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Abstract

In this paper, we introduce some weak separation axioms by utilizing the
notions of y-b-open sets and the y-b-closure operator.
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1 Introduction

In [1] Andrijevi introduced b-open sets, Kasahara [3] defined an operation «
on a topological space to introduce a-closed graphs. Following the same tech-
nique, Ogata [6] defined an operation 7 on a topological space and introduced
y-open sets.

In this paper, we introduce the notion of y-b-open sets, and ~-b-irresolute
in topological spaces. By utilizing these notions we introduce some weak sep-
aration axioms. Also we show that some basic properties of v-b-T;, v-b-D; for
1 = 0,1,2 spaces and we ofer a new class of functions called y-b-continuous
functions and a new notion of the graph of a function called a y-b-closed graph
and investigate some of their fundamental properties.



On a Class of v-b-Open Sets... 67

2 Preliminaries

Let (X, 7) be a topological space and A a subset of X. The closure of A and
the interior of A are denoted by cl(A) and int(A), respectively. A subset A
is said to be b-open [1] if A C int(cl(A)) U cl(int(A)). The complement of a
b-open set is said to be b-closed.

An operation v [3] on a topology 7 is a mapping from 7 in to power set
P(X) of X such that V' C (V) for each V' € 7, where (V') denotes the value
of v at V. A subset A of X with an operation v on 7 is called y-open [6] if for
each x € A, there exists an open set U such that x € U and (U) C A. Then,
7, denotes the set of all y-open set in X. Clearly 7, C 7. Complements of
~v-open sets are called y-closed. The 7-closure [6] of a subset A of X with an
operation v on 7 is denoted by 7,-cl(A) and is defined to be the intersection
of all v-closed sets containing A, and the 7,-interior [4] of A is denoted by
7,-int(A) and defined to be the union of all y-open sets of X contained in A.
A subset A of X with an operation 7 on 7 is called be y-preopen set [5] if and
only if A C 7,-int(r,-cl(A)). A subset A of X with an operation v on 7 is
called be ~-f-open set [2] if A C 7.,-cl(7,-int(7,-cl(A))). A topological X with
an operation vy on 7 is said to be y-regular [6] if for each z € X and for each
open neighborhood V' of x, there exists an open neighborhood U of x such
that v(U) contained in V. It is also to be noted that 7 = 7, if and only if X
is a y-regular space [6].

3 ~v-b-Open Sets

Definition 3.1 A subset A of a topological space (X, 1) is said to be ~y-b-
open if A C 7,-int(1y-cl(A)) U ty-cl(r,-int(A)).

The complement of a «-b-open set is said to be y-b-closed. The family of
all y-b-open (resp. y-b-closed) sets in a topological space (X, 7) is denoted by
vbO(X, T) (resp. vbC(X,T)).

Definition 3.2 Let A be a subset of a topological space (X, T). The inter-
section of all y-b-closed sets containing A is called the vy-b-closure of A and is
denoted by ~ycly(A).

Definition 3.3 Let (X, 7) be a topological space. A subset U of X is called
a y-b-neighbourhood of a point x € X if there exists a ~y-b-open set V' such that
reV CU.

Theorem 3.4 For the ~-b-closure of subsets A, B in a topological space
(X, 1), the following properties hold:
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1. Ais vy-b-closed in (X, T) if and only if A = ~ycly(A).
2. If A C B then ~ycly(A) C ycly(B).
3. ycly(A) is y-b-closed, that is ycly(A) = yelp(yely(A)).

4. x € yclp(A) if and only if ANV # ¢ for every vy-b-open set V of X
containing .

Proof. It is obvious.

Theorem 3.5 For a family {A, : a € A} of subsets a topological space
(X, T), the following properties hold:

1. yely(NaeaAa) C Naeavyely(Aq)-
2. vyely(UpenAn) D Uaeavcly(Ay).
Proof.

1. Since Npea A C A, for each o € A, by Theorem 3.4 we have ycly(Npea Aa) C
vely(Ay) for each v € A and hence yelp(NaeaAa) C Naeaycly(An).

2. Since A, C Ugen 4, for each v € A| by Theorem 3.4 we have vcly(A,) C
vely(UaenAy) for each a € A and hence Uyeaycly(Aa) C vely(UneaAs)-

Theorem 3.6 Fuvery ~v-preopen set is y-b-open.
Proof. It follows from the Definitions.

The converse of the above Theorem need not be true by the following
Example.

Example 3.7 Let X = {a,b,c}, 7 ={¢,{a},{c},{a,c}, X} and yv(A) = A
for all A € 7. Here {a,b} is not y-preopen however it is y-b-open.

Corollary 3.8 FEvery v-open set is vyv-b-open.
Proof. It follows from Theorem 3.6.

Theorem 3.9 FEvery v-b-open set is vv-S-open.
Proof. It follows from the Definitions.

