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Abstract
This paper introduces the notion of zero ring graphs. Basic properties of the

zero ring graphs are investigated and characterization results regarding connect-
edness and planarity are given. Further, we determine the chromatic number
for ΓM0

2 (Zp[x]/〈xk〉), where p is a prime, k > 1 and it is shown that an iso-
morphism exists among the zero ring graphs ΓM0

2 (Zpk), ΓM0
2 (Zp[x]/〈xk〉) and

ΓM0
2 (Fpk).
Keywords: Clique, Hamiltonian, Isomorphism, Planarity, Zero ring.

1 Introduction

For all terminology and notation in graph theory and abstract algebra, not
specifically defined in this paper, we refer the reader to the text-book by West
[6] and Jacobson [4] respectively. Unless mentioned otherwise, all graphs con-
sidered in the paper are finite, connected and simple.
In this paper, our aim is to introduce the notion of zero ring graph (the graph
whose vertices are the elements of a zero ring) and study on its basic properties
such as degree, planarity, chromatic number and perfectness, for this first we
should be familiar with the zero ring and its related results. In this regard,
we state some results on zero ring which make the paper self contained.

A ring in which the product of any two elements is 0 is called a zero ring
and denoted by R0, where ‘0′ is the additive identity of zero ring. One of the
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standard example of zero ring is the set of 2× 2 matrices defined as{[
r − r
r − r

]}
,

where r ∈ R and R is a commutative ring. Throughout the paper we shall
denote the above set by M0

2 (R). The above example implies the validity of
following result.

Theorem 1.1 For every positive integer n, there exists a zero ring of order
n.

There are many interesting properties of zero ring available in the literature
(e.g., see [1, 7]). Some elementary ones are listed below.

Proposition 1.2 Every zero ring is commutative.

Proof. Proof is immediately follows from the definition of zero ring. �

Given a ring R, an element z ∈ R is called a left zero-divisor (respectively
right zero-divisor) of R if there exists a non zero element a ∈ R (respectively, a
non zero element b ∈ R) such that z.a := za = 0 (respectively, b.z := bz = 0);
in particular, if z is both a left zero-divisor and a right zero-divisor of R, then z
is simply called a zero-divisor of R. The set of all zero-divisors of R is denoted
by Z(R).

Proposition 1.3 For each prime p, the set of all zero-divisors of ring Zp2 is
a zero ring of order p.

Proof. Consider the ring Zp2 , clearly all the multiples of p are zero-divisors
i.e.,

Z(Zp2) = {0, p, 2p, · · · p(p− 1)}.

Now, our aim is to show that the set Z(Zp2) is a zero ring, towards this,
firstly, we need to check whether it is a ring or not. It is easy to verify that
(Z(Zp2),+p2) is an abelian group with additive identity 0 and additive inverse
of any element mp is p2−mp and (Z(Zp2),×p2) is closed as well as associative.
To examine the distributive property choose 0 ≤ r1, r2, r3 ≤ p− 1 then

r1p(r2p+p2 r3p) = r1(r2 +p2 r3)p
2 = 0 = (r1r2p

2 +p2 r1r3p
2).

We, next proceed to show that it is a zero ring, for every pair of two elements
a1, a2 ∈ Z(Zp2), one may have

a1 · a2 = 0(mod p2).
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Hence the result. �

Motivated from the definition of zero ring, here we are defining the proper
zero ring.
A ring in which the product of two distinct elements is 0 called a proper zero
ring denoted by R∗, mathematically, a · b = 0 ∀ a, b ∈ R∗ and a 6= b, where ‘0′

is the additive identity of proper zero ring.

Proposition 1.4 Every zero ring is a proper zero ring but the converse is not
true.

The following example illustrates Proposition 1.4.

Example 1.5 Consider the subring S of the ring Z2×Z2 defined as follows:

S = {(0, 0), (0, 1)}.

In subring S, one can easily see that

(0, 1)× (0, 1) 6= (0, 0) and (0, 0)× (0, 1) = (0, 0),

which shows that S is a proper zero ring but not a zero ring.

Proposition 1.6 [7] If n = pa11 · pa22 · pa33 · · · p
ak
k , then the number of zero rings

of order n are p(a1) · p(a2) · · · p(ak), where p(ai) denotes the partition of a
natural number.

The following corollary is an immediate consequence of Proposition 1.6.

Corollary 1.7 If n is the product of distinct primes, then there exists only
one zero ring of order n.

The following is a formal definition of the new notion to start with.

