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Abstract

In this article, we propose a reliable combinatioetween the homotopy analysis
method (HAM) and Laplace transformation method (LT find the analytic
approximate solution for integro-differential eqigats. This study represents
significant features of HATM and its capability ledindling integro-differential
equations. Some illustrative examples are also gutesl to demonstrate the
validity and applicability of this technique. Commjg@n between the obtained
results by HATM and exact solution are shown integjfferential equations to
illustrate the effective of this method. This mdth® reliable and capable of
providing analytic treatment for solving such eqoas.
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1 I ntroduction

This paper deals with one of the most applied @mwisl in the engineering
sciences. It is concerned with the integro-difféiE@nequations where both
differential and integral operators will appeartire same equation. This type of
equations was introduced by Volterra for the finste in the early 1900. Volterra
investigated the population growth, focusing hisidgt on the hereditary
influences; where through his research work thdctay integro-differential
equations was established [1]. Scientists and eegincome across the integro-
differential equations through their research workheat and mass diffusion
processes, electric circuit problems, neutron diffn, and biological species
coexisting together with increasing and decreasnmages of generating.
Applications of the integro-differential equatioms electromagnetic theory and
dispersive waves and ocean circulations are en@midore details about the
sources where these equations arise can be founghysics, biology, and
engineering applications as well as in advanceefyial equations literatures [2].
It's important to note that in the integro-diffetih equations, the unknown
function u(x) and one or more of its derivatives suchua),u’(x), ... appear
out and under the integral sign as well. One que@lrce of integro-differential
equations can be clearly seen when we convert iffereshtial equation to an
integral equation by using Leibnitz rule. The imtegifferential equation can be
viewed in this case as an intermediate stage wiheinf an equivalent Volterra
integral equation to the given differential equatiorThe following are the
examples of linear integro-differential equatio8s/|:

u'(x) = f(x) — [; (x — Du(t)dt, u(0) =0 (1.1)
w'x) = g(x) + [ G — Hu(®)dt, w(0) =0, u'(0) =-1 (1.2)
w(x) = e* —x + [, xtu(t)dt, u(0)=0 (1.3)
w'(x) = h(x) + [ tu'(Odt, w(0) =0, u'(0) =1 (1.4)

It is clear from the above examples that the unknéwnctionu(x)orone of its
derivatives appear under the integral sign, andther derivativesappear out the
integral sign as well. These examples can be &lkedsas the Volterra and
Fredholm integro-differential equations. Equati¢hd) and (1.2) are the Volterra
type whereas equations (1.3) and (1.4) are of Eledllype integro-differential
equations. It is to be noted that these equatioasliaear integro-differential
equations. However, nonlinear integro-differenggluations also arise in many
scientific and engineering problems [8-10]. Our @amm in this paper will be
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linear integro-differential equations and we wi#t boncerned with the different
solution techniques. To obtain a solution of theegno-differential equation, we
need to specify the initial conditions to determine unknown constants [11].

The homotopy analysis method (HAM) [12] has beeoved to be one of the
useful techniques to solve numerous linear andimeanl functional equations. As
mentioned in [13, 14], unlike all previous analytechniques, the homotopy
analysis method provides great freedom to expra@ssians of a given nonlinear
problem by means of different base functions. Ales method provides a way to
adjust and control the convergence region andateeaf convergence of solution
series, by introducing the auxiliary paraméidi5-18]. By properly choosing the
base functions, initial approximations, auxiliaigelar operators, and auxiliary
parameterh, HAM gives rapidly convergent successive approxioms of the
exact solution. A systematic description of thiglgtic technique, for nonlinear
problems, can be found in [13].In recent years mautiors have paid attention to
study the solutions of linear and nonlinear padiffierential equations by using
various methods combined with the Laplace transfd@n23].

The main aim of this article is to present analitiand approximate solution of
integro-differential equations by using new mathioaa tool like homotopy

analysis transform method. The proposed methoduplmng of the homotopy
analysis method HAM and Laplace transform methott42].We have studied
some of linear and nonlinear integro-differentiguations with the help of
homotopy analysis transform method.