Remark 3.10 The concepts of b-open and ~y-b-open sets are independent,
while in a y-reqular space these concepts are equivalent.
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Example 3.11 Let X = {a,b,c} and 7 = {¢,{a},{b},{a,b}, X}. Define
an operation y on T by

{a} if A= {a}
v(4) = { AUu{c} if A+ {a}

Clearly, 7, = {¢,{a}, X}. Then {b} is b-open but not y-b-open. Again, if we
define v on 7 by y(A) = X, then {c} is y-b-open but not b-open.

Theorem 3.12 An arbitrary union of v-b-open sets is y-b-open.

Proof. Let {A; : k € A} be a family of v-b-open sets. Then for each k,
Ay C mpmint(Ty-cl(Ag)) U 7y-cl(Ty-int(Ay)) and so

Ukea A C Ugea[Ty-int(7y-cl(Ay)) U 7y-cl(7y-int(Ay))]
C [UgeaTy-int(my-cl(Ax))] U [UkeaTy-cl(Ty-int(Ag))]
C [my-int(UpeaTy-cl(Ag))] U [Ty-cl (UgeaTy-int(Ay))]

C [ry-int(7y-cl(Ukea Ar))] U [Ty-cl(T,-int (Urea Ak)))-

Therefore, Upea Ay is y-b-open.

Remark 3.13

1. An arbitrary intersection of v-b-closed sets is y-b-closed.

2. The intersection of even two y-b-open sets may not be ~-b-open.

Example 3.14 Let X = {a,b,c} and 7 = {¢,{a},{a, b}, X}. Define an

operation v on T by

A if A={a,b}

X otherwise

Y(A) = {

Clearly, 7, = {¢,{a,b}, X}, take A = {a,c} and B = {b,c} are v-b-open.
Then AN B = {c}, which is not a y-b-open set.

Definition 3.15 A subset A of a topological space (X, 1) is called a yDy-set
if there are two U,V € vbO(X, 7) such that U # X and A=U\V.

It is true that every y-b-open set U different from X is a vDy-set if A =U
and V' = ¢. So, we can observe the following.

Remark 3.16 FEvery proper v-b-open set is a yDy-set.
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Definition 3.17 A topological space (X, T) with an operation v on T is said
to be

1. v-b-Dq if for any pair of distinct points x and y of X there exists a yDy-
set of X containing x but not y or a yDy-set of X containing y but not
x.

2. v-b-Dy if for any pair of distinct points x and y of X there exists a yDy-
set of X containing x but not y and a yDy-set of X containing y but not
x.

3. v-b-Ds if for any pair of distinct points x and y of X there exist disjoint
vDy-set G and E of X containing x and y, respectively.

Definition 3.18 A topological space (X, ) with an operation y on T is said
to be

1. v-b-Ty (resp. ~y-pre Ty [5] and ~v-8 Ty [2]) if for any pair of distinct
points © and y of X there exists a y-b-open (resp. ~y-preopen and y-53-
open) set U in X containing x but not y or a y-b-open (resp. ~y-preopen
and y-B-open) set V in X containing y but not x.

2. v-b-T (resp. v-pre Ty [5] and ~-5 Ty [2]) if for any pair of distinct points
x and y of X there exists a vy-b-open (resp. y-preopen and y-f-open) set
U in X containing x but not y and a ~y-b-open (resp. ~y-preopen and
~v-B-open) set V in X containing y but not x.

3. v-b-Ty (resp. ~-pre Ty [5] and v-B Ty [2]) if for any pair of distinct

points © and y of X there exist disjoint y-b-open (resp. ~y-preopen and
v-B-open) sets U and V in X containing x and y, respectively.

Remark 3.19 For a topological space (X, 1), the following properties hold:
1. If (X, 1) is v-b-T;, then it is v-b-T;_y, for i =1,2.

2. If (X, 1) is v-b-T;, then it is v-b-D;, fori=0,1,2.

3. If (X, 1) is v-b-D;, then it is v-b-D;_q, fori=1,2.

4. If (X, 1) is y-pre T;, then it is v-b-T;, fori=0,1,2.

5. If (X, 1) is v-b-T;, then it is v-5 T;, fori=0,1,2.
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By Remark 3.19 we have the following diagram.

y-pre Ty ——~-pre T1 —— vy-pre g

i i i

")/—b—TQ ’}/—b—Tl ’y—b—To

l l i

VBT ——-f T ——=7fF 1o

Theorem 3.20 A topological space (X, T) is v-b-Dy if and only if it is ~-
b-D.

Proof. sufficiency. Follows from Remark 3.19.

Necessity. Let x,y € X, © # y. Then there exist yDy-sets G, Gy in X such

that x € Gy, y ¢ Gy and y € Go, x & Gy. Let Gy = Uy \ Uy and Gy = Us \ Uy,

where Uy, Us, Uz and Uy are y-b-open sets in X. From x ¢ Gs, it follows that
either x ¢ Us or x € Us and x € U;. We discuss the two cases separately.

