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Abstract

In this paper, we study the multidimensional mized problem with periodic
boundary condition for quasilinear Euler-Bernoulli equation % —eb? 8321;2 +
GQ% = f(t,z,u). We also consider the mized problem %—i—az% = f(t,x,v).
Finally we prove that the solution function u(t,x,€) of the quasilinear Euler-
Bernoulli equation is convergent to the solution function v(t,x) of the quasi-
linear quartic equation, as € — 0.

Keywords: Mixed problem, Periodic boundary condition, Quasi-linear

quartic partial differential equation.

1 Introduction

In recent years, mathematical modeling of sound wave distribution problems
and also the vibration, buckling and dynamic behavior of various building
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elements widely used in nano-technology are formulated with following Euler-
Bernoulli equations

2u A A

g? — €b2828x2 + az% = f(t,z,u) (1)
Due to the new and exceptionally its electronic and mechanical properties,
carbon nanotubes are considered to be one of the most useful material in fu-
ture. Nowadays, nanotubes are used as atomic force microscopy, nanofillers for
composite materials, nanoscale electronic devices and even frictionless nanoac-
tuators, nanomotors, nanobearings and nanosprings [4,9,13,16,17]. These el-
ements are tackled by different boundary conditions depending on different
loading conditions. Therefore, investigation of existence and uniqueness of the
solution of Euler-Bernoulli equations with different boundary conditions used
in the mathematical modeling of the structural components of nano-materials
continues to be a focus of interest amongst mathematicians.The reader is ref-
ereed to [2,6,7,8] for some relevant previous work on linear and quasi-linear

equations. The textbooks [3,11,12,14,15] also contain important results.

In mathematics, the classical statement of Euler-Bernoulli equation

0% 0*u

— +a*— =0 (2)

ot? ox4
which is taken € = 0 from (1) is used for beam vibration equation. As well as
the homogeneous equation, quasilinear and non-linear equations can be han-
dled in this case. Various problems for equations of this type were investigated

and many results have been obtained in different ways.

We first discuss the following mixed problem for the Euler-Bernoulli equa-
tion with the nonlinear source term f = f(t, z,u):
o' Nox

Pu
5 —eb 8t26x2+a e = f(t,z,u), (t,z) e D{0<t<T,0<z<7} (3)

u(O,m,&‘) = (P(x)a ut(O,x,g) = w(x)a (O <o < 7T) (4)

u(t,0,e) = u(t,me), uy(t,0,e) = u,(t,m e),
ug2(t,0,6) = ug2(t,m,€), uus(t,0,6) = us(t,me), (0<t<T)

()

and also we consider the following mixed problem for a quasilinear quartic
equation with the nonlinear source term f = f(¢,z,v):
0? o
a—tf +a28—;1 — f(t,z,0), (ba)eD{0<t<T, 0<z<x}  (6)
v(0, z

) = @), v(0,2) =¢(z), (0<z<m) (7)
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U( J ) (t 7T) Uac(tao) = Uac(tvﬂ-)’ 8

Uz2(t,0) = vp2(t, ), v3(¢,0) = vea(t,m), (0<t<T) (8)

where (1), 1(x) and f(t, z,u) are given functions defined on [0, 7] and D{0 <

t<T, 0<z<m}x(—00, 00), respectively, and the functions u(t, z,e) and
v(t, z) are solutions of the problems(3)-(5) and (6)-(8).

In [7], the authors have studied the solution of the problem (3)-(5) for

e > 0. The same authors have considered the solution of the problem (6)-

(8) for ¢ = 0 in [8]. In the present paper, we discuss the solution of the

problem (3)-(5) and (6)-(8) and show that the solution function of u(t, z,¢) of

the quasilinear Euler-Bernoulli equation is convergent to the solution function

v(t,z) of the quasilinear quartic equation, as ¢ — 0 (i.e., lim._,o u(t,z,e) =

v(t,x), (t €[0,t])).

