7 X K».

Then

I (F) €l = /K [t @) o) daya) >0,

since f~ x f(er,e0) (e, en) > 0 and f~ * f (21, 22) p (21,22) > 0 for all
(:171,:762) € K; x K.

Now let
Qﬁ(Ihx?):% (m(z1,22) w (f), 7 (f)€), (21,72) € KixKs.
7 (f) &l
Thent is associated to m.moreover, for each (z1,x2) € K; X K3
6 (1, 2) — 1 = m (7 ((@n,m2) £~ Em (D EOP
< ||7T(($1,$2)f—f)§||2

a Ix(f)¢]?
Jicixrop (@1 22) f = f) (1 92) (@1, 22) [ = f) (21, 22) €grm) * €2y 20)~ () Ay, 92) (21, 22)
.[(K1><K2)2 f (1 y2) f(21, 22)E 4 90 * 5(z1,zZ)*(90)d(yhy2)d(z17 2)
f((ml,xg)G"AG”)Q Eyry2) * €(2y,20)" (¢) d(y1,y2)d(z1, 22)
f(gn)2 Ey1,y2) * €(21,20)" () d(y1,y2)d(21, 22)

where A is the symmetric difference.
Now (1) implies that for (z1,25) € G.

/(( JGnAGH? E(y1,y2) * 5(z1,zz)7 (QD) d(y1, yg)d(zl’ 22)
T1,T2 n n

< /(‘G,LJrl >2 E(yr,2) * €(21,20)~ () d(y1, y2)d(21, 22)

Gn

+ / an 2 €y y2) * 5(z1,22)7 (90) d(yb y2)d(217 22)

< € /(G)2 E(y1,y2) * E(Zl,zz)* (SO) d(yh y2)d(21, Z2)

+ /&(11,12)—1G")2 6(3/17112) * 6(zl,z2)7 (90) d(yh yQ)d(Zla ZQ)

(z1,22)G™
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< 2e /( e S * ) (0) d(y1, y2)d(z1, 22)
since (21, 3)”" € G. Hence [¢) (1, x5) — 1|7 < 2€ for all (zq,x,) € G.

It is to be noted that last Theorem can be reformulate in the form: ” If ¢
is positive and ¢ € P(K; x K3) where (K7 x K3) is an exponentially bounded
product hypergroups, then the constant function 1k, xk, is the uniform limit
on compact subsets of K7 x K5 of functions of the form

(x1,29) — Z E(era2); * E(er,a); (¢ (21, 22)) i
ij—=1

where ¢; > 0 and (21, 22), € K; x Ky forall 1 <1 <n.
Theorem 2.3 Discrete solvable product hypergroups satisfy property (P).

Proof: Let K; x Kj be a discrete solvable product hypergroups and let
o € P(K) x Ky) with ¢ > 0. Let (K) x K2) = (K1 X Ka)p 2 (K1 X Ka)p_1 2
wee D (K7 X Ks)og = {(e1,€2)}, be a composition series with abelian factor
(K1 x K3);/(K; X Ks);—1, 1 < i < n. First we show by induction on ¢ that:
for each 0 < ¢ < n there is a net (¢,), in P(K; x Kj) with ¢ > 0 such that
lim(zy,22) = 1 for all (z1,22) € (K3 x K3); and such that 7y, is weakly
contained in 7 for all a.

For i = 0, the assertion is trivial (take 1, = ¢). For any i suppose that a
net (Yq),ey exists. Let ¢ be a limit point of {14 }aen in the weak *-topology
o (I°(K; x Ky),I'(K; x K3)). Then ¢ € P(K; x K3) and ¢ > 0.

Moreover

Y (1, 29) = liénwa(acl,xg) =1

for all (x1,29) € (K X Kj);.

Hence ¢ | (K7 x K3);—1 factors to a positive definite function of (K; x
K3)iy1/ (K1 X Ks);. Thus by last theorem in its reformulated form there is a
net (1) 5 in P((Ky % Ks)i /(K1 x K);) of the form

w};(xl,xz) = ZCkClE(zl,mg) * 5(931,932)*@(371,%2)% (21, 22) € (K1 X K2)it1
where all ¢, > 0 and (21, x2) € (K7 X K3);4+1, such that
lim¢/ﬁ<$1,1’2> =1

for all (1'1,1‘2) € (Kl X KQ)i—l—l-
It is clear that ¢ € P(K; x K3) and ¢ = 0. Moreover 7y, = my. Hence
each 7y, is weakly contained in {my, | @ € A} which is weakly contained in
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T,. S0, we get a net (1), € P(K; x Kj) such that lim ¢, (21, 22) = 1 for all

r1,29) € (K1 X K3), = (K7 X Ky3) and such that each m,_ is weakly contained
o

in 7,. Hence 1k, «x, is weakly contained in .

Now we reformulate property (P*), defined earlier, as follows: If 7 is a
unitary representaion of K7 x K, with positive vectors, then 1, xk, is weakly
contained in 7, when 7 and 1k, xk, is viewed as representations of the discrete
product hypergroups K; x K.

Theorem 2.4 For a connected product hypergroups K1 x Ky ,the following
statements are equivalent:

i) K x K5 has property (P*).

ii) K1 x K, is amenable.

