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Abstract 

     In this paper, we study biharmonic spacelike new type B-slant helices 
according to Bishop frame in the Lorentzian Heisenberg group H3. We give 
necessary and sufficient conditions for new type B-slant helices to be biharmonic. 
We characterize these curves in the Lorentzian Heisenberg group H3. 
Additionally, we illustrate our results.  

     Keywords: Bienergy, Bishop frame, Lorentzian Heisenberg group. 

 
1     Introduction 
 
Jiang derived the first and the second variation formula for the bienergy in [7,8], 
showing that the Euler--Lagrange equation associated to 2E  is  
 

 ( ) ( )( ) ( ) ( )( )dffdfRfff Nf ττττ ,trace==2 −∆−−J  
 0,=  

where fJ  is the Jacobi operator of f  . The equation ( ) 0=2 fτ  is called the 

biharmonic equation. Since fJ  is linear, any harmonic map is biharmonic. 



  
Spacelike Biharmonic New Type B-Slant…                                                           37 

Therefore, we are interested in proper biharmonic maps, that is non-harmonic 
biharmonic maps. 
This study is organised as follows: Firstly, we give necessary and sufficient 
conditions for new type B -slant helices to be biharmonic. We characterize this 
curves in the Lorentzian Heisenberg group 3H . Secondly, we study biharmonic 
spacelike new type B -slant helices according to Bishop frame in the Lorentzian 
Heisenberg group 3H . Finally, we illustrate our results. 

 

2     The Lorentzian Heisenberg Group 3H  
 
The Heisenberg group Heis3  is a Lie group which is diffeomorphic to 3R  and the 
group operation is defined as 

 ).,,(=),,(),,( yxyxzzyyxxzyxzyx +−+++∗  
 
The identity of the group is (0,0,0)  and the inverse of ),,( zyx  is given by 

),,( zyx −−− . The left-invariant  Lorentz metric on H3  is 
 

.)(= 222 dzxdydydxg +++−  
 

The following set of left-invariant vector fields forms an orthonormal basis for the 
corresponding Lie algebra: 
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The characterising properties of this algebra are the following commutation 
relations, [13]: 
 

1.=)(1,=)(=)( 332211 −e,ee,ee,e ggg  

 
Proposition 2.1. For the covariant derivatives of the Levi-Civita connection of the 
left-invariant metric g , defined above the following is true: 
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where the ),( ji -element in the table above equals ji

ee∇  for our basis 

1,2,3}.=,{ kke  
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3  Spacelike Biharmonic New Type −B Slant Helices with 
Bishop Frame In The Lorentzian Heisenberg Group 3H  
 
Let 3: H→Iγ  be a non geodesic spacelike curve on the Lorentzian Heisenberg 

group 3H  parametrized by arc length. Let }{ bn,t,  be the Frenet frame fields 

tangent to the Lorentzian Heisenberg group 3H  along γ  defined as follows: 

t  is the unit vector field 'γ  tangent to γ , n  is the unit vector field in the direction 

of tt∇  (normal to γ ), and b  is chosen so that }{ bn,t,  is a positively oriented 

orthonormal basis. Then, we have the following Frenet formulas: 
 

 n,tt κ=∇  

 b,tnt τκ +∇ =                                 (1) 

 ,= nBT τ∇  
where κ  is the curvature of γ  and τ  is its torsion and 
 

 ( ) ( ) ( ) 1,=1,=1,= bb,nn,tt, ggg −  

 ( ) ( ) ( ) 0.=== bn,bt,nt, ggg  
In the rest of the paper, we suppose everywhere 0≠κ  and 0≠τ . 
 
The Bishop frame or parallel transport frame is an alternative approach to defining 
a moving frame that is well defined even when the curve has vanishing second 
derivative. The Bishop frame is expressed as  
 

 ,= 2211 mmtt kk −∇  

 ,= 11 tmt k∇                                        (2) 

 ,= 22 tmt k∇  

 
where 

 ( ) ( ) ( ) 1,=,1,=,1,= 2211 mmmmtt, ggg −  

 ( ) ( ) ( ) 0.=,=,=, 2121 mmmtMT ggg  
 
Here, we shall call the set }{ 21 m,mt,  as Bishop trihedra, 1k  and 2k  as Bishop 
curvatures. 

Also, ( )ss 'ψτ =)(  and .=)( 2
1

2
2 kks −κ  Thus, Bishop curvatures are defined by 

 
 ( ),sinh)(=1 ssk ψκ  

 ( ).cosh)(=2 ssk ψκ  
 
With respect to the orthonormal basis }{ 321 e,e,e  we can write 

 ,= 3
3

2
2

1
1 eeet ttt ++  
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 ,5= 3
3
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11 eeem mmm ++                        (3) 
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Theorem 3.1. 3: H→Iγ  is a spacelike biharmonic curve with Bishop frame if 
and only if 

 0,=constant=2
2
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To separate a spacelike new type slant helix according to Bishop frame from that 
of Frenet- Serret frame, in the rest of the paper, we shall use notation for the curve 
defined above as spacelike new type B -slant helix. 
 
Theorem 3.2. Let 3: H→Iγ  be a unit speed biharmonic spacelike new type 

−B slant helix with non-zero curvatures. Then the equation of biharmonic 
spacelike new type −B slant helix are 
 

 ( ) ,coshcos
1

= 210
0

C]C[CQ
C

++ssx  

 ( ) ,sinhcos
1
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C]C[CQ
C

++ssy                            (5) 

 ( ) ]C[CQ
C
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2 sinhcossin= +− sssz  
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where 3210 ,, CCC,C  are constants of integration and  
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Proof. The vector 2m  is a unit spacelike vector, we reach 
 

( ) ( ) .sinhsincoshsincos= 3212 eeem ss AQAQQ ++                     (8) 

 
On the other hand, using Bishop formulas Eq.(4) and Eq.(1), we have 
 

( ) ( ) .coshsinh= 321 eem ss AA +                                                        (9) 
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It is apparent that 
 

( ) ( ) .sinhcoscoshcossin= 321 eeet ss AQAQQ ++                        (10) 

 
A straightforward computation shows that 
 

.)()()(= 3213231211 eeett ttttttt ''' ++++∇                                             (11) 

 
Therefore, we use Bishop formulas Eq.(4) and above equation we get 
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s                                                       (12) 

where 1C  is a constant of integration. 
 
From Eq.(10), we get 

 
),coshcossin,coshcos,sinhcos(= 101010 ]C[CQQ]C[CQ]C[CQ +−++ sxsst

                                                                                                          (13) 

where ,                      Q.
Q
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Therefore, by Eq(13) and taking into account Eq.(12), we obtain the system 
Eq.(12). This completes the proof. 

 
Corollary 3.3. Let 3: H→Iγ  be a unit speed biharmonic spacelike new type 

−B slant helix with non-zero Bishop curvatures. Then the equation of γ  is 

( ) ]C[CQ
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where 3210 ,, CCC,C  are constants of integration and  
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If we use Mathematica in above system, we get: 
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 Fig.1.  
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