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Abstract

We obtain a sufficient condition for the analyticity and the univalence of
a class of functions defined by an integral operator. This integral operator
preserves the class of univalent functions.
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1 Introduction

Let Ur = {z ∈ C : |z| < r} , 0 < r ≤ 1, be the disk of radius r centered at
0, let U = U1 be the unit disk and let I = [0,∞).

Denote by A the class of analytic functions in U which satisfy the usual
normalization f(0) = f ′(0) − 1 = 0 and let S denote the class of functions
f ∈ A, f univalent in U .

An important problem in the theory of univalent functions is to find in-
tegral operators which preserve the class of univalent functions. We mention
the well known integral operators due to Kim and Merkes [3], Pfaltzgraff [9],
Moldoveanu and Pascu [6] and the recently generalization of these results ob-
tained by author in [13].

A function f ∈ S is said to be in the class of ϕ-spirallike functions of order
ρ in U , denoted by S∗(ϕ, ρ), if
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Re

(
eiϕ

zf ′(z)

f(z)

)
> ρ cosϕ, z ∈ U ,

where ϕ ∈ (−π/2, π/2), ρ ∈ [0, 1).
The class S∗(ϕ, ρ) was studied by Libera [4] and Keogh and Merkes [2].

Note that S∗(ϕ, 0) is the class of spirallike functions introduced by Špaček [11],
S∗(0, ρ) = S∗(ρ) is the class of starlike functions of order ρ and S∗(0, 0) = S∗
is the familiar class of starlike functions.

Before proving our main result we need a brief summary of theory of
Löewner chains.

A function L(z, t) : U × I → C is said to be a Löewner chain or a sub-
ordination chain if L(z, t) is analytic and univalent in U for all t ∈ I and
L(z, t) ≺ L(z, s) for all 0 ≤ t ≤ s < ∞, where the symbol ” ≺ ” stands for
subordination.

The following result due to Pommerenke is often used to obtain univalence
criteria.

Theorem 1.1. ([10]). Let L(z, t) = a1(t)z+a2(t)z
2 + . . ., a1(t) 6= 0 , be an

analytic function in Ur for all t ∈ I, locally absolutely continuous in I, locally
uniform with respect to Ur. For almost all t ∈ I, suppose that

z
∂L(z, t)

∂z
= p(z, t)

∂L(z, t)

∂t
, ∀z ∈ Ur , (1)

where p(z, t) is analytic in U and satisfies the condition <p(z, t) > 0 for all

z ∈ U , t ∈ I. If lim
t→∞
|a1(t)| = ∞ and

{
L(z,t)
a1(t)

}
t≥0

forms a normal family

in Ur, then for each t ∈ I, the function L(z, t) has an analytic and univalent
extension to the whole disk U .

At the end of this section we formulate lemmas which will be used in the
following sections.

Lemma 1.2. ([1]). Let f ∈ S. Then∣∣∣∣ zf ′(z)

f(z)

∣∣∣∣ ≤ 1 + |z|
1− |z|

, ∀z ∈ U , (2)

and ∣∣∣∣ −2|z|2 + (1− |z|2) zf
′′(z)

f ′(z)

∣∣∣∣ ≤ 4|z| , ∀z ∈ U . (3)

Lemma 1.3. ([5]). If f ∈ S∗(ϕ, ρ) and a is a fixed point from the unit disk
U , then the function h,

h(z) =
a · z

f(a)(z + a)(1 + āz)ψ
· f
(

z + a

1 + āz

)
(4)
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where
ψ = e−2iϕ − 2ρe−iϕ cosϕ (5)

is a function of the class S∗(ϕ, ρ).

Lemma 1.4. ([8]). Let f be an analytic function in U , f(0) = 0 and M a
positive real number . If <f(z) ≤M for all z ∈ U , then

| f(z) | ≤ 2M · |z|
1− |z|

, ∀z ∈ U .

2 Main Result

Making use of Theorem 1.1, the essence of which is the construction of
suitable Löewner chain, we can prove our main result.

Theorem 2.1. Let α, c be complex numbers, n natural number, n ≥ 1,
such that ∣∣∣∣ α− 2 +

1

n

∣∣∣∣ < 1 and | c | < 1. (6)

For f ∈ A , if the inequality∣∣∣∣ c|z|2n + (1− |z|2n)

[
(α− 1)

znf ′(zn)

f(zn)
+

1− n
n

] ∣∣∣∣ ≤ 1 (7)

is true for all z ∈ U , then the function

Fn,α(z) =

[
(n(α− 1) + 1)

∫ z

0

fα−1(un)du

] 1
n(α−1)+1

, (8)

where the principal branch is intended, is analytic and univalent in U .

