
Gen. Math. Notes, Vol. 18, No. 2, October, 2013, pp.55-66
ISSN 2219-7184; Copyright c©ICSRS Publication, 2013
www.i-csrs.org
Available free online at http://www.geman.in

Injective Chromatic Sum and Injective

Chromatic Polynomials of Graphs

Anjaly Kishore1 and M.S. Sunitha2

1,2 Department of Mathematics
National Institute of Technology Calicut

Kozhikode - 673601, Kerala, India
1 E-mail: anjalykishor@gmail.com

2 E-mail: sunitha@nitc.ac.in

(Received: 29-7-13 / Accepted: 10-9-13)

Abstract
The injective chromatic number χi(G) [5] of a graph G is the minimum

number of colors needed to color the vertices of G such that two vertices with
a common neighbor are assigned distinct colors. In this paper we define injec-
tive chromatic sum and injective strength of a graph and obtain the injective
chromatic sum of complete graph, paths, cycles, wheel graph and complete bi-
partite graph. We also suggest bounds for injective chromatic sum. The in-
jective chromatic sum of graph complements, join, union, product and corona
is discussed.The concept of injective chromatic polynomial is introduced and
computed for complete graphs, bipartite graphs, cycles etc. The bounds for the
injective chromatic polynomial of trees is suggested.

Keywords: injective chromatic number; chromatic sum; injective chro-
matic sum; injective strength; injective chromatic polynomial.

1 Introduction

Graph theory is one of the most popular areas of research. Many research
papers like [1] are available in literature. The concept of injective coloring
and injective chromatic number χi(G) is introduced by Hahn et.al[5]. The
chromatic sum Σ(G) and strength s(G) are introduced by Ewa Kubicka[7].
Several papers [8],[6],[9] are available in literature based on these concepts
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separately. In this paper we introduce the concepts of injective chromatic sum
and injective strength of a graph. The injective chromatic sum and the injec-
tive strength of complete graphs, paths, cycles, wheels and complete bipartite
graphs are studied. We also suggest bounds for injective chromatic sum of
connected graphs.

In section 5,we study the injective chromatic sum of complements, join,
union, product and corona of graphs . We also suggest bounds for the injective
chromatic sum of operations of graphs.
In this paper we introduce the concept of injective chromatic polynomial. We
also compute injective chromatic polynomial of trees.

2 Preliminaries

The chromatic sum of a graph G is defined as the smallest sum among all
proper colorings of G with natural numbers and is denoted by Σ(G) and the
strength of a graph G, denoted as s(G) is the minimum number of colors
required to obtain the chromatic sum [7],[8].

A vertex k coloring such that two vertices having a common neighbor have
distinct colors is defined as injective k coloring and the minimum number k
such that G has an injective k coloring is defined as the injective chromatic
number denoted as χi(G) [5]. The other basic concepts and notations are taken
from [2] and [4].

3 Injective Chromatic Sum

The coloring of a graph such that vertices with common neighbor receive dis-
tinct colors can be done in many ways. Here we suggest injective coloring of
a graph by assigning natural numbers to vertices such that 1 occurs maxi-
mum number of times, then 2, then 3 and so on which leads to the following
definition.

Definition 3.1. The injective chromatic sum of a graph G, denoted as Σi(G) is
the smallest sum of colors among all injective colorings with natural numbers.
i.e. Σi(G) = min {Σk

i (G) : k ≥ χi(G)}, where Σk
i (G) is the smallest possible

sum among all proper k- injective colorings of G using natural numbers.

Definition 3.2. The injective strength of a graph G is the smallest number s
such that Σi(G) = Σs

i (G) and is denoted as si(G) or si.

Example 3.3. Consider the graph in Fig I. Injective coloring of the graph
using numbers 1,2 and 3 yields Σi(G) = 10. Also si(G) = 3.
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4 Bounds for Injective Chromatic Sum

In this section we establish a few results for injective chromatic sum. We
begin with an obvious result that the injective chromatic sum of a connected
graph is greater than or equal to its chromatic sum. It is obvious since in
injective coloring we impose the additional restriction that the vertices with
common neighbor must be assigned different colors. Also injective chromatic
sum of complete graphs, paths, cycles, wheels and complete bipartite graphs
are obtained.

