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Abstract
We prove here some useful equivalent conditions for a subclass of a fixed
universal class to be a semisimple radical class and give some consequences of
Upper radical class.
Keywords: Semirings, Ideal, Radical class, Upper radical class, Semisim-
ple class.

1 Introduction

The paper is concerned with generalizing some results in ring theory. In cor-
respondence to the Kurosh-Amitsur radical theory for associative rings, an
abstract concept of radical classes and radicals for semirings has been intro-
duced and investigated in a series of publications [4]-[8] by D. M. Olson and
several coauthors.

Semirings, additively cancellative semirings, commutative semirings, semi-
modules, additively cancellative semimodules, ideals, k-ideals (subtractive ide-
als), homomorphisms are as defined in [2].

Each homomorphism ¢: S — T of semirings corresponds to a congruence
k of S and the homomorphic image ¢(.S) is isomorphic to the semiring S/k of
congruence classes. In this paper we mainly use congruences that are deter-
mined by an ideal I of S according to sk;s’ < there are

a; € I satisfying s + a1 = s’ + as.
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In this case one usually denotes S/k; by S/I. Moreover, k; = ky and thus
S/I = S/T hold for all ideals I of S with the same k-closure I, S/I has always
an absorbing zero, namely the congruence class I = [a]; = [a]; determined
by each a € I. We also mention that a semiring has in general much more
congruences than those determined by its ideals. For a last concept of this
kind, let ¢: S — T be a surjective homomorphism for semirings which have
a zero. Then ¢ is called a semi-isomorphism and denoted by ¢: S = T if
#(0s) = 0 and ¢~!(0r) = Og are satisfied. We emphasize here that such
a semi-isomorphism, despite of misleading name, has in general very little in
common with an isomorphism.

Convention: Throughout R — S is a surjective homomorphism.

Theorem 1.1. [3/ Let S be a semiring, T a semiring with an absorbing
zero O, and ¢: S — T a surjective homomorphism. Then K = ¢ *(07) is
a k-ideal of S (also called the kernel of ¢ ) and ¢([s]k) = ¢(s) for all s € S
defines a semi-isomorphism ¢: S/K = T which satisfies ¢ o kg™ = ¢, where
k™ denotes the natural homomorphism of S onto S/K = S/ky.

Theorem 1.2. [3] For a semiring S with an absorbing zero 0 let S be a
subsemiring which contains 0 and B an ideal of S. Then ¢(|a] sn5) = [a]lp for
alla € A C A+ B defines a semi-isomorphism

¢: AJANB = A+ B/B.

Theorem 1.3. [J] Let A, B be ideals of a semiring S with the additional
condition A C B. Then ¢([s|p) = [[s]alga for all s € S defines an isomor-
phism

¢: S/B — (S/A)/(B/A).

2 Radical Class

Definition 2.1. [1/ Let R be a class of semirings. A semiring (ideal) be-
longing to the class R, will be called a R-semiring (R-ideal).

Definition 2.2. [1] A class R of semirings is called a radical class whenever
the following three conditions are satisfied:

(a) R is homomorphically closed; i.e. if S is a homomorphic image of a
R-semiring R then S is also a R-semiring

(b) Every semiring R contains a R-ideal R(R) which in turn contains every
other R-ideal of R.
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(¢c) The factor semiring R/R(R) does not contain any nonzero R-ideal; i.e.
R(R/R(R)) = 0.

Proposition 2.3. [J] Assuming conditions (a) and (b) on a class R of
semirings, condition (c) is equivalent to
(¢’) If I is an ideal of the semiring R and if both I and R/I are in R, then R
itself is in R.

Definition 2.4. R is said to be closed under extensions. If I is an ideal of
the semiring R and if both I and R/I are in R, then R itself is in R.

Proposition 2.5. [9] Assuming conditions (a) and (¢’) on a class R of
semirings, condition (b) is equivalent to
(b°)if Iy C Iy C -+ C I\ C ... is an ascending chain of ideals of a semiring
R and if each I, is in R, then |J I, is in R.

Theorem 2.6. [9/ A non-empty sub class R of a universal class U is a
radical class if and only if
a) R is homomorphically closed.
b’) R has the inductive property.
¢’) R is closed under extensions.