(1) x ¢ Us. By y ¢ G; we have two subcases:

(a)y ¢ Uy. From x € Uy\Us, it follows that x € U;\ (UsUUs), and by y € Us\Uy
we have Yy < Us \ (Ul U U4> Therefore (U1 \ (UQ U Ug)) N (Ug \ (Ul U U4)) = gb
b) y € Uy and y € Uy. We have x € U; \ Uy, and y € U,. Therefore

(
(
(i) v € Uy and * € Uy;. We have y € U; \ Uy and = € Uy. Hence
(Us \ Uy) N Uy = ¢. Therefore X is y-b-Ds.

Definition 3.21 A point x € X which has only X as the vy-b-neighborhood
15 called a v-b-neat point.

Theorem 3.22 [f a topological space (X, T) is vy-b-D1, then it has no ~y-b-
neat point.

Proof. Since (X, 7) is 4-b-Dy, so each point = of X is contained in a yDj-set
A =U\V and thus in U. By definition U # X. This implies that z is not a
~-b-neat point.

Theorem 3.23 A topological space (X, T) with an operation v on T is ~y-b-
To if and only if for each pair of distinct points x,y of X, yely({z}) # vely({y}).

Theorem 3.24 A topological space (X, T) with an operation v on T is ~y-b-
Ty if and only if the singletons are y-b-closed sets.
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Proof. Let (X,7) be 7-b-T; and z any point of X. Suppose y € X \ {z},
then z # y and so there exists a y-b-open set U such that y € U but = ¢ U.
Consequently y € U C X \ {z} ie, X\ {a} =U{U : y € X \ {x}} which is
~-b-open.

Conversely, suppose {p} is y-b-closed for every p € X. Let x,y € X with
x # y. Now z # y implies y € X \ {z}. Hence X \ {z} is a y-b-open set
contains y but not z. Similarly X \ {y} is a y-b-open set contains & but not
y. Accordingly X is a y-b-T} space.

Definition 3.25 A topological space (X, T) is y-b-symmetric if for x and y
in X, x € yely({y}) implies y € yelp({x}).

Theorem 3.26 If a topological space (X, T) with an operation vy on T is a
~v-b-T' space, then it is y-b-symmetric.

Proof. Suppose that y ¢ vcly({z}). Then, since z # y, there exists a y-b-open
set U containing « such that y ¢ U and hence x ¢ ~vely({y}). This shows that
x € velp({y}) implies y € yely({x}). Therefore, (X, 7) is y-b-symmetric.

Definition 3.27 Let (X,7) and (Y,0) be two topological spaces and v,
operations on T, o, respectively. A function f : (X,7) — (Y,0) is said to
be y-b-irresolute if for each x € X and each (-b-open set V' containing f(x),
there is a y-b-open set U in X containing x such that f(U) C V.

Theorem 3.28 If f : (X,7) — (Y, 0) is ay-b-irresolute surjective function
and E is a BDy-set in Y, then the inverse image of E is a yDy-set in X .

Proof. Let F be a fDy-set in Y. Then there are S-b-open sets U; and U, in
Y such that £ = U; \ Uy and U; # Y. By the 7-b-irresolute of f, f~1(U;)
and f~1(U,) are v-b-open in X. Since U; # Y and f is surjective, we have
f7YU,) # X. Hence, f~YE) = f~1(Uy) \ f71(Us) is a yDy-set.

Theorem 3.29 If (Y,0) is B-b-Dy and f : (X, 7) — (Y, 0) is y-b-irresolute
bijective, then (X, T) is ~y-b-Ds.

Proof. Suppose that Y is a 5-b-D; space. Let x and y be any pair of distinct
points in X. Since f is injective and Y is (8-b-D;, there exist BD,-set G,
and G, of Y containing f(x) and f(y) respectively, such that f(z) ¢ G,
and f(y) ¢ G,. By Theorem 3.28, f~!(G,) and f~!(G,) are yDy-set in X
containing = and y, respectively, such that = ¢ f~'(G,) and y ¢ f~1(G.).
This implies that X is a y-b-D; space.

Theorem 3.30 A topological space (X,T) is v-b-Dy if for each pair of
distinct points x,y € X, there exists a ~y-b-irresolute surjective function f :
(X,7) = (Y,0), where Y is a B-b-Dy space such that f(x) and f(y) are dis-
tinct.
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Proof. Let x and y be any pair of distinct points in X. By hypothesis, there
exists a y-b-irresolute, surjective function f of a space X onto a -b-D; space
Y such that f(z) # f(y). By Theorem 3.20, there exist disjoint SDy-set G,
and G, in Y such that f(z) € G, and f(y) € G,. Since f is y-b-irresolute and
surjective, by Theorem 3.28, f~1(G,) and f~!(G,) are disjoint yDy-sets in X
containing x and y, respectively. hence by Theorem 3.20, X is y-b-D; space.

4 ~-b-Ry and v-b-R; Spaces

Definition 4.1 Let A be a subset of a topological space (X, T) with an op-
eration vy on 7. The y-b-kernel of A, denoted by ~vkery,(A) is defined to be the
set

vkery(A) = N{U € vbO(X): A C U}.

Theorem 4.2 Let (X, 7) be a topological space with an operation v on T
and v € X. Then y € vkery({x}) if and only if x € vely({y}).