Definition 1.8 Let (R0,+, ·) be a finite zero ring then the zero ring graph,
denoted as ΓR0, is a graph whose vertices are the elements of zero ring R0 and
two distinct vertices x and y are adjacent if and only if x+ y 6= 0, where ‘0′ is
the additive identity of R0.

The graphs shown in Figure 1 are the zero ring graphs, where

vi =

[
i −i
i −i

]
; i ∈ R

and R is a commutative ring, viz., Z6,Z3 and Z2[x]/〈x2〉
The Proposition 1.9 is a consequence of Definition 1.8
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Figure 1: ΓM0
2 (Z6), ΓM0

2 (Z3) and ΓM0
2 (Z2[x]/〈x2〉)

Proposition 1.9 For each positive integer n > 1, there exists a zero ring
graph ΓR0 of order n.

Further, one may naturally ask: Does there exist a graph which is not a
zero ring graph? The answer is in affirmative, for example the complete graph
K6. In fact the above question raises the following research problem:

Problem 1.10 Characterize those graphs which are not the zero ring graphs.

2 Zero Ring Graph ΓM 0
2 (Zn), n > 1

In this section, we shall investigate some important concrete properties and
establish theorems which we required in the subsequent sections.
We start with the graph theoretical properties of ΓM0

2 (Zn), n > 1.

Theorem 2.1 The total number of edges in a zero ring graph ΓM0
2 (Zn), is

given by {
(n−1)2+1

2
, if n is even

(n−1)2
2

, if n is odd

Proof. For a positive integer n > 1, M0
2 (Zn) is a zero ring of order n associated

with Zn, consisting the elements{[
0 0
0 0

]
,

[
1 −1
1 −1

]
,

[
2 −2
2 −2

]
, · · · ,

[
n− 1 − (n− 1)
n− 1 − (n− 1)

]}
Clearly, this is the vertex set of ΓM0

2 (Zn). In order to calculate the total
number of edges, it is suffices to calculate, the non adjacent pairs in ΓM0

2 (Zn).
Any two vertices are non adjacent in ΓM0

2 (Zn), if they produces a zero sum
modulo n. Note that[

i −i
i −i

]
+

[
j −j
j −j

]
=

[
0 0
0 0

]
,

if and only if i + j = 0(mod n) ∀ i, j, where 1 ≤ i, j ≤ n − 1. Now there are
two cases for n.
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Firstly, let n be even, then there are exactly n
2
− 1 pairs of distinct vertices

each of which produces a zero sum modulo n, viz., (1, n−1), (2, n−2), · · · (n
2
−

1, n
2

+ 1). Therefore, n
2
− 1 edges will not appear in ΓM0

2 (Zn). It is clear that
maximum number of edges in a graph of order n is n

2
(n− 1).

Thus ΓM0
2 (Zn) would have n

2
(n− 1)− (n

2
− 1) = n2

2
− n+ 1 edges.

Next, let n be odd then by the previous argument, the pairs which are non
adjacent in ΓM0

2 (Zn) are precisely (1, n−1), (2, n−2), (n
2
−1, n

2
+1), · · · (n−1

2
, n+1

2
).

Thus the total number of edges in ΓM0
2 (Zn) is

n

2
(n− 1)− (

n− 1

2
) =

(n− 1)2

2
.

Hence the proof. �

Corollary 2.2 The zero ring graph ΓM0
2 (Zn), n > 2 is never complete.

Proof. Suppose on contrary that ΓM0
2 (Zn), n > 2 is complete, this implies

that total number of edges in ΓM0
2 (Zn), n > 2 are n

2
(n − 1) but in view of

Theorem 2.1, we arrived at a contradiction to the completeness of ΓM0
2 (Zn).

�

Remark 2.3 If a finite graph G have number of edges as in Theorem 2.1,
then G need not be a zero ring graph of ΓM0

2 (Zn).

The graph shown in Figure 2 illustrates the Remark 2.3 in which both the
graphs have same number of vertices and edges. However, the graph in (a) is
the zero ring graph of ΓM0

2 (Z5) but the other one is not.

Figure 2:

The above discussion raises the following question:

Problem 2.4 What additional conditions should be imposed on a finite graph
G having number of edges as in Theorem 2.1, so that it becomes a zero ring
graph ΓM0

2 (Zn)?