This paper is organized as follows. In Section 2hart description of the basic
ideas of the homotopy analysis method will be stedead homotopy analysis
transform method is applied to construct approxémsdlution. In Section 3 is
devoted to the convergence analysis of the metlm&ection 4, our numerical
findings are reported and demonstrate the accurhdlye proposed scheme, by
considering three numerical examples. Finally, amions are stated in the last
section.

2 Preliminaries and Notations

In order to elucidate the solution procedure of lloenotopy analysis transform
method,We consider the following integro- diffeiahequations of second kind:

yr(x) = f(x) + fo(x, Hyt)dt, 0<x<1
0

with initial conditions

y(a@) = ay,y'(a) = ay, ... ... ... y*1(a) = a,_1.(2.1)To solve the generahth-
order integro-differential equation (2.1) usinge thomotopy analysis transform
method, we recall that the Laplace transforms efdérivatives of are defined by
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Lly*()] = s"Lly(x0)] = s""y(0) = s"2y'(0) — -+ ... =y"7(0).

Now applying the Laplce transform on both sid&q (2.1) we have

LIy" ()] = LIF ()] + LIJ, K Dy(Ddt], 0<x <1

We define the nonlinear operator

(2.2)

Nlp(; )] = Llo™ ()] — LIF ()] — LI, K(x, )e(x; q)dt] (2.3)

where g € (0,1) be an embedding parameter agd(x; q) is the real function
of x and q . By means of generalizing the traditional homgtopethods, the
great mathematician Liao [13-14] constract the zed®r deformation equation

A =q@)Lle(x;q) — yo(x)] = hgH(xX)N[@(x; @)], (2.4)

where is a nonzero auxiliary parametéf(x) = 0 an auxiliary function;, (x)is
an initial guess ofy(x) and ¢(x; q) is an unknown function.It is important that
one has great freedom to choose auxiliary thinddATM. Obviously, when
q=0 andg =1 ,itholds:

@(x;0) = yo(x), @(x;1) = y(x), (2.5)

respectively. Thus, ag increases from 0 to 1, the solution variesnfithe
initial guess to the solution .Expanding(x; q) in Taylor's series with respect to
q , we have:

©(x;q) = yo(x, ) + Xre1 " Ym (x) (2.6)
Where

1 d™Me(x;q)
ym(x) = m ;;njiq |q=0 (2-7)

If the auxiliary linear operator, the initial guesthe auxiliary parameter , and
the auxiliary function are properly chosen , thfi@(Z.G) converges atq=1,
we have:

y(x) = yo(x) + X=1Ym(x) (2.8)

which must be one of the solutions of the origimégral equations. Define the
vectors:

Vn = (Yo (x), y1 (%), e oo ool , ¥ (%)} (2.9)
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Differentiating equation (2.4) m -times with respect to the embedding parameter
q , then settingg =0 and finally dividing them byn!, we obtain thent" -order
deformation equation.

L{Ym (%) = XmYm-1(x)] = hqH () Ry (Ym—1, X) (2.10)
Where

Ry (m-1,%) = s 0D (2.11)
And

m={y  mii 212

In this way, it is easily to obtainy,,(x) for m>1 , at mt" —order , we have

y(x) = Xhi=0 Ym (%), (2.13)

when M - o we get an accurate approximation of the origirgal 2.1).

3  Convergence Analyses

The convergence of the method is established bpréne 3.1 in [28] and [29]. In
fact, on each interval the inequalitly; .|, < ally;ll, is required to hold for
i=0,12,...,nwhere0 < a <1 is a constant and is the maximum order of the
approximant used in the computation. Of course, ithonly a necessary condition
for convergence, because it would be necessaryrpuate||y;||,for everyi =
0,1,2,....,n in order to conclude that the series is convergent.