Proposition 4.1. For a connected graph G except K2, Σi(G) ≥ Σ(G).

Next we give theorem for complete graphs.

Theorem 4.1. si(G) = s(G) = χ(G) = χi(G) = n if G = Kn where n > 2
and
Σi(Kn) = Σ(Kn) = n(n+1)

2
.

Proof. If G = Kn, each vertex vi is joined to n− 1 vertices and hence to color
these neighbors, at least n − 1 colors are required. Now the vertex vi is to
be assigned a different color since vi and one of the colored vertex (say) vj
have common neighbors for each j = 1, 2..., n− 1. Hence it follows that si(G)
= s(G) = χ(G) = χi(G) = n. The injective chromatic sum is obtained by

assigning colors 1, 2, 3...n and hence the sum is n(n+1)
2

.

Theorem 4.2. si(Pn) = 2 and Σi(Pn) =


(3n−1)

2
, n odd

3n
2

, n even, n ≡ 0(mod4)
(3n−2)

2
, n even, 6≡ 0(mod4)

Proof. Let {v1, v2, ..., vn} be the vertices of the path Pn.
Case I: If n is odd, the vertices vj and vj+1 are colored 1 where j = 1, 5, 9...
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and are colored 2, for j = 3, 7, 11.... Hence for any odd n, n+1
2

vertices are
assigned the number 1 and n−1

2
vertices are assigned the number 2. Hence the

injective chromatic sum is n+1
2

+ 2 (n−1)
2

= (3n−1)
2

.
Case II: If n is even and n ≡ 0(mod4), say n = 4k, then assigning colors as in
case I, exactly 2k vertices are assigned color 1 and the remaining 2k vertices
are assigned color 2. Hence Σi(G) = 1.n

2
+ 2.n

2
= 3n

2
.

Case III: If n is even and n 6≡ 0(mod4), then n
2

is odd. Taking two copies of
Pn

2
and join the last vertex of the first copy to the first vertex of the second

copy and assigning the colors as in case I, we get the injective chromatic sum
as 2[ (n/2+1)

2
+ 2 (n/2−1)

2
] = (3n−2)

2
.

Now we establish the following result for cycles.

Theorem 4.3. If n is even, then si(Cn) =


3 , n odd
2 , n even, n ≡ 0(mod4)
3 , n even, n 6≡ 0(mod4)

and Σi(Cn) =


bn

2
c+ 2bn

2
c+ 3 , n odd

3n
2

, n even, n ≡ 0(mod4)
bn−1

2
c+ 2bn−1

2
c+ 6 , n even, n 6≡ 0(mod4)

Proof. We know, Pn = v1v2...vn and Cn = v1v2...vnv1. i.e. there exists an edge
vnv1 in Cn.
Case I: If n is odd, by theorem 4.2, vn is either of color 1 or 2. But since vnv1

is an edge in Cn, if the color of vn is 1, v1 becomes the common neighbor of
vn and v2, both of color 1. Hence the vertex vn is colored 3. If the color of vn
is 2, vn becomes the common neighbor of vn−1 and v1 which are both of color
1 and hence the color of vn−1 is changed to 3. Hence in both cases, si(G) = 3
and the chromatic sum Σi(Cn) = bn

2
c+ 2bn

2
c+ 3.

Case II: If n is even and n ≡ 0(mod4), then the two vertices vn and vn−1 of Pn

are colored with 2 and hence if we add an edge vnv1, the same colors can be
retained and hence the proof.
Case III: For n even and n 6≡ 0(mod4), the last two vertices vn and vn−1 are
colored with 1 and vn is the common neighbor of v1 and vn−1, and v1 is the
common neighbor of v2 and vn, both vn−1 and vn has to be assigned color 3
which gives Σi(Cn) = bn−1

2
c+ 2bn−1

2
c+ 6. Hence the proof.

Now we obtain the following result for wheel graph Wn.

Theorem 4.4. si(Wn) = n and Σi(Wn) = n(n+1)
2

.