Theorem 2.7. [9] For any sub class R of a fized universal class U, the
following conditions are equivalent

1. R is a radical class.

II. (R1) If R € R then every R+ S # 0 there is a I<S such that0 # I € R.

(R2) If R is a semiring of a universal class U and for every R +— S # 0
there is a [ 1S such that 0 # I € R, then R € R.

III. R satisfies condition (R1), has the inductive property and closed under
extensions.

3 Semisimple Class and Upper Radical Class

The definition of Semisimple classes deals with the definition of radical classes
and for that purpose we characterized conditions (R1) and (R2) of Theorem
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Definition 3.1. [3] A subclass o of a universal class U is called a semisimple
class of U if o satisfies following two axioms which refer to

VI{IvR)3dJ (I—J and J € ) (1)
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(Si) For all R € U, [1] implies R € o.
(Sii) Each R € o, satisfies[1]

Conditions (S7) and (S%i), are the dual to (Ri) and (Rii) where the con-
ditions — and < are interchanged (R1) and (R2) of Theorem [2.7] Since the
relation — is transitive one can show that every radical class is homomorphi-
cally closed. However < is not transitive in general, therefore it is very difficult
to describe semisimple classes.

Proposition 3.2. [3/ If R is radical class, then 0 = {R/R(R) = 0} is a
semisimple class.

Theorem 3.3. [3] For any radical R and any semiring R, if I < R, then
R(I)<R.

Definition 3.4. [3] A class R of semirings is a hereditary radical class if
R € R and I is an ideal of R, then I € R.

Definition 3.5. [3] A class R is said to be regular if for every semiring
R € R, every nonzero ideal of R has a nonzero homomorphic image in R.

In particular, every hereditary class is regular.

Theorem 3.6. If R is a reqular class of semirings, then the class
Ur ={ R | R has no nonzero homomorphic image in R}

is a radical class, R N Ur = {0} and g is largest radical having zero inter-
section with R.

Convention: The operator % is called upper radical operator and %z is
called the upper radical of the class R.

Theorem 3.7. [3] For any Semisimple class ¢ and a radical class R we
have S U, = 0 and U Sr = R.

Proposition 3.8. Fvery Semisimple class o is closed under extensions.

Proof. We take I and R/I in p and we want to show that R is in o. First
we note that

(%(R) +1)/1 = U(R)/(%(R) N 1) € U,.
It is also clear that
(%,(R)+1)/I < R/I € 0=,

Therefore %,(R) + I)/I must be zero and so %,(R) C I. Now by %,(R) < R
also %,(R) <1 1, and since %,(R) € %,(R), we get %,(R) C %,(I) = 0. Thus
R € S, = p. Thus class g is closed under extension.



54 K.F. Pawar et al.

Theorem 3.9. The classes R and o are corresponding radical and semisim-
ple classes if and only if

i) R€R and R— S #0 imply S ¢ o, that is, R C %,,
it) R€pand0# S <R imply S ¢ R, that is, 0 C SR.

ii1) every semiring R of the universal class U has an ideal S such that S € R
and R/S € p.

Proof. If classes R and o are corresponding radical and semisimple classes
then the three conditions are clear (to get (iii) just take S = R(R)).

Conversely, suppose we have classes R and p satisfying the three conditions.
Let us consider a semiring R € %,, by (ili) R has an ideal S € R such that
R/S € p. Hence by R € %, we conclude that R/S =0, andso R=S € R
holds, proving %, C R. This and (i) gives R = %,. A similar reasoning
yields that o = S&. Since ¢ = S = S U,, also 0 C S, holds and this is
nothing but the regularity of the class p. Hence R = %, is a radical class and
0= SU, = % the corresponding semisimple class.

Proposition 3.10. The Semisimple class o is hereditary if and only if the
corresponding radical class R = %, satisfies

R(I) CR(R) for every I <R. (2)
Proof. 1f we have (2), then for any R € p and I <R we have R(I) C R(R)) = 0,
and so I € p. Thus p is hereditary. Conversely, suppose that g is hereditary.
Then for I < R we have
(R(I)+ R(R))/R(R) < (I + R(R))/R(R) < R/R(R) € o.

Hence I + R(R)/R(R) € 0 and (R(I) + R(R))/R(R) € o because p is hered-
itary. But this gives us

R(I/(R(I) NR(R)) = (R(I) + R(R))/R(R) € RN e = {0}.
Thus R(I) € R(R) as claimed. O
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