Proposition 2.5 For a zero ring graph ΓM0
2 (Zn), the following statements

hold:
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(i) for even n,

deg(vi) =

{
n− 1, if i ∈ {0, n

2
}

n− 2, otherwise

(ii) for odd n,

deg(vi) =

{
n− 1, if i = 0
n− 2, otherwise

Proof. (i) Trivially, the vertex v0 =

[
0 0
0 0

]
in ΓM0

2 (Zn) is adjacent to all

other vertices, this implies that degree of v0 is n− 1. Any two distinct vertices
vi and vj in ΓM0

2 (Zn) are adjacent if and only if[
i −i
i −i

]
+

[
j −j
j −j

]
6=
[

0 0
0 0

]
,

if and only if i+ j 6= 0(mod n), ∀ i 6= j, where 1 ≤ i, j ≤ n− 1, therefore it is
easy to derive that the degree of vertex vn

2
is n − 1. Due to Theorem 2.1, for

even n, the pairs of distinct vertices each of which produces a zero sum modulo
n, are precisely, (v1, vn−1), (v2, vn−2), · · · , (vn

2
−1, vn

2
+1). This implies that all

these vertices in ΓM0
2 (Zn) have same degree, which is < n− 1. However, each

vertex in the above pairs is non adjacent with exactly one vertex. Hence, the
remaining vertices have degree n− 2.

(ii) Now if n is odd, then v0 is the only vertex in ΓM0
2 (Zn) which is adjacent

to all other vertices, therefore the degree of vertex v0 is n− 1. The remaining
part of the proof can be given by the arguments analogues to those used in (i).
�

In light of Proposition 2.5, the following remark is obvious.

Remark 2.6 The zero ring graph ΓM0
2 (Zn), n > 2 is never regular.

A graph is called (r1, r2)-semi regular if its vertex set can be partitioned into
two subsets V1 and V2 such that all the vertices in Vi are of degree ri for i = 1, 2.

Corollary 2.7 The zero ring graph ΓM0
2 (Zn) is always (n− 1, n− 2)-semi

regular.

Proof. The proof of the result follows due to Proposition 2.5 together with
the definition of semi-regularity. �

For distinct vertices x and y of a graph G, let d(x, y) be the length of the
shortest path from x to y, the diameter of a graph, denoted by diam(G), is
given by diam(G) = max{d(x, y) : x, y ∈ V (G)}.

Theorem 2.8 The diameter of zero ring graph ΓM0
2 (Zn), n > 2 is 2.
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Proof. Consider the zero ring graph ΓM0
2 (Zn), n > 2 having the vertices of

the form

vi =

[
i −i
i −i

]
; i ∈ Zn .

Since the vertex v0 is adjacent to every vertex of ΓM0
2 (Zn), n > 2, however vj

is not adjacent to vn−j for all 1 ≤ j < n− 1 (i.e., each vertex is non adjacent
with exactly one vertex), so d(vj, vn−j) > 1, but in ΓM0

2 (Zn), n > 2, there
always exists a path vn−j → v0 → vj, which gives

d(vn−j, vj) = 2 ∀ j

It follows that
diam(ΓM0

2 (Zn) = 2. �

Theorem 2.9 The zero ring graph ΓM0
2 (Zn), n > 3 is never a cycle graph.

However, ΓM0
2 (Zn) properly contains a cycle of length n.

Proof. We know that a graph G is cycle if the degree of each vertex is 2. Now
due to Proposition 2.5 each vertex in ΓM0

2 (Zn) can not have degree 2 for any
n > 3. We shall now show that ΓM0

2 (Zn) always contains a cycle. To do this,

let vi be the ith vertex in ΓM0
2 (Zn) defined as vi =

[
i −i
i −i

]
, 0 ≤ i ≤ n − 1,

and consider the following two cases:
Case 1: If n is even, then

v0 → v1 → v2 → v3 → · · · → vn → v0

ensure the existence of a cycle which covers all the vertices (as sum of any two
consecutive vertices is non zero).
Case 2: If n is odd, then we construct a cycle

v0 → v1 → v2 → v3 → · · · → vn−1
2
→ vn+3

2
→ vn+5

2
→ · · · → vn−1 → vn+1

2
→ v0,

which again covers all the vertices. Hence, in both the cases there exist a cycle
of length n in ΓM0

2 (Zn) covering all the vertices. �

A graph is Hamiltonian if it has a cycle that visits every vertex exactly once;
such a cycle is called a Hamiltonian cycle. In a graph to find the Hamiltonian
cycle is an NP-complete problem. In fact, it is considered as a particular
case of the traveling salesman problem and still there is not any result which
gives the characterization of a Hamiltonian graph. An Interesting example of
NP-complete problem is the graph isomorphism problem. For more details on
Hamiltonian cycle the reader is referred to [3].