2 Preliminaries

Definition 2.1 [1, 10] The function w(t,x) € C(D) is called test function
if it has continuous partial derivatives of order contained in equation (1) and
satisfies both following conditions

w(T,z) = wy(T,x) = wee (T, x) = w2 (T, ) =0
and the boundary condition;
w(t,0) = w(t,m), we(t,0) = wy(t, ), wyz(t,0) = w2 (t, ), wys(t,0) = wys(t, 7)a

Definition 2.2 The function u(t,z,c) € C(D x [0,&0]) satisfying the inte-
gral identity

4 4
/ / [W_ b282(?2(;02+ 2?9_20] —f(t,x,u)w}dxdt—l—

T 0*w
2 2
/0 o(x) {vt((),x) —¢b 200 2] da:—/ Y(x { x) —eb at?aﬁ} dex =0
(9)
for an arbitrary test function w(t,z) is called weak generalized solution of

problem (3)-(5).
Definition 2.3 The function v(t,z) € C(D) satisfying the integral identity

/ / [8812 (34 4} - f(t’%U)w} dz di+
/0 p(x)0y(0, ) do — /Oﬂw(x)v(O,x) dz = 0

for an arbitrary test function w(t,x) is called weak generalized solution of

problem (6)-(8).

(10)
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3 Solution of Problem

The set
fa(t,e)) = {%uo(t,s),ud(t,a),usl(t,a), et ) u(t,2), )

of functions satisfying the condition

1
S e (4] + Z | fuea0.2) + g a0 < o

for all € € [0, ¢ is denoted by Br. Let

_ 1 -
ot )l = 5 s o2} + 3 ngg;] st €)| + s \usk<t,e>r}

be the norm in Br. It can be shown that By is Banach space.

Looking for the weak solutions of (3)-(5) and (6)-(8) of which existence and
uniqueness are proven under certain conditions as following respectively;

oo
u(t,z,e) = uo (t,e) + Z Uek (£, €) cos 2kx + ugk(t, €) sin 2kx] (11)
k=1

and

NE

v(t,x) = %uo(t) + ) [uek(t) cos 2kx + ug(t) sin 2kz] (12)

i

1

we get the following infinite system of integral equations for the unknown
functions ug(t, €), uek(t, €), usk(t, €) and vo(t), vex(t), ver(t), (k =1,00)
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wl®) =+t +> [ [ 0= {rE Guln e

f: [Uen (T, €) €OS 2nE + gy (T, €) sin2n&] } dE dr,
n=1

Uek (t, €) = Qex, COS et + % sin at+
677

Ton / / Hr 5 o(7,€) + ; [ten (T, €) €OS 2nE + U (T, €) sin 20E] } X

cos 2kE sin o (t — 1) d€ dr,

usk(t, ) = g cOS .t + % sin oy t-+
(o738

Wak/ / A f (1,¢) + Z Uen (T, €) €08 2nE + U (7, €) sin 2n&] } %

sin 2k¢ sin ozk(t — 1) dédr,

a(2k)? N

T2k 00 (13)

and

t ™
wlt) =t += [ [ = guin+
io: [Ven (T) cos 2né + v, (T) sin 2né| } d¢ dr,
n=1

Ver(t) = ek cOS Qt + @ sin at+
73

s / / f{T f (1) + niO; [Ven (T) €08 2n& 4 Vg, (T) sin 2n¢] }><
cos 2kE sin ag(t — ) d€ dr,

Vsk(t) = P COS apt + @ sin ot +
O

ﬂ-ak / / {T 5 + Z Ucn COS 2”5 + Usn( )Sin 2715] }X

sin 2k¢ sin ozk(t — 1) dédr,
ar = a(2k)?, k=T1,00. (14)
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For simplicity, let

NE

1
Au(r, & e) = §u0(t, €)+ Y [ten(T,€) cos 2kx + Uy, (T, €) sin 2nx]

>
Il

1

and

Av(r, &) = —uo )+ Z Uen (T) €08 2k + U, (T) sin 2nx] .
k=1

To examine the difference of the systems (13) and (14), we write as following;

wite)=ult) = = [ [ (=) [F{rg Autr .0} - {6 A )] dear

Uek (L, €) — Vi () = pep(cos apt — cos agt) + ek ( —
Q. (673

sinogt  sin &zt)

7T04k;/ / A, & Au(r, €, )} cos 2k sin ay(t — 1) d€ dr—
7T%/ / A, & Av(T, &)} cos 2kE sin ag (t — 7) d€ dr

_ sin it sinagt
Usk (£, €) — Vsp(t) = sk (cos ot — cos agt) + Vg ( o — % )

/ / AT, & Au(r, &, e) } sin 2k sin a (t — 7) d€ dT—
/ / fAr, & Av(r, €)} sin 2kE sin oy, (t — 7) d€ dT