Definition 3.1: Letp,(x),n = 1,2, ...... be the successive approximations to the
solution y(x) of a problem. If the positive conssaln, P exist such that

T |@n+1(x)—y ()l

L=limne P

Then we call p the (estimated) Local order of cogeace (EOC) at the poinf..
The constant is called convergence Factoxat

Definition 3.2: The relative errorsd, of the 7zerms approximation of HATM,
which is defined as:

_ |uexace(x))—uapp ()|
5(.7(]) o |uexact(xj)|
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4  Applications

In order to elucidate the solution procedure of lloenotopy analysis transform
method for solving Rorder integro-differential equations is illustrétén the
three examples in this sections which shows thectifeness and generalizations
of our proposed method given below. We show thé ligcuracy of the solution
results from applying the present method to oublerm (2.1) compared with the
exact solution; the maximum error is defined as:

E, = “yExact - (pn(x)”om

Where n =1,2..represents the number of iterations [29-31].

Example 1

We use the proposed method to find the approxirmsaligtions of the following
second-order integro-differential equation by udimgHATM [29]

1

y'(x) =e* —x+ f xty(t)dt,

0
y(0) =1, y'(0) = 1.
(4.1)

which has the exact solutigr{x) = e*

As mentioned above, taking theLaplace transforimott sides of Eq. (4.1) gives:
1

o 1
Ly @] = Lo —x] + 55 | y(oe

SPLY ()] = sy(0) = ¥'(0) — ==+ % — = [ ty(8)dt = 0. (4.2)

sz 52
Using given the initial condition EqQ. (4.1) becomes

1

Lyl —2-5———+ 5 -2 [ ty(®)de =0 (4.3)

s2(s-1) s*
Form Eg. (4.3), we define a nonlinear operator as

NpCoti ] = Lip(o )] - (5~ 5+ ) ko tloGwsolde =0 (4.4)

Using the above definition, we construct the zewntlter deformation equation

A =Ll t;q) — yo(x,t)] = qiN[e(x,t; q)] (4.5)
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With initial conditions, whergg € [0,1] is an embedding parametéis a non-
zero auxiliary function, L is Laplace transformatioperatory0(x, t) is an initial
guess ofy(x, t) ande(x, t; q) is unknown function. Whep = 0 andg = 1 we

have:

p(x,t;0) = yo(x,0), o(x, ;1) = y(x,t)

Expandingp(x, t; q) in Taylor series with respect &g we obtain
@(x,t;q) = yo(x,0) + Y=g Ym (x, )g™

Where
1 ™ to(xtq)

Ym0 t) = o 14=0

The above series is convergengat 1, then
P t;q) = yo(x, ) + Xm=1 ym (%, 1)

We define the vector

Ym-1= 000, 0),y1(%,8) e, Y1 (x, D)}

Them_th order deformation equation is

Y6 ) = XmYm-1 (6 O) + A7 (R (Fna (1) )

Where

- 1 1 1 1 1 1
Rm(ym—l) = L[ym—l] - (; +5 - 5 + sz(s—l)) (1 - Xm) - s_4f0 tYm-1 dt

s2

Using the Mathematical package, we obtain the swlds,

3
Yox) = 0y, (0) = —e*h + 15,

h(30+59h)x3
180

yo(x) = —e*h(1 + h) + ,

h(900+h(3540+2611h))x3
5400

y3(x) = —e*h(1 + h)? +

At h = —1 the solution is given by

x3

W’ n= 1,2,

on(x) = Z yi(x) =e* —
i=0

(4.6)

(4.7)

(4.8)

(4.9)

(4.10)

(4.11)

(4.12)

(4.13)
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y(x) = limg,(x) = lim,_(e* — x3_1) = e*,(4.14)
N> 31307

that converges to the exact solution, we noticeé tha result obtained by the
present method is very superior (lower error comirwith less number of
iterations) to that obtained by HPM and VIM. Frdmble 1, it can be deduced
that, the error decreased monastically with thesiment of the integer.
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Figure 1: (a) The exact solution is compared with the approxinsatation when
h=-1