One of the interesting property of zero ring graphs is that they provides a
class of Hamiltonian graph, (cf.: Theorem 2.10) thus study on the zero ring
graphs seems to be an extremely useful tool for the above problem.
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Theorem 2.10 The zero ring graph ΓM0
2 (Zn), n > 3 is always Hamilto-

nian.

Proof. The result is an immediate consequence of Theorem 2.9. �

A graph G is called connected if for any vertices x and y of G there is a
path between x and y, otherwise, G is disconnected.

Theorem 2.11 The zero ring graph ΓM0
2 (Zn) is always connected.

Proof. In light of Theorem 2.10, one can easily see that ΓM0
2 (Zn) is Hamil-

tonian which ensures that there exist a path between every pair of vertices. �

A connected graph without any cycle is called a tree.

Theorem 2.12 The zero ring graph ΓM0
2 (Zn) is tree if and only if n = 2

or 3.

Proof. It is easy to see from Theorem 2.9 that for n > 3, ΓM0
2 (Zn) always

contains a cycle, so can not be a tree. On the other hand, for n = 2 and 3,
ΓM0

2 (Zn) is K2 and K1,2 respectively. Thus the result follows. �

Theorem 2.13 [6] A graph is Eularian if and only if degree of each vertex
is even.

Theorem 2.14 The zero ring graph ΓM0
2 (Zn) is never Eularian.

Proof. Suppose on contrary that ΓM0
2 (Zn) is Eularian, which implies that

degree of each vertex is even. By the Proposition 2.5, it is clear that the
degree of each vertex is either n− 1 or n− 2. Now, there are two possibilities:
if n is even, then n − 1 is odd. On the other hand, if n is odd, then n − 2
is odd. Hence in both the possibilities, we found that degree of each vertex
can not be even. But, this contradicts that ΓM0

2 (Zn) is Eularian. Thus, by
contraposition, the result follows. �

Theorem 2.15 [6] A simple graph G is bipartite if and only if G does not
have any odd cycle.

Theorem 2.16 The zero ring graph ΓM0
2 (Zn) is bipartite if and only if

n ∈ {2, 3}.

Proof. Necessity: Suppose that G is bipartite. To show the result, let if possi-
ble n 6= 2, 3, firstly, let n be 4 and clearly the vertices v0, v1, v2 ∈ V (ΓM0

2 (Z4))
are pairwise adjacent, where vi is defined as in Theorem 2.8. Therefore,

v0 → v1 → v2 → v0
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would be a triangle. But, this contradicts our assumption that G is bipartite.
It follows that n can not be 4. Further if n > 4, then clearly, vertices v0, v1, v2 ∈
V (ΓM0

2 (Z4)) again form a 3-cycle. Therefore, if n ≥ 4, then it is not difficult
to see the existence of 3-cycle, by which we arrived at the contradiction. Thus
n can not be ≥ 4. Hence n must be 2 or 3.

Sufficiency: The sufficiency is easy to see as for instance, ΓM0
2 (Z2) and

ΓM0
2 (Z3) are isomorphic to K2 and K1,2 respectively. Clearly, both are bipar-

tite. �

The following remark is an immediate consequence of Theorem 2.16.

Remark 2.17 The zero ring graphs ΓM0
2 (Zn), n > 3, are not triangle free.

Theorem 2.18 The girth of zero ring graph ΓM0
2 (Zn), n > 3 is always 3.

Proof. In view of Theorem 2.16, for n ≥ 4, we always have a 3-cycle

v0 → v1 → v2 → v0,

which is smallest. This completes the proof. �

For a nonnegative integer k, an k–partite graph is one whose vertex set is
partitioned into k disjoint parts in such a way that the two end vertices for
each edge belongs in distinct partitions.

Theorem 2.19 The zero ring graph ΓM0
2 (Zn), n > 1 is{

n
2

+ 1− partite, if n is even
n+1
2
− partite, if n is odd

Proof. Consider the zero ring graph ΓM0
2 (Zn) having the vertices

vi =

[
i −i
i −i

]
; i ∈ Zn.

Due to the nature of vertices ΓM0
2 (Zn), maximum two vertices can be in the

independent set. Now there are two cases for n.
Firstly, suppose that n is odd, then independent set are

{v1, vn−1}, {v2, vn−2}, · · · , {vn−1
2
, vn+1

2
}.

Since v0 is adjacent to all the vertices, it will be in a different part. Therefore,
the number of independent set is equal to

n− 1

2
+ 1 =

n+ 1

2
= cardinality of a part.
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On the other hand, when n is even then the independent sets are

{v1, vn−1}, {v2, vn−2}, · · · , {vn−2
2
, vn+2

2
}.

