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Abstract
In this paper we establish conditions that imply the conditional full support

(CFS) property, introduced by Guasoni et al. (2008) [3], for two processes the
Ornstein Uhlenbeck, Stochastic integral in which the Brownian Bridge is the
integrator and build the absence of arbitrage opportunities without calculating
the risk-neutral probability.
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1 Introduction

Condition full support (CFS) is a simple condition on asset prices which spec-
ified that from any time, the asset price path can continue arbitrarily close to
any given path with positive conditional probability. The CSF’s notion was
introduced by Guasoni et al. (2008) [3] where it was proved that the fractional
Brownian motion with arbitrary Hurst parameter has a desired property. This
later was generalized by Cherny (2008) [1] who proved that any Brownian mov-
ing average satisfies the conditional full support condition. Then, the (CSF)
property was established for Gaussian processes with stationary increments by
Gasbarra (2011) [2].
Let’s note that, by the main result of Guasoni et al. (2008) [3] the CFS gen-
erated the consistent price systems which admits a martingale measure.
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Pakkanan (2009) [5] presented conditions that imply the conditional full
support for the process Z := R+ φ ∗W , where W is a Brownian motion, R is
a continuous process.
In this paper, we enjoy this property by thinking of the problems of no arbitrage
for asset prices on the one hand process Ornstein Uhlenbeck and Stochastic
integral in which the Brownian Bridge is the integrator on the other hand.
The layout of the paper is as follows. Section 2 we present some basic concepts
from stochastic portfolio theory and the result on consistent price system.
In section 3 we present conditions that imply the conditional full support
(CFS) property, for processes Z := H + K * W. In section 4 we establish
our main result on the conditional full support for the processes the Ornstein
Uhlenbeck, stochastic integral sauch that the Brownian Bridge is the integrator
and build the absence of arbitrage opportunities without calculating the risk-
neutral probability by the existence of the consistent price systems.

2 Reminder

2.1 Markets and Portfolios

We shall place ourselves in a model M for a financial market of the form

dB(t) = B(t)r(t)dt B(0) = 1

dSi(t) = Si(t)
(
bi(t)dt+

d∑
v=1

σiv(t)dWv(t)
)

Si(0) = si > 0; i = 1, . . . , n (1)

consisting of a money-marketB(.) and of n stocks, whose prices S1(.); . . . ;Sn(.)
are driven by the d−dimensional Brownian motion W (.) = W1(.); . . . ;Wd(.))

′

with d ≥ n.
We shall assume that the interest-rate process r(.) for the money-market, the
vector-valued process b(.) = (b1(.); . . . ; bn(.))

′
of rates of return for the vari-

ous stocks, and the (n*d)-matrix-valued process σ(.) = (σiv(.))1<i<n,1≤v≤d of
stock-price volatilities.

Definition 2.1 A portfolio π(.) = (π1(.), . . . , πn(.))
′

is an F -progressively
measurable process, bounded uniformly in (t, w), with values in the set⋃

k∈N
(π1, . . . , πn) ∈ Rn|π2

1 + . . .+ π2
n ≤ k2, π1 + . . .+ πn = 1

2.1.1 The Market Portfolio

The stock price Si(t) can be interpreted as the capitalization of the ith company
at time t, and the quantities

S(t) = S1(t) + . . .+ Sn(t) and µi(t) =
Si(t)

S(t)
, i = 1, . . . , n (2)
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as the total capitalization of the market and the relative capitalizations of
the individual companies, respectively. Clearly 0 < µi(t) < 1, ∀i = 1, . . . , n
and

∑n
i=1 µi(t) = 1.

The resulting wealth process V w,µ(.) satisfies

dV w,µ(t)

V w,µ(t)
=

n∑
i=1

µi(t)
dSi(t)

Si(t)
=

n∑
i=1

dSi(t)

S(t)
=
dS(t)

S(t)

Definition 2.2 Let O ⊂ Rn be open set and (S(t))t∈[0,T ] be a continuous
adapted process taking values in O.
We say that S has conditional full support in O if for all t ∈ [0, T ] and open
set G ⊂ C([0, T ],O)

P (S ∈ G|Ft) > 0, a.s. on the event S|[0,t] ∈ {g|[0,t] : g ∈ G} (3)

We will also say that S has full support in O, or simply full support when
O = Rn, if 3 holds for t = 0 and for all open subset of C([0, T ],O).

Recall also, the notion of consistent price system.

