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Abstract
In this note, the concepts of m-systems and n-systems in ordered ternary
semigroups will be introduced and studied.
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1 Preliminaries

In [4], Niovi Kehayopulu introduced the concepts of m-systems and n-systems
in ordered semigroups and showed that these concepts being related to the con-
cepts of weakly prime and weakly semiprime ideals. In this note, we introduce
the concepts of m-systems and n-systems in ordered ternary semigroups.
Ternary algebraic systems have been introduced by Lehmer [3] in 1932. The
author investigated certain ternary algebraic systems called triplexes which
turn out to be ternary groups. Ternary semigroups were introduced by Banach.
He showed by an example that a ternary semigroup does not necessary reduce
to an ordinary semigroup. The following definitions can be founded in [1, 2].
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Definition 1.1 Let S be a nonempty set. Then S is called a ternary
semigroup if there exists a ternary operation S x S x S — S, written as
(21, T2, x3) > [T12223], Such that

[[$1$2$3]$4!E5] = [$1[IE2$3$4]!E5] = [IE1$2[$3$4$5H

for all x1,x9, 23, 24,25 € S.

In [1], the author showed that S = {—i,0,7} is a ternary semigroup under
the usual multiplication of complex numbers. However, S is not an ordinary
semigroup under the usual multiplication of complex numbers because (—i)i =

1¢S.

For nonempty subsets A;, A and Aj of a ternary semigroup S, let
[AlAQAg] = {[Ilﬂlgl'g] | x; € Ai7 1 S ) S 3}

For z,y € S, let [xA;As] = [{z}A1As] and [zA1y] = [{x}Ai{y}]. For any
other cases can be defined analogously.

Definition 1.2 A ternary semigroup S is called an ordered ternary semi-
group if there is an ordered relation < on S such that

r <y = [zr120) < [ym122], [X1720) < [X1YyX0], [T1222] < [T122Y)]

for all z,y,x1,25 € S.

Let S be an ordered ternary semigroup. For A C S| let

(Al ={z €S|z <aforsomeac A}.

Definition 1.3 Let S be an ordered ternary semigroup. A nonempty subset
A of S is called an ideal of S if (i) [SSA] C A, [SAS] C A and [ASS] C A;
(ii) forx € Ajy € S, y < x implies y € A. An ideal A is said to be proper if
A#S.

A nonempty subset A of a ternary semigroup S is called an ideal of S if
[SSA] C A, [SAS] C A and [ASS] C A.

Note that if A is an ideal of an ordered ternary semigroup S, then ([aSb]] C
A if and only if [aS0] C A.

Definition 1.4 Let S be an ordered ternary semigroup (or ternary semi-
group) and A an ideal of S. Then A is said to be weakly prime if for all
a,b €S, [aSb] C A impliesa € A orb e A. A is said to be weakly semiprime
if for all a € S, [aSa] C A implies a € A.
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Definition 1.5 Let S be an ordered ternary semigroup (or ternary semi-

group) and ) # A C S. Then A is called an m-system of S if for each a,b € A
there ezist c € A and x € S such that ¢ < [ax].

Equivalent definition: For any a,b € A there exists ¢ € A such that
¢ € ([aSh]).

Definition 1.6 Let S be an ordered ternary semigroup (or ternary semi-

group) and ) # A C S. Then A is called an n-system of S if for each a € A
there ezist c € A and x € S such that ¢ < [azal.

Equivalent definition: For each a € A there exists ¢ € A such that
c € ([aSal].

Note that Every m-systems is an n-system.

2 Main Results

Theorem 2.1 Let S be an ordered ternary semigroup and A an ideal of S.
(i) If A is weakly prime and S\ A # 0, then S\ A is an m-system.

(ii) If S\ A is an m-system, then A is weakly prime.

Proof. This is a modification of the proof in [4, Proposition 1, p. 56].

(i) Assume that A is weakly prime and S\ A # (). Clearly, S\ A C S.
Let a,b € S\ A. To prove that there exists ¢ € S\ A such that ¢ € ([aSb]],
we suppose not. Then ¢ ¢ ([aSb]] for every ¢ € S\ A. Then [aSb] C A. This
implies a € A or b € A. A contradiction.

(i) Assume that S\ A is an m-system. Let a,b € S be such that [aSb] C A.
To show that a € A or b € A, suppose not. Then a,b € S\ A. By assumption,
there exists ¢ € S\ A such that ¢ € ([aSh]]. Let ¢ < [axb] for some x € S.
Since [axb] € A, we have ¢ € A. A contradiction.

Similarly, we have the following.
Theorem 2.2 Let S be an ordered ternary semigroup and A an ideal of S.
(i) If A is weakly semiprime and S\ A # 0, then S\ A is an n-system.

(ii) If S\ A is an n-system, then A is weakly semiprime.
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Proof. (i) Assume that A is weakly semiprime and S\ A # (). Then
0 #S\ACS. Let a € S\ A. Suppose that ¢ ¢ ([aSc]] for every ¢ € S\ A.
Then [aSa] € A. This implies a € A. A contradiction.

(ii) Assume that S\ A is an n-system. Let a € S be such that [aSa] C A.
Suppose that a € S\ A. By assumption, there exists ¢ € S\ A such that
¢ € ([aSd]]. Let ¢ < [aza| for some z € S. Since [aza] € A, we obtain ¢ € A.
A contradiction.

Let S be a ternary semigroup. Define a relation on S by x < y if and only
if z = y. Then S forms an ordered ternary semigroup. Therefore, by Theorem
2.1 and 2.2, we have the following.

Corollary 2.3 Let S be a ternary semigroup and A an ideal of S.

(i) If A is weakly prime and S\ A # (), then S\ A is an m-system.
(ii) If S\ A is an m-system, then A is weakly prime.

Corollary 2.4 Let S be a ternary semigroup and A an ideal of S.

(i) If A is weakly semiprime and S\ A # 0, then S\ A is an n-system.

(ii) If S\ A is an n-system, then A is weakly semiprime.
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