Since vertices v0 and vn
2

are adjacent to all the vertices, both will be in different-
different part. Following the above procedure, the number of independent set
is equal to

n− 2

2
+ 2 =

n

2
+ 1

which is the cardinality of part. Hence the result. �

A k-edge coloring of a graph G is an assignment of k labels, also called
colors, to the edges ofG such that every pair of distinct edges sharing a common
vertex are assigned two different colors. The chromatic index of G, denoted
χ
′
(G), is the smallest positive integer k such that G has k-edge coloring. An

important theorem for edge chromatic number given by Vizing is as follows:

Theorem 2.20 [2] Let G be a graph whose maximum vertex degree is ∆,
then ∆ ≤ χ

′
(G) ≤ ∆ + 1.

The graphs which attains lower bound of Vizing inequality called class 1 and
which attains upper bound called class 2.

Theorem 2.21 The zero ring graph ΓM0
2 (Zn) is of class 1.

Now, we shall characterize the planarity and outerplanarity of zero ring graphs
ΓM0

2 (Zn).
A graph is said to be planar if it can be drawn in the plane in such a way

that its edges intersect only at their ends. A remarkable simple characteriza-
tion of planar graphs was given by Kuratowski [5] as follows:

Theorem 2.22 [6] A graph is planar if and only if it does not have a sub-
graph homeomorphic to K5 or K3,3.

Theorem 2.23 [6] Let G be simple planar graph having n(G) ≥ 3 vertices
and e(G) edges then

e(G) ≤ 3n(G)− 6.

Theorem 2.24 The zero ring graph ΓM0
2 (Zn) is planar if and only if n ∈

{2, 3, 4, 5}.

Proof. If n ∈ {2, 3, 4, 5}, then one can easily produce a planar representation
of ΓM0

2 (Zn). We shall now show that ΓM0
2 (Zn) is non-planar for any other

values of n. Since a simple planar connected graph has a vertex of degree less
than six, by Proposition 2.5, all the vertices in ΓM0

2 (Zn) have degree either
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n− 1 or n− 2, therefore, if n− 2 ≥ 6, then ΓM0
2 (Zn) can not be planar. This

implies that ΓM0
2 (Zn) is non-planar for all n ≥ 8. Next, it remains to prove

the result for n = 6, and 7, we shall show the desired result by contradiction,
suppose if possible ΓM0

2 (Z6) and ΓM0
2 (Z7) are planar, then the number of

edges e(G) in zero ring graphs (cf.: Theorem 2.1) are 13 and 18 respectively.
However, according to the assumption ΓM0

2 (Z6) is planar then it must satisfy

e(G) ≤ 3n(G)− 6.

13 ≤ 3× 6− 6

13 ≤ 12,

which is a preposterous. Similarly for n = 7, the argument is same as given
for n = 6. Therefore, our assumption is wrong. Hence ΓM0

2 (Zn) is non planar
for all n ≥ 6. �

A planar graph is called outerplanar if it can be embedded in a plane in
such a way that all of its vertices are in the same face.

Theorem 2.25 [2] A graph G is outerplanar if and only if it has no sub-
graph homeomorphic to K4 or K2,3 except K4 − x.

Theorem 2.26 The zero ring graph ΓM0
2 (Zn) is outerplanar if and only if

n ∈ {2, 3, 4, 5}.

Proof. Due to Theorem 2.24, the only possibility for ΓM0
2 (Zn) to be outer-

planar is that n ∈ {2, 3, 4, 5}. If n ∈ {2, 3, 4, 5}, then we can easily produce an
outerplanar representation of ΓM0

2 (Zn). Due to Theorem 2.25, ΓM0
2 (Zn), n > 5

is non-outerplanar. Hence the result. �

An Isomorphism from G to H is a bijection f that maps V (G) to V (H)
and E(G) to E(H) such that each edge of G with end vertices u and v is
mapped to an edge with end vertices f(u) and f(v).

Theorem 2.27 [6] Two graphs G and H are isomorphic if and only if their
complements are isomorphic, i.e., G ∼= H iff Gc ∼= Hc.