Proof. In the wheel graph since all the outer vertices vj for j = 1, 2..., n − 1
are neighbors of the central vertex vn, they must be assigned different colors
in injective coloring. Hence we use 1, 2, 3...n − 1 to color the vertices vj for
j = 1, 2..., n− 1. Now the central vertex vn must be assigned the color n since
one of the outer vertices vj and the central vertex vn have common neighbors.
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Hence the minimum sum is obtained by using 1, 2...n to color all the vertices
of the wheel graph and hence the proof.

Theorem 4.5. si(Km,n) = max {m,n} and Σi(Km,n) = n(n+1)
2

+ m(m+1)
2

.

Proof. Since in complete bipartite graph with vertex set V = V1

⋃
V2 where

|V1| = m and |V2| = n, every vertex in V1 is adjacent to all vertices in V2 and
vice versa, and by coloring all the vertices of V1 with 1, 2, ...,m and the vertices
of V2 with 1, 2, ..., n, the minimum number required for injective coloring is the
maximum of m and n and hence the result. The injective chromatic sum is
obvious since the graph is complete bipartite.

The result for star graph follows from the above theorem.

Corollary 4.6. si(K1,n) = n and Σi(K1,n) = 1+ n(n+1)
2

.

For any graph G with n vertices and e edges, the chromatic sum is bounded
by Σ(G) ≤ n + e [9]. The following bounds can be obtained for injective
chromatic sum.

Theorem 4.7. For every connected graph G , the injective chromatic sum is
bounded by 1+ ∆(∆+1)

2
≤ Σi(G) ≤ n(n+1)

2
. Also Σi(G) = 1+ ∆(∆+1)

2
if G is a

star graph and Σi(G) = n(n+1)
2

if and only if (i) d(G) ≤ 2 where d(G) is the
diameter of G and (ii) every edge of G lies in a triangle.

Proof. Consider a connected graph G with maximum degree ∆. Hence for
injective coloring, minimum ∆ colors are required. Since maximum degree is
∆, the graph has at least 1+∆ vertices and hence we use the numbers 1,2,3...∆
for injective coloring and 1 is used again to color the vertex with degree ∆.
Hence the injective chromatic sum is at least 1+ ∆(∆+1)

2
.

Now consider the colors 1,2,3...n used for injective coloring of a graph of order
n. This is the maximum possible number of colors which can be used in
injective coloring of a graph G of order n and hence the upper bound.
Next assume that G = K1,n . Then for injective coloring of the vertices such
that the sum is minimized, the numbers 1,2,3...∆ is used and the common
vertex is colored 1. Hence Σi(G) = 1+ ∆(∆+1)

2
.

Now to prove Σi(G) = n(n+1)
2

if and only if (i) d(G) ≤ 2 where d(G) is the
diameter of G and (ii) every edge of G lies in a triangle.

Assume Σi(G) = n(n+1)
2

.
To prove (i), assume d(G) > 2. Then there exists at least two vertices u and v
in G having color 1(since we aim for minimum sum). Hence at the most n− 1

colors 1,2,...n − 1 are required for injective coloring. Hence Σi(G) < n(n+1)
2

which is a contradiction. Hence (i) is satisfied.

Now assume Σi(G) = n(n+1)
2

and d(G) ≤ 2 by (i). To prove (ii), assume at
least one edge is not in a triangle.
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Claim: ∃ at least two vertices of same color.
proof: Since one edge say uv is not in a triangle, both u and v can have the
same color since they don’t have any common neighbor.
Hence ∃ at least two vertices in G having color 1 and Σi(G) < n(n+1)

2
, a

contradiction. Hence both (i) and (ii) holds.

Conversely, assume (i) and (ii) holds. Also assume Σi(G) 6= n(n+1)
2

. Then ∃
vertices x, y and z in G such that xyz is a triangle (by (ii)) and c(x) = c(z)
(where c : V → N is the coloring function to the set of natural numbers) since

Σi(G) < n(n+1)
2
⇒ x and z have same color. But x and z have a common

neighbor y which contradicts the concept of injective coloring. Also by (i) no
two vertices are at a distance more than 2 and this also restricts the repetition
of colors. Hence Σi(G) = n(n+1)

2
.

Remark 4.8. The upper bound in Theorem 4.7 is attained by Kn and Wn

(Theorems 4.1 and 4.4)

5 Operations on Graphs

In this section we find the relationship between the injective chromatic sum of
the constituent graphs and their resultant graph after performing operations
like complement, join, union, product and corona.