Proof. Let us prove that there exists a real number r ∈ (0, 1] such that the
function L : Ur × I −→ C, defined formally by

L(z, t) =

[∫ e−tz

0

fα−1(un)du +
e2nt − 1

n(1 + c)
e−tz · fα−1(e−ntzn)

] 1
n(α−1)+1

(9)

is analytic in Ur for all t ∈ I.
From the analyticity of the function f in U it follows that the function

h1(z) = f(zn)
zn

is analytic in U and since h1(0) = 1 there is a disk Ur1 , r1 ∈ (0, 1],
in which h1(z) 6= 0. Therefore we can choose the uniform branch of (h1(z))α−1

equal to 1 at the origin, denoted by h2. It is easy to see that the function

h3(z, t) =

∫ e−tz

0

un(α−1)h2(u)du
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can be written as h3(z, t) = zn(α−1)+1h4(z, t), where h4 is also analytic in Ur1 .
The function

h5(z, t) = h4(z, t) +
e2nt − 1

n(1 + c)
e−[n(α−1)+1]t · h2(e−tz)

is analytic in Ur1 and

h5(0, t) = e−[n(α−1)+1]t

[
e2nt

n(1 + c)
+

1

n(α− 1) + 1
− 1

n(1 + c)

]
.

Let us now prove that h5(0, t) 6= 0 for any t ∈ I. We have h5(0, 0) = 1
n(α−1)+1

.

Assume that there exists t0 > 0 such that h5(0, t0) = 0. Then e2nt0 = 1 −
n(1+c)

n(α−1)+1
and because n(1+c)

n(α−1)+1
is a real number only in the case

< n(1 + c)

< n(α− 1) + 1
=

= n(1 + c)

= n(α− 1) + 1
= µ ,

from hypothesis (6) we obtain µ > 0 and then we conclude that h5(0, t) 6= 0
for all t ∈ I. Therefore there is a disk Ur2 , r2 ∈ (0, r1], in which h5(z, t) 6= 0 for
all t ∈ I. So, we can choose an uniform branch of [h5(z, t)]

1/[n(α−1)+1] analytic
in Ur2 , denoted by h6(z, t), that is equal to

a1(t) = e
2n−n(α−1)−1
n(α−1)+1

t

[
1

n(1 + c)
+

(
1

n(α− 1) + 1
− 1

n(1 + c)

)
e−2nt

] 1
n(α−1)+1

at the origin and for a1(t) we fix a determination. From these considerations ,
it follows that relation (9) may be written as L(z, t) = z ·h6(z, t) = a1(t)z+ . . .
and then function L(z, t) is analytic in Ur2 .

Under the assumption of the theorem, |( α − 1 + 1
n

) − 1| < 1 , which is

equivalent to < 1
α−1+ 1

n

> 1
2

we have < 2n−n(α−1)−1
n(α−1)+1

> 0 and then lim
t→∞
|a1(t)| =

∞. We saw also that a1(t) 6= 0 for all t ∈ I. From the analyticity of L(z, t) in
Ur2 , it follows that there exists a number r3 ∈ (0, r2 ] and a constant k = k(r3)
such that

| L(z, t)/a1(t) | < k, z ∈ Ur3 ,

and hence {L(z, t)/a1(t)} forms a normal family in Ur3 . From the analytic-
ity of ∂L(z, t)/∂t, for all fixed numbers T > 0 and r4, 0 < r4 ≤ r3, there

exists a constant K1 > 0 (that depends on T and r4) such that
∣∣∣ ∂L(z,t)∂t

∣∣∣ <
K1, ∀z ∈ Ur4 , t ∈ [0, T ]. It follows that the function L(z, t) is locally ab-
solutely continuous in I, locally uniform with respect to z ∈ Ur4 . The function
p(z, t) defined by (1) is analytic in a disk Ur, r ∈ (0, r4], for all t ∈ I. In order
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to prove that function p(z, t) is analytic and has positive real part in U , we
will show that function w(z, t) = (p(z, t) − 1)/(p(z, t) + 1) , z ∈ Ur, t ∈ I, is
analytic in U , and

| w(z, t) | < 1, ∀z ∈ U , t ∈ I .