Proof: Suppose K; x Ky is amenable. Let N be the closure of the com-
mutative subhypergroup of K; x Ks, by [8] proposition 3, N has polynomial
growth hence it is exponentially bounded [4].Let ¢ € P(K; x K,), ¢ > 0. By
last theorem in its reformulated form there is a net (¢,),in P(K; x K) with
1o > 0 such that lim ¢, (z1,22) = 1 for all (z1,22) € N and such that my, is
weakly contained in 7, for all . Considering K; x K5 as a discrete product
hypergroups we can apply the method of proof of the last theorem to get some
Y € P(K; x Ky), ¢ >0 with ¢ | N = 1 and such that 7, is weakly contained
in m,. Since K x Ky/N is abelian, 1k, «k, is weakly contained in 7, and the
result follows.

Now if K7 x K, has property (P*), then 1k, <k, is weakly contained in
the regular representation Ak, x x,,when both representations are considered as

representations of Ky x K5. This is equivalent to the amenability of Ky x Ky
[4].

3 Conditionally Exponential Convex Functions
on Product Dual Hypergroups

In this section we will give some properties of the class of conditionally expo-
nential convex functions defined on product dual hypergroups.

Definition 3.1 Let K* be the dual of the hypergroup K the function 1 :
K* — C is said to be conditionally exponential convex if for alln € N and any
Y1, Y2, - Yn € K* and ¢y, ca, ..., c, € C we have:

vz V(i) + ¥ (y;) — Y (ys + yj)leic; > 0

foralln € N, ¢y, co,...,c, € C and any y1, Y2, ..., Yn € K*.
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Theorem 3.2 If ¢ : Ki — C,¢ : K — C are conditionally exponential
convex functions respectively, then ¢ : Ki x K5 — C defined by

(Y1, y2) = V(Y1) + ¥ (y2)
18 conditionally exponential convex function.

Proof: Let ¢ : K — C, and ¢ : K; — C,
then

Vv
o

e )i + 9 (yn); — ¥((v)i + (y1);)]eicy
e [V(y2)i + ¥ (y2); — ¥ ((y2)i + (y2);)]eic;

then we have

Yy ve) = P, ve)i + 0(yn,v2); — ©((yn,v2)i + (01, 92)5)leics
= =Yy + (2)2+ (1) + ¥(ya); — l(y1)i + (1);] — ¥(y)i + (y2);]]eics
= Lol +¥); — iy + (n1)jleic;

o V(W2)i +0(y2); — Y[(y2)i + (y2)5]eics
0

= P(y1) + Y (ya)-

there for 1(yy, y2) is conditionally exponential convex function.

Y
o

Theorem 3.3 A continuous function ¥ : Ki x K — C is conditionally
exponential convez iff the following conditions are satisfied: (i) ¥(0,0) > 0,
(1) Wi (y1,y2) = exp[—t(y1,y2)] is conditionally exponential covex for all t.

Proof: Suppose that ¢ is continuous conditionally exponential convex
function, then (i) is easly satisfied. To establish (ii) we have:

iz [y, y2)i + Uy, y2)5 — (v, y2)i + (Y1, 92)5)]eic; > 0

which implies that

=1 exp[Y (Y1, y2)i + (Y1, y2); — (Y1, y2)i + (Y1, y2);)]eics > 0

So, we have for t = 1,

Fic1 Vi (Y1, v2)i + (v, y2)5)cicy

n

= Z exp[—v((y1,y2)i + (91792)j)]0ic_j

1,j=1

= > expU(yn, v2)i + U(yr,v2); — V(1 v2)i + (1, 92)))cl]

ij=1
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where ¢, = ¢, exp|—¢(y1, y2)x]). Hence, WUy (y1,y2) is conditionally exponential
convex.

Since t1(t) is conditionally exponential convex, then its clear that W;(yy, y2)
is conditionally exponential convex all ¢ > 0.

To prove the converse, let (i) and (ii) be satisfied. By (i) we have exp[—t1(0,0)] <
1 for all ¢ > 0. So U;(y1,y2) = 11 — exp(—t1(y1,¥2))] is conditionally expo-
nential convex for all ¢ > 0. Using Fattou’s lemma we can easily get that
(Y1, y2) = lim Wy(yy, o) is conditionally exponential convex.

Theorem 3.4 Let ¢ : Ki x K5 — C be a conditionally exponential convex
and suppose that 1(0,0) > 0 then i 15 conditionally exponential convex.

Proof: Since 1 is conditionally exponential convex function, then the func-
tion exp|—ty(y1,y2)] is coditionally exponential convex for all £ > 0. The

function i can be written in the form:

1

m = /Ooo exp[—t(y1, y2)]dt

Hence,

u 1
Z V(Y1 y2)i + (Y1,92);5)

C,L'C_j
ij=1
- Z Cic_j/o exp|—t((y1, y2)i + (Y1, y2);)ldt
i,7=1
- /0 {Z exp[—ty((y1, y2)i + (Y1, y2)j)]cic_j} dt > 0.
ij=1

Thus, i is conditionally exponential convex.
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