First we establish the results for complement of graphs. As we know, the
complement G = (V,E) of a graph G = (V,E) is the graph with vertex set V
such that uv ∈ E if and only if uv /∈ E.

Theorem 5.1. For any graph G on n vertices,
Σi(G) + Σi(G) ≥ n(n+1)

2
.

The lower bound holds for C4 and P3 .

Proof. Let 1, 2, 3, ..., k are used for injective coloring of G . Then 1, 2, 3, ..., n are
the integers required for injective coloring of G and its complement together
since for all other graphs except C4 and P3, the integers are repeated and hence
the sum becomes larger. Hence the proof.

Theorem 5.2. Σi(G) = Σi(G) if and only if G is self complementary or C6.

Proof. The result is obvious for self complementary graphs. Now consider C6.
For C6 and C6, the colors 1,2 and 3 are used twice for injective coloring and
hence Σi(G) = Σi(G).
Now assume Σi(G) = Σi(G). This implies that the vertices of G and G are
assigned injective coloring with the same integers each integer being used the
same number of times. This is possible only if G and G are isomorphic or if G
is C6. For no other graph, the same colors repeats the same number of times.
Hence the proof.



Injective Chromatic Sum and Injective... 61

The join of G1 and G2, denoted as G1 + G2 consists of vertex set V1 ∪ V2,
edge set E1 ∪ E2 ∪ {xy : x ∈ V1, y ∈ V2}.
Lemma 5.3. If G1 and G2 are connected, then the join G1 +G2 is triangulated
and has diameter 2.

Proof. Note that there exists a path of length atmost 2 between every pair of
vertices of G1 + G2. A vertex of V2 is a common vertex of two vertices of V1

and vice versa and hence every edge of G1 +G2 lies in a triangle.

Theorem 5.4. χi(G1 +G2) = |V (G1)|+ |V (G2)| and

Σi(G1 +G2) = m(m+1)
2

, where m = |V (G1)|+ |V (G2)|.
Proof. The theorem follows from Lemma 4 of [5]. Since every edge lies in a
triangle, the number of colors required for injective coloring is equal to |V (G1+
G2)| = |V (G1)|+ |V (G2)|. The injective chromatic sum follows from Theorem
4.7. Hence the proof.

The following are the results obtained for product of graphs. The product
of G1 and G2, denoted by G1 × G2 has vertex set V1 × V2 with (u, x)(v, y) ∈
E(G1 × G2) if either x = y and uv ∈ E1, or if u = v and xy ∈ E2.

By Lemma 8 [5], if G1 and G2 are connected graphs both distinct from K2,
χi(G1 ×G2) ≤ χi(G1)χi(G2). But the inequality is not the same for injective
chromatic sum. We have also obtained a different bound for χi(G1 ×G2).

Lemma 5.5. ∆(G1 × G2) = ∆1 + ∆2 where ∆1is the maximum degree of G1

and ∆2is the maximum degree of G2.

Proof. By the construction of G1 ×G2, each vertex say u of G1 is paired with
every vertex of G2 and the corresponding edges are drawn such that u2 = v2

and u1 is adjacent to v1 for the vertices (u1, u2),(v1, v2). Let u be the vertex of
maximum degree∆1 in G1. u is paired with every vertex of G2. Let v be the
vertex of maximum degree ∆2 in G2. u is paired with every vertex of G2 ⇒
(u, v) is the vertex of degree ∆2. Since u is of maximum degree ∆1 in G1, u is
adjacent with ∆1 other vertices of G1 and hence all the nodes (u, vi) are joined
to the corresponding node (u, v) in G1 × G2. Hence there are ∆1 more edges
from (u, v). Hence the total degree of (u, v) is ∆1 + ∆2. Hence the proof.

Theorem 5.6. If G and H are connected graphs with G = (p1, q1) and H =
(p2, q2) such that ∆1 and ∆2 are the maximum degrees of G and H respectively,
then ∆1 + ∆2 ≤ χi(G×H) ≤ p1p2. The upper bound is attained if(i) Gand H
are complete graphs, or (ii)G × H is triangulated with diameter 2.The lower
bound is attained by G = K2 and H = Pn for n ≥ 3.