Elementary calculation gives

w(z, t) = c · e−2nt + (1− e−2nt)
[

(α− 1)
e−ntznf ′(e−ntzn)

f(e−ntzn)
+

1− n
n

]
(10)

We have w(z, 0) = c and w(0, t) = ce−2nt + (1− e−2nt)(α− 1 + 1−n
n

). In view
of (6) we obtain that

| w(z, 0) | < 1 and also | w(0, t) | < 1 (11)

From (7) we deduce that f(z) 6= 0 for all z ∈ U \ {0} and taking into account
(11) we get that w(z, t) is analytic in unit disk U . Let t be a fixed positive
number, z ∈ U , z 6= 0. Since |e−tz| ≤ e−t < 1 for all z ∈ U = {z ∈ C : |z| ≤
1} we conclude that function w(z, t) is analytic in U . Using the maximum
modulus principle it follows that for each t > 0, arbitrary fixed, there exists
θ = θ(t) ∈ R such that

|w(z, t)| < max
|ξ|=1
|w(ξ, t)| = |w(eiθ, t)|. (12)

We denote u = e−t · eiθ . Then |u| = e−t < 1 and from (10) we get

w(eiθ, t) = c|u|2n + (1− |u|2n)

[
(α− 1)

unf ′(un)

f(un)
+

1− n
n

]
Since u ∈ U , the inequality (7) implies |w(eiθ, t)| ≤ 1 and from (11) and (12)
we conclude that |w(z, t)| < 1 for all z ∈ U and t ≥ 0.

From Theorem 1.1 it follows that L(z, t) has an analytic and univalent
extension to the whole disk U , for each t ∈ I. In particular, for t = 0 we
conclude that the function

L(z, 0) =

[ ∫ z

0

fα−1(un)du

] 1
n(α−1)+1

is analytic and univalent in U , and also function Fn,α(z) defined by (8) is
analytic and univalent in U .

Remark 2.2. For n = 1, we get the result given in [7]. Every many-valued
function, throughout in the sequel, is taken with the principal branch.
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3 Integral Operator Preserves the Univalence

In this section we study the integral operator (8) if f is univalent in U
or belongs to some special subclasses of univalent functions and we see the
important role played by the constant c in Theorem 2.1.

Theorem 3.1. Let f ∈ S, α ∈ C , n ∈ N∗ = N \ {0}. If

|α− 1| ≤ 1

4n
, (13)

then the function Fn,α(z) defined by (8) and all the functions Fn−k,α(z) , k ∈ N,
1 ≤ k ≤ n− 1 are analytic and univalent in U .

Proof. For f ∈ S and taking c = 0, it is easy to check that inequality (13)
implies inequalities (6) and (7) of Theorem 2.1. Indeed, applying (2) we find
that

(1−|z|2n)

∣∣∣∣(α− 1)
znf ′(zn)

f(zn)
+

1− n
n

∣∣∣∣ ≤ |α−1|(1−|z|2n)
1 + |z|n

1− |z|n
+
n− 1

n
(1−|z|2n)

≤ |α− 1| ((1 + |z|n))2 +
n− 1

n
≤ 4|α− 1|+ n− 1

n
≤ 1 .

We have also

| α− 2 +
1

n
| ≤ |α− 1|+ n− 1

n
≤ 1

4n
+

n− 1

n
< 1.

It follows that Fn,α(z) defined by (8) is analytic and univalent in U . Since
1
4n

< 1
4(n−k) , for k natural number, 1 ≤ k ≤ n − 1 , inequality (13)

implies |α − 1| ≤ 1
4(n−k) , and then all the functions Fn−k,α(z) defined by (8)

are analytic and univalent in U .

In the next we consider the case when the function f belongs to some sub-
sets of S and we expect that the hypothesis (13) of the Theorem 3.1 becomes
larger.

Theorem 3.2. Let f ∈ S∗(ϕ, ρ), α ∈ C , n ∈ N∗. If

|α− 1| < 1

n[ 1 + 2(1− ρ) cosϕ ]
(14)

then the function Fn,α(z) defined by (8) and all the functions Fn−k,α(z) , k ∈ N,
1 ≤ k ≤ n− 1 are analytic and univalent in U .
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Proof. For f ∈ S∗(ϕ, ρ) , and h be defined by (4), h(z) = z + a2z
2 + . . ., we

obtain

a2 =
h′′(0)

2
= (1− |a|2) f

′(a)

f(a)
− 1 + ψ|a|2

a
,

where ψ is given by (5). It follows that

a · f ′(a)

f(a)
=

1 + a · a2 + ψ|a|2

1− |a|2
(15)