To prove the next result, first we need the following. For the quotient ring
Q = Zp[x]/〈xk〉, where p is a prime and k > 1, the elements are congruence
classes of polynomials modulo under the principal ideal 〈xk〉. Any element in
Q is of the form q(x) = q0 + q1x+ q2x

2 + · · ·+ qk−1x
k−1, where qi ∈ Zp for each

i.
Note that if two zero rings are isomorphic, then obviously their zero ring

graphs are also isomorphic, but the zero ring graphs may be isomorphic al-
though rings are not. The next theorem provides such a class.
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Theorem 2.28 For each odd prime p, the zero ring graphs of order p2 are
isomorphic.

Proof. In view of Proposition 1.6 there exist only two zero rings of order
p2, viz., M0

2 (Zp[x]/〈xk〉) and M0
2 (Zp2), clearly both rings are non-isomorphic

(under addition only one forms a cyclic group). Now, it remains to show that
ΓR0

1 and ΓR0
2 are isomorphic, where R0

1 = M0
2 (Zp[x]/〈xk〉) and R0

2 = M0
2 (Zp2).

Since ΓcR0
1
∼= (p2−1)

2
K2 ∪ K1

∼= ΓcR0
2, so, due to Theorem 2.27, we get the

desired result. The complement of ΓM0
2 (Z9) and ΓM0

2 (Z3[x]/〈x2〉) are shown
in Figure 3(a) and 3(b) respectively. �

Figure 3: (a) ∼= ΓcM0
2 (Z9) and (b) ∼= ΓcM0

2 (Z3[x]/〈x2〉)

Motivation for studying zero ring graph associated with polynomial quo-
tient rings Zp[x]/〈xk〉, mainly stems from Theorem 2.28.

3 Zero Ring Graph Γ(M 0
2 (R)), where R is a

Polynomial Quotient Ring

In this section, we shall discuss the structure of Γ(M0
2 (R)), where R is a poly-

nomial quotient ring Zp[x]/〈xk〉, and p is a prime with k > 1. Further, we
determine the clique and chromatic number of Γ(M0

2 (R)), using this, we dis-
cover a connection between ΓM0

2 (Zpk) and ΓM0
2 (Zp[x]/〈xk〉), p is an odd prime.

A complete graph is a graph in which each pair of distinct vertices is joined
by an edge, denoted as Kn. It is interesting to note that the following theorem
asserts that ΓM0

2 (Z2[x]/〈xk〉) is complete.

Theorem 3.1 The zero ring graph ΓM0
2 (Z2[x]/〈xk〉), k > 1 is complete.

Proof. Consider the zero ring M0
2 (Z2[x]/〈xk〉) having the elements

{
[

0 0
0 0

]
,

[
1 −1
1 −1

]
,

[
x −x
x −x

]
[
x+ 1 − (x+ 1)
x+ 1 − (x+ 1)

]
, · · · ,

[
xk−1 −xk−1
xk−1 −xk−1

]
,

[
xk−1 + 1 −(xk−1 + 1)
xk−1 + 1 −(xk−1 + 1)

]
}.
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Clearly, it is the vertex set of zero ring graph and it is not difficult to verify
that the sum of any two elements is non zero, therefore, every pair of distinct
vertices are adjacent. Hence ΓM0

2 (Z2[x]/〈xk〉) is complete. �

The clique number of a graph G denoted by ω(G), is the size of a maximum
clique.

Theorem 3.2 The clique number of ΓM0
2 (Zp[x]/〈xk〉) is pk+1

2
, where p is

an odd prime and k > 1.

Proof. Consider ΓM0
2 (Zp[x]/〈xk〉), where p is an odd prime and k > 1.

Let v0, v1, v2, · · · vpk−1, be pk vertices of zero ring graph ΓM0
2 (Zp[x]/〈xk〉), as

follows [
a(x) −a(x)
a(x) −a(x)

]
: a(x) ∈ Zp[x]/〈xk〉.

Clearly, every element a(x) ∈ Zp[x]/〈xk〉 is a polynomial in x with degree < k.
Let vi and vj be two vertices of ΓM0

2 (Zp[x]/〈xk〉) such that

vi =

[
a(x) −a(x)
a(x) −a(x)

]
; and vj =

[
b(x) −b(x)
b(x) −b(x)

]
,

where

a(x) = a0 + a1x+ a2x
2 + · · ·+ ak−1x

k−1, ai ∈ Zp, 0 ≤ i ≤ k − 1

and

b(x) = b0 + b1x+ b2x
2 + · · ·+ bk−1x

k−1, bi ∈ Zp, 0 ≤ i ≤ k − 1

then the sum vi + vj =

[
a(x) + b(x) −(a(x) + b(x))
a(x) + b(x) −(a(x) + b(x))

]
=

[
0 0
0 0

]
⇔ a(x) + b(x) ∼= 0(mod p)