Proof. Suppose that y ¢ vykery({z}). Then there exists a 7-b-open set V'
containing x such that y ¢ V. Therefore, we have z ¢ vcl,({y}). The proof of
the converse case can be done similarly.

Lemma 4.3 Let (X, 7) be a topological space and A be a subset of X. Then,
vkery(A) = {x € X: yely({z}) N A # ¢}.

Proof. Let © € vkery(A) and suppose velp({x}) N A = ¢. Hence z ¢ X \
vely({x}) which is a ~-b-open set containing A. This is impossible, since
x € vkery(A). Consequently, velp({x}) N A # ¢. Next, let x € X such that
vely({x}) N A # ¢ and suppose that = ¢ ~vkery(A). Then, there exists a -
b-open set V' containing A and x ¢ V. Let y € ~ely({z}) N A. Hence, V
is a v-b-neighborhood of y which does not contain x. By this contradiction
x € vkery(A) and the claim.

Remark 4.4 The following properties hold for the subsets A, B of a topo-
logical space (X, T) with an operation vy on T:

1. A C vkery(A), if A is y-b-open in (X, T), then A = ~vker,(A).
2. If A C B, then vykery(A) C vkery(B).

Definition 4.5 A topological space (X, T) with an operation v on T is said
to be v-b-Ry if every y-b-open set U and x € U implies yclp({z}) C U.

Theorem 4.6 For a topological space (X, T) with an operation v on T, the
following properties are equivalent:



74 Hariwan Z. Ibrahim

1. (X, 1) is v-b-Ry.

2. For any F € vC(X), x ¢ F implies F C U and x ¢ U for some
U € v0(X).

3. For any F € v0C(X), x ¢ F implies F' N ycly({z}) = ¢.

4. For any distinct points x and y of X, either vycly({z}) = vcly({y}) or
vebh({x}) Nyel({y}) = ¢

Proof. (1) = (2). Let F € v0C(X) and « ¢ F. Then by (1) yelp({z}) C X\F.
Set U = X \ velp({x}), then U is 7-b-open set such that F' C U and = ¢ U.
(2) = (3). Let F € v0C(X) and = ¢ F. There exists U € vbO(X) such
that /¥ C U and « ¢ U. Since U € yO(X), U N yely({z}) = ¢ and
Frnel({z}) = ¢.

(3) = (4). Suppose that velp({z}) # velp({y}) for distinct points z,y € X.
There exists z € velp({x}) such that z ¢ ~vcl,({y}) (or z € ~velp({y}) such
that z ¢ ~clp({z})). There exists V € vbO(X) such that y ¢ V and z €
V; hence x € V. Therefore, we have x ¢ ~clp({y}). By (3), we obtain
vely({z}) Nyely({y}) = ¢. The proof for otherwise is similar.

(4) = (1). let V € vbO(X) and x € V. For each y ¢ V, z # y and
x ¢ yely({y}). This shows that yely({z}) # vclo({y}). By (4), velp({z}) N
1elh({y}) = 6 for eachy € X\V and hence 1ely({r )N (U, ey vels({})) = 6.
On other hand, since V' € vO(X) and y € X \ V, we have vel,({y}) C
X \V and hence X \ V' = {J,cx\y 7¢ls({y}). Therefore, we obtain (X \ V)N
vely({x}) = ¢ and yelp({x}) C V. This shows that (X, 7) is a y-b-Ry space.

Theorem 4.7 A topological space (X, T) with an operation vy on T is v-b-T}
if and only if (X, 7) is v-b-Ty and y-b-Ry space.

Proof. Necessity. Let U be any ~-b-open set of (X, 7) and x € U. Then by
Theorem 3.24, we have ycl,({x}) C U and so by Remark 3.19, it is clear that
X is v-b-Ty and ~-b-Ry space.

Sufficiency. Let x and y be any distinct points of X. Since X is y-b-Tj, there
exists a y-b-open set U such that z € U and y ¢ U. As x € U implies that
vely({x}) C U. Since y ¢ U, so y ¢ velp({x}). Hence y € V- = X \ velp({z})
and it is clear that x ¢ V. Hence it follows that there exist y-b-open sets U
and V' containing = and y respectively, such that y ¢ U and x ¢ V. This
implies that X is y-b-Tj.

Theorem 4.8 For a topological space (X, T) with an operation v on T, the
following properties are equivalent:

1. (X,7) is y-b-Ry.
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2. x € yely({y}) if and only if y € yclp({z}), for any points x and y in X.

Proof. (1) = (2). Assume that X is y-b-Ry. Let x € vely({y}) and V be any
~v-b-open set such that y € V. Now by hypothesis, x € V. Therefore, every
7-b-open set which contain y contains x. Hence y € yclp({z}).
(2) = (1). Let U be a y-b-open set and € U. If y ¢ U, then = ¢ ~vycly({y})
and hence y ¢ ~clp({x}). This implies that vcl,({z}) C U. Hence (X,7) is
’y—b—Ro.