Definition 2.3 Let ε > 0. An ε − consistent price system to S is a pair
(S̃,Q), where Q is a probability measure equivalent to P and S̃ is a Q −
martingale in the filtration F , such that

1

1 + ε
≤ S̃i(t)

Si(t)
≤ 1 + ε, almost surely for all t ∈ [0, T ] and i = 1, . . . , n.

Note, that S̃ is a martingale under Q, hence we may asuume that it is càdlàg,
but it is not required in the definition that S̃ is continuous.

Theorem 2.4 [4] Let O ⊂ (0,∞)n be the open set defined by

O = O(δ) =
{
x ∈ (0,∞)n : max

j

xj
x1 + . . .+ xn

< 1− δ
}

(4)

and assume that the price process takes values and has conditional full support
in O. Then for any ε > 0 there is an ε− consistent price system (S̃,Q) such
that S̃ takes values in O

To check the condition of Theorem 2.4 we apply the next Theorem. To
compare it with existing results we mention that it seems to be new in the
sense, that we do not assume that our process solves a stochastic differential
equation as it is done in Stroock and Varadhan [6] and it is not only for one
dimensional processes as it is in Pakkanen [5].
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Theorem 2.5 [4] Let X be a n-dimensional Itô proces on [0, T ], such that

dXi(t) = µi(t)dt+
n∑
v=1

σiv(t)dWv(t)

Assume that |µ| is bounded and σ satisfies

ε|ξ|2 ≤ |σ′(t)ξ|2 ≤M |ξ|2, a.s. for all t ∈ [0, T ] and ξ ∈ Rn and ε,M > 0.

Then X has conditional full support.

2.2 Consistent Price System and Conditional Full Sup-
port

Theorem 2.6 [4] Let O ⊂ Rn be an open set and (S(t))t∈[0,T ] be an O-
valued, continuous adapted process having conditional full support in O.
Besides, let (εt)t∈[0,T ] be a continuous positive process, that satisfies

|εt − εs| ≤ Ls sups≤u≤t|S(u)− S(s)|, for all 0 ≤ s ≤ t ≤ T

with some progressively measurable finite valued (Ls)s∈[0,T ].

Then S admits an ε − consistent price system in the sense that, there is
an equivalent probability Q on Ft, a process (S̃(t))t∈[0,T ] taking values in O,

such that S̃ is Q martingale, bounded in L2(Q) and finally |S(t) − S̃(t)| ≤ εt
almost surely for all t ∈ [0, T ].

Lemma 2.7 [4] Under the assumption of theorem 2.6 there is a sequence
of stopping times (τn)n≥1, a sequence of random variables (Xn)n≥0 and an
equivalenty Q such that

1. τ0 = 0, (τn) is increasing and
⋃
n{τn = T} has full probability,

2. (Xn)n≥0 is a Q martingale in the discrete time filtration (gn = Fτn)n≥0,
bounded in L2(Q),

3. if τn ≤ t ≤ τn+1 then |St −Xn+1| ≤ εt.

Corollary 2.8 [4] Assume that the continuous adapted process S evoling in
O has conditional full support in O. Let τ be a stopping time and denote by
QS|Fτ the regular version of the conditional distribution of S given Fτ .
Then the support of the radom measure QS|Fτ is

suppQS|Fτ =
{
g ∈ C([0, T ],O) : g|[0,τ ] = S|[0,τ ]

}
, almost surely.



58 Soumia Dani et al.

3 Conditional Full Support for Stochastic In-

tegrals

We shall establish the CFS for processes of the form

Zt := Ht +
∫ t

0
ksdWs, t ∈ [0, T ]

where H is a continuous process, the integrator W is a Brownian motion, and
the integrand k satisfies some varying assumptions (to be clarified below). We
focus on three cases, each of which requires a separate treatment (see [5]).
First, we study the case:

1. Independent Integrands and Brownian Integrators:

Theorem 3.1 [5] Let us define

Zt := Ht +
∫ t

0
ksdWs, t ∈ [0, T ]

Suppose that

• (Ht)t∈[0,T ] is a continuous process

• (kt)t∈[0,T ] is a measurable process s.t.
∫ T
0 K2

sds <∞
• (Wt)t∈[0,T ] is a standard Brownian motion independent of H and k.

If we have
meas(t ∈ [0, T ] : kt = 0) = 0 P− a.s

then Z has CFS.

As an application of this result, we show that several popular stochastic
volatility models have the CFS property.