Proof. We know χi(G) ≥ ∆(G) [5]. Hence χi(G × H) ≥ ∆(G × H). i.e
χi(G×H) ≥ ∆1 + ∆2. The maximum number of colors required for injective
coloring of G is p1 and for H is p2. By the construction of G×H, the maximum
number of colors required for injective coloring is p1p2. Hence the upper bound.
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The cube graphs are bipartite graphs which have a significant role in coding
theory. The first cube graphQ1 is same asK2, second cube graphQ2 isQ1×K2,
third Q3 is Q2 ×K2 and so on.

Theorem 5.7. Σi(G1 × G2) ≤ Σi(G1)Σi(G2) , if either G1 or G2 is a triangle.
Σi(G1 × G2) > Σi(G1)Σi(G2), for cubes.

Proof. If either G1 or G2 is a triangle, then the maximum degree of the prod-
uct will be one more then the largest of ∆(G1) and ∆(G2). Without loss of
generality assume that ∆(G1) > ∆(G2). Also assume G1 is triangle. Hence
we require 1, 2, 3, ...,∆(G1) for the injective coloring of the product graph with
each color repeating k times where k is the number of vertices of the graph
G2. Hence definitely k + 2k + 3k...+ ∆(G1)k ≤ Σi(G1)Σi(G2).
But in the case of cubes, the integers used for injective coloring are repeated
more number of times and hence the result.

The upper bound is sharp. For example it holds for Km × K2, m ≥ 3.
We establish the following result analogous to Theorem 9 [5].

Theorem 5.8. Σi(Qn) = 1.n+ 2.n+ ...n.n = n2(n+1)
2

if and only if n = 2r for
some r ≥ 0.

Proof. In order to obtain the injective chromatic sum, each of the colors
1, 2, ..., n used for injective coloring of Qn is used maximum number of times.
Let u be the vertex in Qn which is colored i, i = 1, 2, ..., n. We know deg(u)
= n and let v ∈ N(u)( neighborhood of u), which is also colored i. By the
construction of Qn, there are n− 2 other vertices not in N(u) which can also
be colored with same color i. Hence the total number of vertices which can be
colored i is n. Now the result follows from Theorem 9 of [5].

The corona of G1 and G2 denoted as G1 ◦ G2 is obtained by taking one
copy of G1 and m copies of G2, where m = |V (G1)|and joining each of the m
vertices of G1 with the corresponding copy of G2.

The following result is established for injective chromatic sum of corona of
graphs.

Theorem 5.9. ∆1 + |V (G2)| ≤ χi(G1 ◦ G2) ≤ |V (G1)|+ |V (G2)|.

Proof. Proof: Let p1 = |V (G1)| and p2 = |V (G2)|. We assume p2 < p1 . Let
∆1 be the maximum degree of G1and let deg(u) = ∆1. By the definition of
corona of two graphs, u is joined to each vertex of the corresponding copy of
G2. Hence in (G1 ◦G2),deg(u) = ∆1 + p2 = ∆(G1 ◦G2).
Since χi(G) ≥ ∆(G)[5], χi(G1 ◦ G2) ≥ ∆(G1 ◦G2) . Hence we have
∆1 + |V (G2)| ≤ χi(G1 ◦ G2). Now to prove the upper bound. Each vertex u
of G1 is joined with every vertex v of the corresponding copy of G2. If G2 is
a complete graph, χi(G2) = p2 and u is assigned a new color say p2 + 1. This
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same set of p2 colors can be used for injective coloring of all copies of G2. If all
the vertices of G1 are assigned different colors, then a maximum of pl colors
are required. Thus the total number of colors required for injective coloring of
G1 ◦ G2 is at the most |V (G1)|+ |V (G2)|. Hence the proof.

Observation 5.10. Σi(G1 ◦ G2) > Σi(G1)Σi(G2), for any two connected
graphs G1 and G2 other than complete graphs Kn, n > 2
Σi(G1 ◦ G2) < Σi(G1)Σi(G2) for complete graphs with n > 2.