We observed that by Definition 3.25 and Theorem 4.8 the notions of ~-b-
symmetric and y-b-R, are equivalent.

Theorem 4.9 The following statements are equivalent for any points x and
y in a topological space (X, T) with an operation v on T:

1. ykery({z}) # vkery({y})-

2. yely({x}) # vely({y})-

Proof. (1) = (2). Suppose that yker,({z}) # ~vkery,({y}), then there exists
a point z in X such that z € ~ker,({z}) and z ¢ ~ker,({y}). From z €
vkery({z}) it follows that {z} N~cly({z}) # ¢ which implies z € ycl,({z}). By
z & vkery({y}), we have {y} N~cly({z}) = ¢. Since x € yelp({z}), velp({x}) C
vely({z}) and {y} N vely({x}) = ¢. Therefore, it follows that ~vcl,({z}) #
vely({y}). Now ykery({x}) # ykers({y}) implies that yclp({z}) # yels({y}).

(2) = (1). Suppose that yelp({z}) # velp({y}). Then there exists a point z in
X such that z € velp({z}) and z ¢ vclp({y}). Then, there exists a y-b-open
set containing z and therefore x but not y, namely, y ¢ vyker,({z}) and thus

vkery({x}) # ykery({y}).

Theorem 4.10 Let (X, 7) be a topological space and v be an operation on
7. Then N{vycly({z}) : © € X} = ¢ if and only if ykery({z}) # X for every
re X.

Proof. Necessity. Suppose that N{ycl,({z}) : © € X} = ¢. Assume that
there is a point y in X such that yker,({y}) = X. Let x be any point of X.
Then z € V for every v-b-open set V' containing y and hence y € ~velp({x})
for any x € X. This implies that y € N{ycl,({z}) : € X}. But this is a
contradiction.

Sufficiency. Assume that vkery({z}) # X for every x € X. If there exists a
point y in X such that y € N{vyely({z}) : * € X}, then every y-b-open set
containing y must contain every point of X. This implies that the space X
is the unique 7-b-open set containing y. Hence vkery({y}) = X which is a
contradiction. Therefore, N{vcl,({z}) : 2 € X} = ¢.
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Theorem 4.11 A topological space (X, T) with an operation v on T is y-
b-Ro if and only if for every x and y in X, vyelp({z}) # velo({y}) implies
veb({x}) Nyely({y}) = o.

Proof. Necessity. Suppose that (X,7) is v-b-Rg and z,y € X such that
vely({x}) # ~vely({y}). Then, there exists z € vely({x}) such that z ¢ vyl ({y})
(or z € velp({y}) such that z ¢ ~velp({x})). There exists V € vbO(X) such
that y ¢ V and z € V, hence x € V. Therefore, we have = ¢ ~vcl,({y}). Thus
z € [X \ velp({y})] € vbO(X), which implies yely({x}) C [X \ velp({y})] and
vely({x}) Nvyely({y}) = ¢. The proof for otherwise is similar.

Sufficiency. Let V' € vbO(X) and let = € V. We still show that ycl,({z}) C V.
Let y ¢ V,ie,y e X\ V. Then x # y and = ¢ ~vyelp({y}). This shows that

2ely({x}) # ely({y}). By assumption, yehy({r}) N yehy({y}) = 6. Hence
y & velp({x}) and therefore yel,({x}) C V.

Theorem 4.12 A topological space (X, T) with an operation v on T is ~y-b-
Ry if and only if for any points x and y in X, ykery({x}) # vkery({y}) implies
vkery({z}) N ykery,({y}) = ¢.

Proof. Suppose that (X, 7) is a y-b-Ry space. Thus by Theorem 4.9, for any
points z and y in X if yker,({z}) # vkery({y}) then velpy({x}) # velo({y}).
Now we prove that yker,({z})Nvker,({y}) = ¢. Assume that z € yker,({z})N
vkery({y}). By z € vkery({z}) and Theorem 4.2, it follows that x € ycl,({z}).
Since x € yclp({x}), by Theorem 4.6, yclp({x}) = vyelp({z}). Similarly, we have
velo({y}) = vely({z}) = velp({z}). This is a contradiction. Therefore, we have
vhers({}) Nykery({y}) = ¢.

Conversely, let (X, 7) be a topological space such that for any points z
and y in X, vker,({z}) # ~vkery({y}) implies vker,({z}) N vker,({y}) = ¢.
If vely({z}) # ~vclp({y}), then by Theorem 4.9, vkery({z}) # ~vker,({y}).
Hence, vker,({z}) Nykery({y}) = ¢ which implies yelp({}) N vely({y}) = ¢.
Because z € yclp({z}) implies that x € vker,({z}) and therefore vker,({z}) N
vkery({z}) # ¢. By hypothesis, we have vkery,({z}) = ~vkery({z}). Then
z € yely({x}) Nycly({y}) implies that ykery({z}) = ykers({z}) = vkery({y}).
This is a contradiction. Therefore, yely({z}) Nycly({y}) = ¢ and by Theorem
4.6 (X, 1) is a 7-b-Ry space.