It is known that for f ∈ S∗(ϕ, ρ), f(z) = z + a2z
2 + . . ., we have ( see [1])

| a2 | ≤ 2(1− ρ) cosϕ . (16)

In view of (15), from (7) we get

c|z|2n + (1− |z|2n)(α− 1)
znf ′(zn)

f(zn)
+ (1− |z|2n)

1− n
n

(17)

= c|z|2n + (α− 1)(1 + a2z
n + ψ|z|2n) + (1− |z|2n)

1− n
n

=

[
c+ (α− 1)ψ +

n− 1

n

]
|z|2n + (α− 1)(1 + a2z

n) +
1− n
n

Let c = −[ (α − 1)ψ + n−1
n

]. Then | c | =
∣∣(α− 1)(ψ + 1− 1) + n−1

n

∣∣ ≤
|α− 1|(|ψ + 1|+ 1) + n−1

n
and since |ψ + 1| = 2(1− ρ) cosϕ, in view of (14),

it is clear that |c| < 1. It is easy to check that inequality (14) implies also
| α− 2 + 1

n
| < 1. Taking into account (14) and (16), the relation (17) reduces

to ∣∣∣∣ c|z|2n + (1− |z|2n)(α− 1)
znf ′(zn)

f(zn)
+ (1− |z|2n)

1− n
n

∣∣∣∣
≤ |α− 1|(1 + |a2|) +

n− 1

n
< 1

The conditions of Theorem 2.1 are verified. It follows that Fn,α(z) defined by
(8) is analytic and univalent in U .

Corollary 3.3. Let f ∈ S∗, α ∈ C , n ∈ N∗. If

|α− 1| < 1

3n
(18)

then the function Fn,α(z) defined by (8) and all the functions Fn−k,α(z) , k ∈ N,
1 ≤ k ≤ n− 1 are analytic and univalent in U .

Example 3.4. Consider the function f ∈ S∗(ϕ, ρ) defined by
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f(z) = z(1− z)−2(1−ρ)e
−iϕ cosϕ

For α ∈ C , n ∈ N∗ such that |α− 1| < 1
n[ 1+2(1−ρ) cosϕ ]

, the function

z ·
[

Ω

(
2(α− 1)(1− ρ)e−iϕ cosϕ, α +

1

n
− 1, α +

1

n
; zn
)] 1

n(α−1)+1

is analytic and univalent in U , where by Ω(a, b, c; z) we denoted the hypergeo-
metric function. The conditions of Theorem 3.2 are satisfied and from (8) we
obtain that

Fn,α(z) =

[
(n(α− 1) + 1)

∫ z

0

un(α−1)(1− un)−2(α−1)(1−ρ)e
−iϕ cosϕdu

] 1
n(α−1)+1

By the change u = t1/nz , we have

Fn,α(z) = z

[
(α +

1

n
− 1)

∫ 1

0

tα+
1
n
−2(1− tzn)−2(α−1)(1−ρ)e

−iϕ cosϕdt

] 1
n(α−1)+1

= z ·
[

Ω

(
2(α− 1)(1− ρ)e−iϕ cosϕ, α +

1

n
− 1, α +

1

n
; zn
)] 1

n(α−1)+1

,

where

Ω(a, b, c; z) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

tb−1(1− t)c−b−1(1− tz)−adt .

4 More about Main Result

If in a whole Löewner chain we replace a certain function by some expres-
sion, we do not obtain a new univalence criterion. We have the same criterion,
but presented in another manner. Sometimes this is useful to study new inte-
gral operators as follows.

Let f, g ∈ A, f(z) 6= 0, g(z) 6= 0, ∀z ∈ U \{0}, α ∈ C. We can choose the

principal branch of
(
f(z)
g(z)

)α−1
, analytic in U , equal to 1 at the origin, denoted

h(z). Then fα−1(z) = gα−1(z)h(z) and by logarithmic derivation, we get

(α− 1)
znf ′(zn)

f(zn)
= (α− 1)

zng′(zn)

g(zn)
+

znh′(zn)

h(zn)
(19)

Considering f ∈ A which verifies inequality (7) of Theorem 2.1, we deduce
that f(z) 6= 0, ∀z ∈ U \ {0} and so are g and h.