6 Injective Chromatic Polynomials

The injective chromatic number χi(G) [5] of a graph G is the minimum num-
ber of colors needed to color the vertices of G such that two vertices with a
common neighbor are assigned distinct colors. A large amount of work has
been done on injective chromatic number like [6].
The chromatic polynomial is the bridge between algebra and graph theory.
The chromatic polynomial was introduced by George David Birkhoff in 1912,
defining it only for planar graphs, in an attempt to prove the four color the-
orem. In 1932, Hassler Whitney generalized Birkhoffs polynomial from the
planar case to general graphs . Reed introduced and studied the concept of
chromatically equivalent graphs in 1968.
A vertex k coloring such that two vertices having a common neighbor have
distinct colors is defined as injective k coloring and the minimum number k
such that G has an injective k coloring is defined as the injective chromatic
number denoted as χi(G).

The chromatic polynomial counts the number of colorings of a graph G
as a function of the number of colors used.[3] i.e P (G, k) denotes the number
of ways of coloring the vertices of graph G with k colors. The smallest k for
which P (G, k) > 0 is the chromatic number of G [4], [2].

A graph G can be assigned injective coloring using k colors in different
ways. We discuss the number of ways of injective coloring of the vertices of
some class of graphs using k colors.

Definition 6.1. The number of different injective colorings of a graph G using
k colors is denoted by I(G, k). The function I(G, k) is a polynomial in k of
degree n(G) and hence I(G, k) is called injective chromatic polynomial(ICP).
I(G, k) = 0, if k < χi(G).
The smallest number k for which I(G, k) > 0 is the injective chromatic number
χi(G).

Now we establish a few results on i-chromatic polynomial of complete
graphs, wheels, cycles and complete bipartite graphs. The following theorem
is that of complete graph Kn.
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Theorem 6.2. For a complete graph Kn, I(Kn, k) = k(k − 1)...(k − n+ 1).

Proof. The complete graph Kn can be injectively colored using k colors as
follows. Let v1, v2...vn be the vertices of Kn.
Color some vertex say v1 with color i. Here i can be any value from 1 to k.
The remaining vertices v2...vn can be colored using k − 1, k − 2 ...k − n + 1
different colors. Hence the proof.

The wheel graph Wn also has ICP as that of Kn as shown in the following
theorem.

Theorem 6.3. I(Wn, k) = k(k − 1)...(k − n+ 1).

Proof. For the injective coloring of the wheel graph using k colors, the middle
vertex say v1 can be colored i where i = 1, 2, ...k . The outer vertices v2...vn
can be colored in k − 1, k − 2, ...k − n + 1 different ways since the middle
vertex is the common neighbor of any two outer vertices. Hence I(Wn, k) =
k(k − 1)...(k − n+ 1).

For cycles the following theorem is established.

Theorem 6.4. For cycle Cn,

I(Cn, k) =


k2(k − 1)n−3(k − 2) , n odd
k2(k − 1)n−2 , n even, n ≡ 0(mod4)
k2(k − 1)n−2(k − 2)2 , n even, n 6≡ 0(mod4)

Proof. For the cycle Cn = v1v2...vnv1, where n is odd, the first vertex v1 and
the second vertex v2 can be injectively colored by assigning a color i where
i = 1, 2, ..k. The remaining n − 3 vertices have one choice lesser than these
two vertices and hence can be colored only in k− 1 different ways and the last
vertex has only k − 2 different colors left since two colors are already allotted
to the vertices at a path length 2 . If n is even and multiple of 4, the first
vertex v1 and the second vertex v2 can be injectively colored by assigning a
color i where i = 1, 2, ..k and the remaining vertices can be colored in k − 1
different ways. If n is even and not a multiple of 4, coloring is done injectively
as in the case of odd n but the last two vertices have k− 2 different colors left
for injective coloring. Hence the proof.

The following theorem is established for complete bipartite graphs.

Theorem 6.5. I(Km,n, k) = k2(k − 1)2...(k −m+ 1)2(k −m)...(k − n+ 1) if
m < n.

Proof. Consider a complete bipartite graph with vertex set V = V1

⋃
V2 where

|V1| = m and |V2| = n where m < n. The injective coloring of vertices in V1

can be done in k(k − 1)(k − 2)...(k −m+ 1) ways since any two of them have
a common neighbor in V2 and the vertices in V2 in k(k− 1)(k− 2)...(k−n+ 1)
different ways. Hence if m < n, one vertex of V1 and one vertex of V2 can be
assigned colors up to k −m+ 1 and hence the proof.
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7 Injective Chromatic Polynomial of Trees

In this section we obtain the injective chromatic polynomial of star and path
using which Injective chromatic polynomial of tree is obtained.