Application to Stochastic Volatility Model:

Let us consider price process (Pt)t∈[0,T ] in R+ given by :

dPt = Pt(f(t, Vt)dt+ ρg(t, Vt)dBt +
√

1− ρ2g(t, Vt)dWt,

P0 = p0 ∈ R+ where

(a) f, g ∈ C([0, T ]×Rd, R),

(b) (B,W) is a planar Brownian motion,
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(c) ρ ∈ (−1, 1),

(d) V is a (measurable) process in Rd s.t. g(t, Vt) 6= 0 a.s. for all
t ∈ [0, T ],

(e) (B,V) is independent of W,

write using Itô’s formula:

logPt = logP0 +
∫ t

0
(f(s, Vs)−

1

2
g(s, Vs)

2)ds+ ρ
∫ t

0
g(s, Vs)dBs︸ ︷︷ ︸

=Ht

+
√

1− ρ2
∫ t

0
g(s, Vs)dWs︸ ︷︷ ︸

=Ks

Since W is independent of B and V, the previous Theorem implies that
logP has CFS, and from the next remark which it follows that P has
CFS.

Remarque 3.2 If I ∈ R is an open interval and f : R −→ I is a
homeomorphism, then g 7−→ f ◦g is a homeomorphism between Cx([0, T ])
and Cf(x)([0, T ], I).
Hence, for f(X), understood as a process in I, we have

f(X) has F − CFS ⇐⇒ X has F − CFS

Next, we relax the assumption about independence, and consider the
second case:

2. Progressive Integrands and Brownian Integrators:

Remarque 3.3 The assumption about independence between W and
(H,k) cannot be dispensed with in general without imposing additional
conditions.
Namely, if e.g.

Ht = 1; kt := eWt− 1
2
t; t ∈ [0, T ]

then Z = k = ξ(W ), the Dolans exponential of W,
which is stricly positive and thus does not have CFS, if process is consider
in R.
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Theorem 3.4 [5]

Suppose that

• (Xt)t∈[0,T ] and (Wt)t∈[0,T ] are continuous process

• h and k are progressive [0, T ] ∗ C([0, T ])2 −→ R,

• ε is a random variable.

• and Ft = σ{ε,Xs,Ws : s ∈ [0, t]}, t ∈ [0, T ]

If W is an Ft∈[0,T ] −Brownian motion and

• E[eλ
∫ T
0
k−2
s ds] <∞ for all λ > 0

• E[e2
∫ T
0
k−2
s h2sds] <∞ and

•
∫ T
0 k2sds ≤ K a.s for some constant K ∈ (0,∞)

then the process

Zt = ε+
∫ t

0
hsds+

∫ t

0
ksdws, t ∈ [0, T ]

has CFS.

3. Independent Integrands and General Integrators:

Since Brownian motion has CFS, one might wonder if the preceeding
results generalize to the case where the integrator is merely a continuous
process with CFS. While the proofs of these results use quite heavily
methods speciFIc to Brownian motion (martingales, time changes), in
the case independent integrands of finite variation we are able to prove
this conjecture.

Theorem 3.5 [5] Suppose that

• (Ht)t∈[0,T ] is a continuous process

• (kt)t∈[0,T ] is a process of finite variation, and

• X = (Xt)t∈[0,T ] is a continuous process independent of H and k.

Let us define

Zt := Ht +
∫ t

0
ksdXs, t ∈ [0, T ]

If X has CFS and
inf

t∈[0,T ]
|kt| > 0 P− a.s

then Z has CFS.
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4 Main Result

In this part, we will use the following theorem to demonstrate the absence of
arbitration without calculating the risk-neutral probability for the two models
below.

Theorem 4.1 [3, Theorem 1.2] Let Xt be an Rd
+-valued, continuous adapted

process satisfying (CFS); then X admits an ε-consistent pricing system for all
ε > 0

4.1 Ornstein-Uhlenbeck Process Driven by Brownian
Motion

The (one-dimensional) Gaussian Ornstein-Uhlenbeck process X = (Xt)t ≥ 0
can be defined as the solution to the stochastic differential equation (SDE)

dXt = θ(µ−Xt)dt+ σdWt t > 0

Where we see

Xt = X0e
−θt + µ(1− e−θt) +

∫ t

0
σeθ(s−t) dWs. t ≥ 0

It is readily seen that Xt is normally distributed. We have

Xt = X0e
−θt + µ(1− e−θt)︸ ︷︷ ︸

Ht

+
∫ t

0
σeθ(s−t)︸ ︷︷ ︸

Ks

dWs. t ≥ 0 (6)

to establish the property of CFS for this process, the conditions of theorem
3.1 will be applied.