⇔ ai + bi ∼= 0(mod p)

⇔ bi = p− ai for all 0 ≤ i ≤ k − 1 and for all non zero ai and bi. (1)

Trivially, the vertex v0 is adjacent with all other vertices in ΓM0
2 (Zp[x]/〈xk〉),

also any two distinct vertices vi and vi are non adjacent if and only if the coef-
ficient of their associated polynomial satisfies (1) it follows that any vertex vi
is non adjacent with exactly one vertex vj and hence, such vertices are pk − 1

in number. Clearly, the pair of non adjacent vertices are pk−1
2

, and hence total

number of mutually adjacent vertices are pk − (p
k−1
2

) = pk+1
2

, which is size of
a maximum clique. �

An independent set of vertices (also called a coclique) in a graph is the set
of pairwise non-adjacent vertices.
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Theorem 3.3 The chromatic number of ΓM0
2 (Zp[x]/〈xk〉) is pk+1

2
, where p

is an odd prime and k > 1.

Proof. Using χ(G) ≥ ω(G) [6] together with the Theorem 3.2, we get

χ(G) ≥ pk + 1

2
.

Now, we shall show the desired result with the help of coclique. Except the
vertex v0, every vertex in a zero ring graph is non adjacent with precisely one
vertex. Therefore, maximum coclique is of size 2, moreover such coclique are
pk−1
2

in number. In fact each coclique is uniquely colorable, means that for

all these vertices we need pk−1
2

colours. However vertex v0 is adjacent with
all the vertices, thus we require one more colour distinct from these colours.
Hence, minimum number of colours required to colour the zero ring graph are
pk−1
2

+ 1, which is equal to pk+1
2
. Thus the result follows. �

A graph G is called weakly perfect if its chromatic number is equal to
clique number. The following result ensures that the zero ring graph is weakly
perfect. Moreover, it gives a class of weakly perfect graph.

Theorem 3.4 For each odd prime p, ΓM0
2 (Zp[x]/〈xk〉), k > 1 is weakly

perfect.

Proof. Invoking the Theorems 3.3 and 3.4, result follows. �

Theorem 3.5 The zero ring graphs ΓM0
2 (Zpk) and ΓM0

2 (Zp[x]/〈xk〉) are
isomorphic, where p is an odd prime and k > 1.

Proof. We shall establish the result with the help of Theorem 2.27, clearly the
vertices which are non adjacent in graph will be adjacent in the complement.
In view of Theorem 3.3, notice that a maximum coclique is of size two and

number of such coclique are pk−1
2

, it follows that ΓcM0
2 (Zp[x]/〈xk〉) have pk−1

2

copies of K2 with an isolated vertex as ‘v′0 is adjacent with all the vertices in
ΓM0

2 (Zp[x]/〈xk〉) that is

ΓcM0
2 (Zp[x]/〈xk〉) ∼= (

pk − 1

2
)K2 ∪K1.

Similarly, to see the complement of ΓM0
2 (Zpk), it is sufficient to find the non

adjacent pair in ΓM0
2 (Zpk) and they are precisely

(v1, vpk−1), (v2, vpk−2), · · · , (v pk−1
2

, v pk+1
2

).
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Figure 4: ΓM0
2 (Z9) and ΓM0

2 (Z3[x]/〈x2〉) containing K5

Therefore, again all these form K2 with a isolated vertex in complement. Thus

ΓcM0
2 (Zpk) ∼= (p

k−1
2

)K2 ∪K1. Hence the result. �

We conclude this section with two examples which illustrates Theorems 3.2
and 3.3, the chromatic number of ΓM0

2 (Z9) is equal to five and the chromatic
number of ΓM0

2 (Z3[x]/〈x2〉) is also equal to five. The graph displayed in Figure
4. Here the different bullets indicates the presence of the different colors.

4 Zero Ring Graph Γ(M 0
2 (R)), where R is a Fi-

nite Field

For the definition and basic properties of field, we refer the reader to Jacobson
[4]. As treated in [4], we shall denote the finite field by Fq, where q = pk.
Now to extend our study on a field, we need to consider two cases depending
on the values of k, firstly, let k = 1 in this case q is just a prime, then Fp

is isomorphic to Zp, then obviously their respective zero ring graphs will be
isomorphic. Consequently, the study done in Section 2 for ΓM0

2 (Zn), when n
is a prime is similar to the study for ΓM0

2 (Fp). Next, it remains to study for
k > 1.

The following theorem, which is one of the main result of this section
contains the complete description for k > 1.