Theorem 7.1. For star graph, I(T, k) = k2(k − 1)(k − 2)...(k − n+ 1).

Proof. The proof follows from theorem of bipartite graphs as star graph is a
special case of bipartite graph where m = 1.

Theorem 7.2. I(T, k) = k2(k − 1)n−2 if and only if T is a path.

Proof. If T is a path, then the first and second vertex can be colored injectively
in k ways while all the remaining vertices can be assigned k − 1. Conversely,
for any tree other than a path, there is at least one vertex of degree ≥ 3 say v.
Hence for that component having the vertex v, one of the neighbors of v can be
colored injectively in k− 2 ways only and hence I(T, k) < k2(k− 1)n−2. Hence
if T is a tree withI(T, k) = k2(k − 1)n−2 and T is not a path, then I(T, k) <
k2(k − 1)n−2 which is a contradiction. Hence the proof.

A tree T on n vertices can be considered as composed of say r branches or
r star graphs connected together to form a single component either by edges
or clinged together.

Theorem 7.3. For any tree T on n vertices, I(T, k) = k2
∏

r(k − 1)(k −
2)...(k −∆r + 1) where ∆r is the maximum degree of the rth branch.

Proof. Let there be r connected star graphs for T . Choose the vertex with
maximum degree ∆. If there are more than one vertex, choose the one having
maximum number of edges in its branches. Let the vertex be u. Now its
neighbors can be colored injectively in k(k − 1)...(k −∆ + 1) ways such that
the neighbor with largest degree receives color k − 1. Repeating this till all
the vertices in the r branches are colored. Then I(T, k) = k2

∏
r(k − 1)(k −

2)...(k −∆r + 1).

8 Conclusion

The injective chromatic sum and injective strength of graph are defined and
studied for various graphs and bounds are suggested. The injective coloring
of graphs with minimum sum finds applications in star topology in optimal
routing problems in communication networks where the objective is to opti-
mize delay. Also the bounds of injective chromatic sum of operations of graphs
are suggested which helps to characterize the combinations of graphs based on
injective chromatic number of individual graphs.The concept of injective chro-
matic polynomial is introduced and computed for complete graphs, bipartite
graphs, cycles etc. The bounds for the injective chromatic polynomial of trees
is suggested.



66 Anjaly Kishore et al.

References

[1] B. Koshy and K.A. Germina, New perspectives on CDPU graphs, General
Mathematics Notes, 4(1) (2011), 90-98.

[2] D.B. West, Introduction to Graph Theory, Prentice Hall, (1996).

[3] F.M. Dong, K.M. Koh and K.L. Teo, Chromatic Polynomials and Chro-
maticity of Graphs, World Scientific, (2005).

[4] F. Harary, Graph Theory, Addison-Wesley Publishing Company Inc.,
(1969).

[5] G. Hahn, J. Kratochvil, J. Siran and D. Sotteau, On the injective chro-
matic number of graphs, Discrete Math., 256(1-2) (2002), 179-192.

[6] P. Hell, A. Raspaud and J. Stacho, On injective colorings of chordal
graphs, Lecture Notes in Computer Sciences, 4957(2008), 520.

[7] E. Kubicka and A.J. Schwenk, An introduction to chromatic sums, Proc.
ACM Computer Science Conference, Louisville (Kentucky), 3945(1989).

[8] E. Kubicka, The chromatic sum of a graph: History and recent develop-
ments, International Journal of Mathematics and Mathematical Sciences,
29-32(2004), 1563-1573.

[9] C. Thomassen, P. Erdos, Y. Alavi, P.J. Malde and A.J. Schwenk, Tight
bounds on the chromatic sum of a connected graph, Journal of Graph
Theory, 13(3) (1989), 353-357.


	Introduction 
	Preliminaries
	Injective Chromatic Sum
	Bounds for Injective Chromatic Sum
	Operations on Graphs
	Injective Chromatic Polynomials
	Injective Chromatic Polynomial of Trees
	Conclusion