’ZTCJ(].C

7T04k

then we have

ot ) —vo(t) = %/0 /Oﬂ(t—T) [F{m e Au(r,€,9)) — f{r. €, Au(r,€)}] dédr,

Uck(t,€) — Ver(t) = Per(cos agt — cos agt) + Yo, <Sm Qpt S oy )

Qg (673
(aik _ é) %/t /7r AT, & Au(r, €, €)} cos 2kE sin a (t — 7) dE dT+

Qg

/ / T, & Av(T, &)} cos 2kE[sin ag(t — 7) — sinag(t — 7)] d€ dT+

7TOék
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% [f{T,{,Au(T,f,s)} — f{T,f’,Av(T, f)}} cos 2k& sin o (t — 1) d€ d,
k

— i t in ot
Usk(t,€) — Vsp(t) = @er(cos agt — cos agt) + Ve (sm ARt Snlak )
A (077

(i _ _) / / FIr, € Au(r, €, €)Y sin 2k€ sin ag(t — 7) d€ dr+

677

s / / 7, & Av(T, &)} sin 2k [sin oy (t — 7) — sinag(t — 7)] d€ dT+

7T04k/ / {T & Au(T, € e } f{T &, Av(r, f)}] sin 2k¢ sin a (t—7) d€ dr.

Take the absolute values of differences and after making the necessary group-
ing, we form a sum as following;

i(t,€) — (1) = g lo(t,) — D)} +

oo

> Hua(t,e) = va(®)] + Juge(t, €) — var()]] <

k=1
Z// {6 Au(r,6,2)} — f{r.€, Av(r,€)}|dé drt

smakt sin at +
Qg

[e.e]
> (Iperl + lpai])| cos at — cos agt| + Z el + [ai])
k=1

gla—i—a%\ / (\; / F{7.€, Au(T, €, <) cos 2kEdE| +
|% /07r FT. € Au(r, €, ) sin 2k§d§|) dr+
S [ (12 ] streautnee e +
|E /Wf{ﬂ&AU(T,é,E) sin 2k€d€|> | sinag(t — 1) — sinag(t — 7)|dT+
Zak/ ( / [H{7.& Au(r. &)} = F{r, € Av(r, ) }] cos 2k€de] +

2/ [f{T{AUTf, } f{rfAva)HSka{dﬂ)dT. (15)
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sinagt  sinagt

= ar = &= [sinog(t—

Each of the statements | cos ayt—cos axt], ‘

T) — sinag(t — 7)| of the right side of in the equality (15) are bounded for k, 7
and t (0 <7 <t <T), ase — 0. Let us denote these statements by
d1(g),02(€), 05(€), d4(€), respectively, and then write last inequality as follow-

ing:

o) -0l < [ [ IHn e At g0} - g A o)+

61(6) > (loer] + [psk]) +02(e) > ([ther| + [sr])+

k=1 k=1

‘) g/; (y% /Oﬂf{T,g,Au(T,g,g) cos 2kEdE| +

I% /Oﬂf{T,f,Au(T,f,S) sin 2k§d§|) dr+

‘) g; a% Ot (y% /Oﬂf{T,g,Au(T,g,g) cos 2kEdE| +
|g /Wf{T,f,Au(T,f,E) sin 2k§d§|) dr+

iai/ot(—/ [F{7. & Au(r, &, )} — f{7,& Av(T, &) }] cos2kédg| +

I;/0 [F{r.& Aulr, &, e)} — f{r,& Av(r,€)}] Sin2k:§d§|) dr
(16)

Under the assumptions of the theorem given below, we can take d(¢) as the
sum of the 2nd, 3rd, 4th, 5th sums in the right side of the inequality (14), then
we have

@I

[u(t,e) —o(t)] < d(e)+

’%/o [F{7. & Au(r, &, )} — f{7,& Av(r, &) }] d€|dT+

NN
c\

oo
> =
k=

1 @k

t (é/g [f{T,f,Au(T,é,e)} — f{T,ﬁ,Av(T,é)}] cos 2kEdE| +

c\

/07r [f{T,f,Au(T,f,e)} — f{T,{,Av(T, S)H sin2k’§d§|) dr

2N
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Applying Holder inequality to third sum in the right side of the inequality
above, we obtain