Theorem 4.13 For a topological space (X, T) with an operation vy on T, the
following properties are equivalent:

1. (X, 1) is a y-b-Ry space.

2. For any nonempty set A and G € vbO(X) such that AN G # ¢, there
exists F' € vbC(X) such that ANF # ¢ and F C G.
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3. Any G € vbO(X), G = U{F e v0C(X): F C G}.
4. Any F € vC(X), F =n{G € vbO(X): F C G}.
5. For every x € X, vely({x}) C vkery({z}).

Proof. (1) = (2). Let A be a nonempty subset of X and G € vbO(X)
such that AN G # ¢. There exists © € ANG. Since z € G € vbO(X),
vely({x}) C G. Set F = ~clp({x}), then F € vbC(X), F C G and AN F # ¢.
(2) = (3). Let G € vbO(X), then G D U{F € vbC(X): F C G}. Let x be any
point of G. There exists F' € vbC(X) such that z € F and F' C G. Therefore,
we have x € F C U{F € vC(X): F C G} and hence G = U{F € ybC(X):
F c G}.

(3) = (4). This is obvious.

(4) = (5). Let & be any point of X and y ¢ ~vker,({z}). There exists V €
vbO(X) such that z € V and y ¢ V, hence vycl,({y}) NV = ¢. By (4)
(N{G € vO(X): velo({y}) € G}) NV = ¢ and there exists G € vbO(X) such
that z ¢ G and ycl,({y}) C G. Therefore ycl,({z})NG = ¢ and y & yclp({z}).
Consequently, we obtain vcl,({x}) C vkery,({x}).

(5) = (1). Let G € vbO(X) and © € G. Let y € vkery({z}), then = €
vely({y}) and y € G. This implies that vker,({x}) C G. Therefore, we obtain
x € yely({x}) C vykery({z}) C G. This shows that (X, 7) is a 4-b-Ry space.

Corollary 4.14 For a topological space (X, T) with an operation v on T,
the following properties are equivalent:

1. (X, 1) is a y-b-Ry space.
2. yely({x}) = vkery({x}) for all x € X.

Proof. (1) = (2). Suppose that (X, 7) is a 7-b-Ry space. By Theorem 4.13,
vely({x}) C ~ykery({z}) for each © € X. Let y € ~kery({z}), then x €

vely({y}) and by Theorem 4.6 vyl ({x}) = vclp({y}). Therefore, y € vely({z})
and hence vkery({x}) C velp({x}). This shows that vycly({z}) = vker,({z}).
(2) = (1). This is obvious by Theorem 4.13.

Theorem 4.15 For a topological space (X, T) with an operation vy on T, the
following properties are equivalent:

1. (X,7) is a y-b-Ry space.

2. If F is y-b-closed, then F' = ~vkery(F).

3. If F is y-b-closed and x € F, then vker,({z}) C F.
4. If v € X, then ykery({z}) C yelp({x}).
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Proof. (1) = (2). Let F' be a y-b-closed and =z ¢ F. Thus (X \ F) is a
7-b-open set containing x. Since (X, 7) is v-b-Ry. yelp({z}) C (X \ F). Thus
vely({z}) N F = ¢ and by Lemma 4.3 x ¢ ~vker,(F'). Therefore yker,(F) = F.
(2) = (3). In general, A C B implies vkery,(A) C ~vkery(B). Therefore, it
follows from (2) that vker,({z}) C vkery(F) = F.

(3) = (4). Since x € yclp({z}) and yely({z}) is y-b-closed, by (3), vkery,({x}) C
el ({x}).

(4) = (1). We show the implication by using Theorem 4.8. Let x € vely({y}).
Then by Theorem 4.2, y € vkery,({z}). Since x € ~clp({x}) and ~ely({z})
is y-b-closed, by (4) we obtain y € vker,({z}) C ~vcly({z}). Therefore z €
vely({y}) implies y € yelp({x}). The converse is obvious and (X, 7) is 7-b-Ry.

Definition 4.16 A topological space (X, T) with an operationy on T, is said
to be y-b-Ry if for x,y in X with ycly({x}) # ~velo({y}), there exist disjoint
v-b-open sets U and V' such that vely({x}) C U and velp,({y}) C V.

Theorem 4.17 A topological space (X, T) with an operation vy on T is ~y-b-
Rl Zf 1t 18 ’}/-b-TQ.

Proof. Let z and y be any points of X such that vcl,({z}) # velp({y}).
By Remark 3.19, every ~-b-T5 space is y-b-T;. Therefore, by Theorem 3.24,

vely({z}) = {z}, vely({y}) = {y} and hence {z} # {y}. Since (X, 7) is v-b-T3,
there exist disjoint y-b-open sets U and V' such that vyely({z}) = {z} C U and
vely({y}) = {y} C V. This shows that (X, 7) is y-b-R,

Theorem 4.18 For a topological space (X, T) with an operation vy on T, the
following are equivalent:

1. (X, 71) is y-b-Ts.

2. (X,7) is y-b-Ry and ~-b-Tj.