Theorem 4.1 The zero ring graphs ΓM0
2 (Fpk) and ΓM0

2 (Zp[x]/〈xk〉) are
isomorphic, where p is a prime.

Proof. To show the desired result, we shall deal with two cases, viz., p is an
odd prime and p is an even prime together with k > 1.

Case I: Firstly, let us suppose that p is an even prime. In light of Theorem
3.1, ΓM0

2 (Z2[x]/〈xk〉) is isomorphic to complete graph. To show the isomor-
phism, it is enough to examine the structure of ΓM0

2 (F2k). We know that F2k is
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isomorphic to Z2[x]/〈p(x)〉, where p(x) is an irreducible polynomial of degree
k over Z2. Consider p(x) = xk + x+ 1 then the elements of zero ring M0

2 (F2k)
are

{
[

0 0
0 0

]
,

[
1 −1
1 −1

]
,

[
x −x
x −x

] [
x+ 1 − (x+ 1)
x+ 1 − (x+ 1)

]
, · · · ,

[
xk−1 −xk−1
xk−1 −xk−1

]
,

[
xk−1 + 1 −(xk−1 + 1)
xk−1 + 1 −(xk−1 + 1)

]
}.

Which is the vertex set of ΓM0
2 (F2k) and it is not difficult to verify that the

sum of any two elements is non zero, therefore every pair of vertices are ad-
jacent. Thus, ΓM0

2 (F2k) is also isomorphic to the complete graph. Hence, in
case of even prime we have shown the isomorphism between ΓM0

2 (Fpk) and
ΓM0

2 (Zp[x]/〈xk〉).
Case II: Next, let us assume that p is an odd prime. For this case we shall

make use of Theorem 2.27, towards this first, we determine the complement of
ΓM0

2 (Fpk). Since Fpk
∼= Zp[x]/〈p(x)〉, where p(x) is an irreducible polynomial

of degree k over Zp. Take p(x) = xk + x+ d, d ∈ Zp then

V (ΓM0
2 (Fpk)) =

{ [
a(x) −a(x)
a(x) −a(x)

]
: a(x) ∈ Zp[x]/〈xk + x+ d〉

}
.

Clearly, a(x) ∈ Zp[x]/〈xk + x+ d〉 is a polynomial in x with degree < k.

Choose arbitrary vertices vi and vj ∈ V (ΓM0
2 (Fpk)), then following the

same procedure as done in Theorem 3.2, we again get the equation (1), by
which we can say that vertex v0 is a full degree vertex in ΓM0

2 (Fpk) and any
two vertices vi and vi are non adjacent if and only if the coefficient of their
associated polynomial satisfies equation (1). It follows that any vertex vi is
non adjacent with exactly one vertex vj and hence the pair of non adjacent

vertices are pk−1
2

in number. Now, it is not difficult to determine the struc-
ture ΓcM0

2 (Fpk), clearly, the non adjacent pair in ΓM0
2 (Fpk) will give K2 and

the full degree vertex v0 will be isolated in the complement graph. There-

fore, ΓcM0
2 (Fpk) ∼= (p

k−1
2

)K2 ∪K1. Moreover, in light of Theorem 3.5 we have

ΓcM0
2 (Zp[x]/〈xk〉) ∼= (p

k−1
2

)K2 ∪K1. Hence, due to Theorem 2.27 the proof is
seen to be complete. �

On combining Theorems 3.5 and 4.1 the following corollary is obtained,
which establishes the relation of isomorphism among three class of graphs.

Corollary 4.2 For an odd prime p, ΓM0
2 (Zpk), ΓM0

2 (Fpk) and ΓM0
2 (Zp[x]/〈xk〉)

are all isomorphic.

Theorems 3.4, 3.5 together with Theorem 4.1, ensures the validity of the fol-
lowing conjecture.

Every zero ring graph is weakly perfect.
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5 Conclusions and Scope

An important out come of the paper is the relation of isomorphism among the
zero ring graphs ΓM0

2 (Zpk), ΓM0
2 (Zp[x]/〈xk〉) and ΓM0

2 (Fpk). Moreover it is
also shown that zero ring graphs gives a class of Hamiltonian graph and class
of weakly perfect graph. We also conjectured that every zero ring graph is tree
complete for all n.

Further, to establish deeper connections in fundamentally different direc-
tions one can settle out the problem suggested in Section 1 as follows: Charac-
terize non zero ring graph? In fact exploration of study on arbitrary zero ring
R0 of the sort under taken in this paper will provide new avenues of research.
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