In view of (19) we can give a new version of Theorem 2.1, namely
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Theorem 4.1. Let α, c be complex numbers, n natural number, n ≥ 1,
such that ∣∣∣∣ α− 2 +

1

n

∣∣∣∣ < 1 and | c | < 1. (20)

For g ∈ A and h an analytic function in U , h(z) = 1+c1z+. . ., if the inequality∣∣∣∣c|z|2n + (1− |z|2n)

[
(α− 1)

zng′(zn)

g(zn)
+
znh′(zn)

h(zn)
+

1− n
n

]∣∣∣∣ ≤ 1 (21)

is true for all z ∈ U , then the function

Gn,α(z) =

[
(n(α− 1) + 1)

∫ z

0

gα−1(un)h(un)du

] 1
n(α−1)+1

, (22)

where the principal branch is intended, is analytic and univalent in U .

Corollary 4.2. Let α be a complex number, n ∈ N∗,
∣∣ α− 2 + 1

n

∣∣ < 1 and
h an analytic function in U , h(z) = 1 + c1z + . . .. If the inequality

< zh′(z)

h(z)
≤

1−
∣∣ α− 2 + 1

n

∣∣
4

(23)

is true for all z ∈ U , then the function

Hn,α(z) =

[
(n(α− 1) + 1)

∫ z

0

un(α−1)h(un)du

] 1
n(α−1)+1

, (24)

is analytic and univalent in U .

Proof. Taking g(z) ≡ z and c = α− 2 + 1
n
, from (21) we get∣∣∣∣ (1− |z|2n)

znh′(zn)

h(zn)
+ α− 2 +

1

n

∣∣∣∣ ≤ 1 (25)

and function Gn,α(z) from Theorem 4.1, denoted now by Hn,α(z), is defined

by (24). Under the assumption (23), we can apply Lemma 1.4 to zh′(z)
h(z)

and it

is easy to check that inequality (25) is true.

Theorem 4.3. Let f, g ∈ S and α, β, γ ∈ C , n ∈ N∗ . If

|α− 1|+ |β|+ |γ| ≤ 1

4n
(26)

then the function

Gn,α(z) =

[
(n(α− 1) + 1)

∫ z

0

gα−1(un)

(
f(un)

un

)β
(f ′(un))

γ
du

] 1
n(α−1)+1

(27)

is analytic and univalent in U . Also the functions Gn−k,α(z) , k ∈ N, 1 ≤
k ≤ n− 1 defined by (27) are analytic and univalent in U .
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Proof. Since f is univalent in U we can choose the analytic branch of
(
f(un)
un

)β
equal to 1 at the origin and also the analytic branch of (f ′(un))γ equal to 1 at
the origin. It results that function h,

h(un) =

(
f(un)

un

)β
· (f ′(un))

γ

is analytic in U , h(0) = 1 and h(z) 6= 0, ∀z ∈ U . For this function h we shall
establish if inequality (21) of Theorem 4.1 is true. By using (2) and (3), for
c = −2γ + 1−n

n
we obtain∣∣∣∣c|z|2n + (1− |z|2n)

[
(α− 1)

zng′(zn)

g(zn)
+ β(

znf ′(zn)

f(zn)
− 1) + γ

znf ′′(zn)

f ′(zn)
+

1− n
n

]∣∣∣∣
=

∣∣∣∣(α− 1)(1− |z|2n)
zng′(zn)

g(zn)
+ β(1− |z|2n)

(
znf ′(zn)

f(zn)
− 1

)

+ γ

(
−2|z|2n + (1− |z|2n)

znf ′′(zn)

f ′(zn)

)
+

1− n
n

∣∣∣∣ ≤ 4|α−1|+4|β|+4|γ|+n− 1

n
.

In view of assumption (26), inequality (21) of Theorem 4.1 is true. Since
|α − 1| ≤ 1

4n
and |γ| ≤ 1

4n
, it is easy to check that inequalities (20) are true

and then Gn,α(z) defined by (27) is analytic and univalent in U .

Remark 4.4. Theorems 4.1 and 4.3 include several various results for spe-
cial values of the parameters α, β, γ and n. For example, taking n = 1 in
Theorems 4.1 and 4.3 we get the results given in [12], respectively [13]. From
Theorem 4.3, the special case α = 1, γ = 0, n = 1 leads to the integral oper-
ator due to Kim and Merkes [3] and the case α = 1, β = 0, n = 1 leads to
the integral operator due to Pfaltzgraff [9]. The case β = γ = 0 represents a
generalization of the integral operator due to Moldoveanu and Pascu [6].
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of Braşov, 3(52) (2010), 159-162.

[13] H. Tudor, An extension of Kim and Merkes’ and of Pfaltzgraff’s integral
operators, General Mathematics, 19(4) (2011), 15-18.