3. (X, 1) is y-b-Ry and ~-b-Ty.
Proof. Proof is easy and hence omitted.

Theorem 4.19 For a topological space (X, T) with an operation vy on T, the
following statements are equivalent:

1. (X,7) is y-b-R;.

2. If v,y € X such that ycly({z}) # vclo({y}), then there exist vy-b-closed
sets Fy and Fy such thatx € F,y ¢ Fy,y € Fy, v ¢ Fy and X = F{UFs.

Proof. Proof is easy and hence omitted.



On a Class of v-b-Open Sets... 79

Theorem 4.20 If (X, 1) is v-b-Ry, then (X, 7) is v-b-Ry.

Proof. Let U be y-b-open such that x € U. If y ¢ U, since = ¢ vclp({y}),
we have yclp({z}) # velo({y}). So, there exists a y-b-open set V' such that
vely({y}) € V and x ¢ V, which implies y ¢ vyely({x}). Hence vyely({z}) C U.
Therefore, (X, 1) is v-b-Ry.

The converse of the above Theorem need not be ture as shown in the
following example.

Example 4.21 Consider X = {a,b,c} with the discrete topology on X.
Define an operation v on T by

Then X s a v-b-Ry space but not a y-b-Ry space.

Theorem 4.22 A topological space (X, T) with an operation v on T is ~y-b-
Ry if and only if for x,y € X, vkery({x}) # vkery({y}), there exist disjoint
v-b-open sets U and V' such that ycl,({x}) C U and vyely({y}) C V.

Proof. It follows from Theorem 4.9.

Theorem 4.23 A topological space (X, 1) is v-b-Ry if and only if the in-
clusion x € X \ vely({y}) implies that x and y have disjoint v-b-open neigh-
borhoods.

Proof. Necessity. Let © € X \ vclp({y}). Then vclp({z}) # velpy({y}) and =
and y have disjoint y-b-open neighborhoods.

Sufficiency. First, we show that (X, 7) is y-b-Ry. Let U be a y-b-open set and
x € U. Suppose that y ¢ U. Then, vel,({y}) NU = ¢ and = ¢ ~velpy({y}).
There exist y-b-open sets U, and U, such that x € U,, y € Uy and U,NU, = ¢.
Hence, yelp({z}) C velp(Uy) and yely({2})NU, C vely(U,)NU, = ¢. Therefore,
y ¢ ~yely({z}). Consequently, ycl,({x}) C U and (X, 7) is 7-b-Ry. Next, we
show that (X, 7) is 4-b-R;. Suppose that vyely({z}) # ~velpy({y}). Then, we
can assume that there exists z € ~ycly({z}) such that z ¢ ~vcly({y}). There
exist vy-b-open sets V, and V, such that z € V,, y € V, and V. NV, = ¢.
Since z € yclp({z}), z € V,. Since (X, 7) is y-b-Ry, we obtain ycl,({z}) C V.,
vely({y}) €V, and V, NV, = ¢. This shows that (X, 7) is y-b-R;.

5 ~-b-Continuous Functions and ~-b-Closed Graphs

Definition 5.1 A function f: (X, 1) — (Y, 0) is said to be vy-b-continuous
if for every open set V of Y, f~Y(V) is y-b-open in X.
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Theorem 5.2 The following are equivalent for a function f : (X, 7) —
(Y,0):

1. f is y-b-continuous.
2. The inverse image of every closed set in'Y is y-b-closed in X.
3. For each subset A of X, f(ycly(A)) C cl(f(A)).

4. For each subset B of Y, vycly(f~H(B)) C f~(cl(B)).

Proof. (1) & (2). Obvious.
(3) & (4). Let B be any subset of Y. Then by (3), we have f(ycly(f~1(B))) C
c(f(f~YB))) C cl(B). This implies vcl,(f~1(B)) C f~(cl(B)).

Conversely, let B = f(A) where A is a subset of X. Then, by (4), we have,
1l (A) C 1ely(F (F(A)) C FHE(F(A))). Thus, f(vely(A)) C cA(F(A).
(2) = (4). Let B C Y. Since f~'(cl(B)) is y-b-closed and f~}(B) C
f~H(cl(B)), then yely(f~1(B)) C f~(cl(B)).
(4) = (2). Let K C Y be a closed set. By (4), vely(f~Y(K)) C f7H(cl(K)) =
fYK). Thus, f~1(K) is y-b-closed.

Definition 5.3 For a function f : (X,7) — (Y,0), the graph G(f) =
{(z, f(x)) : © € X} is said to be v-b-closed if for each (x,y) ¢ G(f), there
exist a y-b-open set U containing x and an open set V' containing y such that

(U xV)NG(f) = ¢

Lemma 5.4 The function f : (X,7) — (Y,0) has an vy-b-closed graph if
and only if for each x € X and y € Y such that y # f(x), there exist a
v-b-open set U and an open set V' containing x and y respectively, such that

fU)ynv =e¢.
Proof. It follows readily from the above definition.