[a(t, e) —v(t)] < d(e)+

_/ /|f{T§AUT§g} f{TgAUTf}\dng+<§: 1)1/2

=1 %k

{iut(z/ [F{7. €& Au(r,€,e)} — f{7.& Av(r,€)}] cos 2kEde +

k=1

™ 0y 1/2
%/0 [f{T,é“,Au(T,f,a)}—f{T,f,Av(T,f)H sin2k§df|> dr] } . (17)

Applying Cauchy inequality to the integrals in the right side of (17), then
applying following inequality

(ay+ag+...+a,)* <n(ad+a5+...+ad2) (18)

to third sum for n = 2, we obtain

[a(t,e) —v(t)| < 6(e)+
3/2 t T ) %
TT {/0 E/ (f{7,& Au(r,&,2)} —f{T,f,AU(T,f)}>d£:| dT} i

(g%) {ZT/( | Hrganeo) -

f{T &, Av(r, f)}] costfdf) dr +

ZT/( / [Fr,€, Au(r,&,6)} — f{TfAv7‘§)}]sin2k§d§)2d7}l/2

19
and then, (19)

<)~ 5(0)] < o)+
%{/E/ (F{r.€ Aulr.€.2)} - f{TﬁAwﬁ)})dfrdf} +

ﬁ(i%)l {/ ZT( / [F{r€ Au(r,€,6)} —

k=1
f{T,f,Av T, f)}] COS 2k£d£) +

SIS
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) 1/2
(2/ (F{r €, Au(r,€,)) — f{TgAva)}]sianﬁdﬁ)]dT} (20)

Taking square and using the inequality (18) to the inequality above for n = 3,
we have

a(t,e) —o(t)* <
3T {z/ f{TﬁAUTf, } f{Tf’ AvTﬁ)}) 5} dr+

™

6TZ~2/t§:{( / [f{r.6 Au(r.&,2)} — f{TfAvTﬁ)}]cos2k§d§)2+

(%/ﬂ [f{r,{,Au(T,&&)} - f{7—7£7AU<T7 5)}] sin 2k€d§) } ’ (21)

Supposing

373 =
mazx (T 6TZ ~2> = Mo,

=1 Yk

let us combine the integrals of the right side of (21) as follows,

[u(t, e

) =

o [ { 2 [ lreautne o) - frg avng)}) dfrdr "
>|(:

(2/ [f{TﬁAUT{, } f{Tf’ Ang)H sin2k§d§)2]}. (22)

—o(t)]> < 36()*+

<_ /7r [f{T,f,Au(T,ﬁ,é‘)} — f{T,E,AU(T, §)}] cost‘fdf)2 +

Applying Bessel inequality to the sum in (22), we obtain

u(t,e)—v(t)]* < 352—1—#0%/0 /0” [f{r 2, Au(r,z,e)} — f{r, =, Av(r, x)}}zdx.

Using Lipshitzs inequality, we have

u(t,e) —v(t))? < 36(e)* + MO%/O /07T V2 (t, z) [Au(r, z,e) — Av(r, )] dedr



Dependency of the Solution of a Class of Quartic... 69

or

a(t,e) — (b)) < 30()? + uo% /0 /0 "Bt @)l ) — T(r)2dwdr. (23)

Applying Gronwall inequality to (23), we obtain

2 t m
alt,2) ~ o) < 30(eP exppo [ [ Wt a)dodr
™ Jo Jo

or

[a(t,) — o(t)| < V30(e) expexp 22 | b(t, 2) |13, dadr.
T
In the last inequality, taking into account §(¢) — 0 for e — 0, we see that

limu(t, e) = o(t).

e—0

Hence, the following theorem is proved.

Main Theorem: Suppose the following conditions are satisfied;

a) f(t,x,u) is continuous respect to all arguments on D x (—o0,0), and
satisfies the following condition |f(t,z,u) — f(t,x,v)] < b(t,z)|u — v
where b(t,x) € Ly(D), b(t,z) > 0,

b) [f(t’xvu)]x € LQ(D)?
C) f(t>$’0) € LQ(D)7

d) The functions p(x), ¥(x) with o(z) € C*[0,7],v(x) € C[0, 7] satisfy the
following conditions;

In this case, im._,ou(t,e) = 0(t), i.e. lim._,qu(t,x,e) = lim._,ov(t, z) is trues
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