The processes (Hs) and (Ks) in (6) satisfie

1. Process (Hs) is a continuous process,

2. (Ks) is a measurable process such that
∫ T
0 K2

sds <∞, and

3. (Wt) is a standard Brownian motion independent of H and K.

Consequently, the process (Xt) has the property of CFS and there is the
consistent price systems which can be seen as generalization of equivalent mar-
tingale measures.
This observation we basically say that this price process doesn’t admit arbi-
trage opportunities under arbitrary small transaction, with it we guarantee
no-arbitrage without calculating the risk-neutral probability.
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4.2 Independent Integrands and Brownian Bridge Inte-
grators

Before giving the application of CFC, we recall some facts on Brownian bridge.

The Brownian bridge (bt; 0 ≤ t ≤ 1) is defined as the conditioned process
(Bt; t ≤ 1|B1 = 0).

Note that Bt = (Bt − tB1) + tB1 where, from the Gaussian property, the
process (Bt − tB1; t ≤ 1) and the random variable B1 are independent. Hence

(bt; 0 ≤ t ≤ 1) =law (Bt − tB1; 0 ≤ t ≤ 1).

The Brownian bridge process is a Gaussian process, with zero mean and co-
variance function s(1− t); s ≤ t. Moreover, it satisfies b0 = b1 = 0.

Let
dSt = St(µdt+ σdbt),
where µ and σ are constants, be the price of a risky asset. Assume that

the riskless asset has an constant interest rate r.

The standard Brownian bridge b(t) is a solution of the following stochastic
equation.

dbt = − bt
1− t

dt+ dWt; 0 ≤ t < 1

b0 = 0.
(7)

The solution of above equation is

bt = (1− t)
∫ t

0

1

1− s
dWs,

We may now verify that S has CFS.
By positivity of S, Itô’s formula yields

logSt = logS0 +
{(
µ− σ2

2

)
t+ σ

(
1− t

) ∫ t

0

1

1− s
dWs

}
, 0 ≤ t < 1.

We have

logSt = logS0 +
(
µ− σ2

2

)
t︸ ︷︷ ︸

=:Ht

+
∫ t

0
σ
(

1− t
)

1

1− s︸ ︷︷ ︸
=:Ks

dWs, 0 ≤ t < 1.

1. (Ht) is a continuous process,
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2. (Ks) = σ(1− t) 1
1−s is a measurable process s.t.

∫ t
0 K

2
sds <∞,

3. (Wt) is a standard Brownian motion independent of H and K,

which clearly satisfie the assumptions of theorem (3.1) and logSt has CFS,
then S has CFS for 0 ≤ t < 1 and there is the consistent price systems which
is a martingale. With it we guarantee no-arbitrage without calculating the
risk-neutral probability.

5 Conclusion

In this paper we have investigated the conditional Full support for two pro-
cesses the Ornstein Uhlenbeck, Stochastic integral in which the Brownian
Bridge is the integrator, and we have also built the absence of arbitrage op-
portunities without calculating the risk-neutral probability by the existence of
the consistent price systems which admits a martingale measure.

6 Prospects

In mathematical finance, the CoxIngersollRoss model (or CIR model) describes
the evolution of interest rates. It is a type of ”one factor model” (short rate
model) as it describes interest rate movements as driven by only one source of
market risk. The model can be used in the valuation of interest rate deriva-
tives. It was introduced in 1985 by John C. Cox, Jonathan E. Ingersoll and
Stephen A. Ross as an extension of the Vasicek model.

The CIR model specifies that the instantaneous interest rate follows the
stochastic differential equation, also named the CIR Process:

dXt = θ(µ−Xt)dt+ σ
√
XtdWt t > 0

where Wt is a Wiener process and θ, µ and σ, are the parameters. The
parameter θ corresponds to the speed of adjustment, µ to the mean and σ, to
volatility. The drift factor, θ(µ − Xt), is exactly the same as in the Vasicek
model. It ensures mean reversion of the interest rate towards the long run
value µ, with speed of adjustment governed by the strictly positive parameter
θ.

As prospects, we establish the condition of CFS for the Cox-Ingersoll-Ross
model.
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