Theorem 5.5 If f : (X,7) — (Y,0) is an injective function with the ~-b-
closed graph, then X is ~v-b-T7.

Proof. Let z and y be two distinct points of X. Then f(z) # f(y). Thus there
exist a y-b-open set U and an open set V' containing = and f(y), respectively,
such that f(U) NV = ¢. Therefore y ¢ U and it follows that X is 7-b-T3.

Theorem 5.6 If f : (X,7) — (Y,0) is an injective vy-b-continuous with a
v-b-closed graph G(f), then X is vy-b-Ts.
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Proof. Let x; and x5 be any distinct points of X. Then f(z1) # f(x2), so
(x1, f(z2)) € (X xY)\ G(f). Since the graph G(f) is vy-b-closed, there exist
a -b-open set U containing x; and open set V' containing f(z3) such that
f(U)NV = ¢. Since f is y-b-continuous, f~1(V) is a y-b-open set containing
x9 such that U N f~1(V) = ¢. Hence X is -b-T.

Recall that a space X is said to be T} if for each pair of distinct points x
and y of X, there exist an open set U containing z but not y and an open set
V' containing y but not x.

Theorem 5.7 If [ : (X,7) — (Y,0) is an surjective function with the
~v-b-closed graph, then Y s T7.

Proof. Let y; and y, be two distinct points of Y. Since f is surjective, there
exists x in X such that f(x) = yo. Therefore (z,y;) ¢ G(f). By Lemma 5.4,
there exist y-b-open set U and an open set V' containing = and y; respectively,
such that f(U) NV = ¢. We obtain an open set V' containing y; which does
not contain y,. It follows that y, ¢ V. Hence, Y is T}.

Definition 5.8 A function f : (X, 7) — (Y, 0) is said to be y-b- W-continuous
if for each x € X and each open set V of Y containing f(x), there exists a
v-b-open set U in X containing x such that f(U) C cl(V).

Theorem 5.9 If f : (X,7) — (Y, 0) is y-b-W-continuous and Y is Haus-
dorff, then G(f) is vy-b-closed.

Proof. Suppose that (z,y) ¢ G(f), then f(x) # y. By the fact that YV is
Hausdorff, there exist open sets W and V such that f(z) € W, y € V and
VW = ¢. It follows that c/(W)NV = ¢. Since f is y-b-W-continuous, there
exists a y-b-open set U containing x such that f(U) C cl(W). Hence, we have
f(U)NV = ¢. This means that G(f) is y-b-closed.

Definition 5.10 A subset A of a space X is said to be y-b-compact relative
to X if every cover of A by y-b-open sets of X has a finite subcover.

Theorem 5.11 Let f : (X,7) — (Y,0) have a vy-b-closed graph. If K is
v-b-compact relative to X, then f(K) is closed in'Y .

Proof. Suppose that y ¢ f(K). For each z € K, f(x) # y. By lemma
5.4, there exists a y-b-open set U, containing z and an open neighbourhood
V, of y such that f(U,) NV, = ¢. The family {U, : = € K} is a cover of
K by ~-b-open sets of X and there exists a fnite subset Ky of K such that
K Cc WU, : z € Ko}. Pt V.= n{V, : © € Ky}. Then V is an open
neighbourhood of y and f(K)NV = ¢. This means that f(K) is closed in Y.
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Theorem 5.12 If f : (X,7) — (Y,0) has a vy-b-closed graph G(f), then
for each x € X. {f(z)} = N{cl(f(A) : A is y-b-open set containing x}.

Proof. Suppose that y # f(z) and y € N{cl(f(A)) : A is y-b-open set
containing z}. Then y € cl(f(A)) for each y-b-open set A containing z.
This implies that for each open set B containing y, B N f(A) # ¢. Since
(x,y) ¢ G(f) and G(f) is a y-b-closed graph, this is a contradiction.

Definition 5.13 A function f: (X,7) — (Y, 0) is called a vy-b-open if the
image of every y-b-open set in X is open in 'Y .

Theorem 5.14 If f : (X, 7) — (Y, 0) is a surjective y-b-open function with
a y-b-closed graph G(f), then Y is Ts.

Proof. Let y; and ys be any two distinct points of Y. Since f is surjective
f(z) = y; for some z € X and (z,ys2) € (X xY)\G(f). This implies that there
exist a y-b-open set A of X and an open set B of Y such that (z,y2) € (Ax B)
and (A x B)NG(f) = ¢. We have f(A) N B = ¢. Since f is y-b-open, then
f(A) is open such that f(z) =y, € f(A). Thus, Y is T.

Theorem 5.15 If f : (X, 7) — (Y, 0) is a y-b-continuous injective function
and 'Y s Ty, then X is ~v-b-T5.

Proof. Let x and y in X be any pair of distinct points, then there exist
disjoint open sets A and B in Y such that f(x) € A and f(y) € B. Since f
is y-b-continuous, f~!(A) and f~!(B) are y-b-open in X containing x and y
respectively, we have f~1(A) N f~1(B) = ¢. Thus, X is v-b-Tb.
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