(b) AbsoluteError of 5th-order approximate solutiontwit= —1.
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Figure 2: (a) and(b) the h-curve of the"8and 18'order approximate solution
(4.13) atx = 1.
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Table 1. Comparison of relative errotx) for Example 1

fi=-123 fi=-115 a=-1 E=-039
x =0.] 6I4E - 6 LO3F -7 647E -8 I0LE-%
k=02 474E -6 AE-T |.27E -9 1.2Z7E-8
k=03 ZI4E-35 LE-6 151E-7 1.36E-7
x, =04 QADFE -5 LAlF -6 1TaF -7 EME-7
k=05 206E -4 J4U4E-7 251E -7 LBE-6
k=006 2IBE-4 MFE-3 406E -7 19E-6
x; =07 TAF -4 TAFE -4 GM9F - i I.59E -5
k=08 197E -2 9.06E-4 2B4E-¢ 7.7E—-4
k=09 495E-1 I XBE-4 142E-3 I67E-4
=10 TAE -3 9.70F -4 161 -5 ShIE -4

Example 2

We use the proposed method to find the approxirsaligtions of the following
integro-differential equation by using the HATM [29

1

y®(x) = —8e* + x2 + y(x) +f x2y'(t)dt,
0

y(0) =1, y(0)=0, y'(0)=-1, y"(0) = -2
L y®(0) = -3, y®0)=-4, y©(©0)=-5 y7(0)=-6
(4.15)

Which has the exact solution(x) = e* — xe*Applying Laplace transform, we

have
1

Lly® ()] = L[-8e* + x?] + L[y(x)] + S%f y'(t)dt
0
Which satisfies

sSLIy(x)] — s7y(0) — s°y'(0) — s%y"©® — sy ") — s3y,H)(0) — s2y>)(0)
2
—sy©(0) —y™@(0) + ~ =~ Ly

Zfl
N @) g+ —
ydt =0
s3 )y

(s—1)

(4.16)

Using given the initial condition Eq. (4.15) becane
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7 5 4 3 2
Liy()] + (_ s N s N 2s N 3s N 4s
(s8—1) (s8—-1) (s8—1) (s8—1) (s8-1)
5s 6 8 2 >
T D T D) P - DG =D G-

2 ' (1)
| y®Og4t=0
53(58—1)f0

(4.17)
We define a nonlinear operator as:
Nlp(x,t;q)] _ Llo(x, t; q)]
N s’ N s° N 2s* N 3s3 N 452
(s8—1) (s8—1) (s8—1) (s8—1) (s®8—-1)
N 5s N 6 N 8 2
(s83—1) (s8—1) (s8—1)(s—1) s3(s®—-1)
2 (o
J— ! t =
53(58_1)Ly dt =0
(48)
Them-h order deformation equation is:
ym(x, t) = Xm)’m—l(xr t) + hL_l (Rm(ym—l(xl t))) (419)
Where
Ry (Ym-1) — L[Ym-1]
N s’ N s° N 2s* N 3s3 N 452
(s8—1) (s8—1) (s8—1) (s®—1) (s®-—-1)
N 5s N 6 N 8 2
(s83—1) (s8—=1) (s8—1)(s—1) s3(s®—-1)
2 T
TG -1 fo y (t)dt =0
(4.20)

Using the Mathematica package, we obtain the solds:

Yo(x) =0

1 i X x
y1(x) = e*hx + hx? + Eh(Cos[x] — 3Cosh[x] — 2Sinh[x] — ZSm[ﬁ]Slnh[ﬁ])
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y2(x)
ht? <h te (—4 +h (e -2 (6 + Cos[1] — 2Sin [%E] Sinh [%]))))
=e*h(1+ h)x — 1o
N .
N h(Cosh[x](h + e(—=12 + h(—20 + e — 2Cos[1] + 4Sln[ﬁ]81nh[ﬁ]))) 8e(1 + h)Sinh|[x] y
NP S | Cox. . x
—(h+e(—4+ h(—12 + e — 2Cos[1] + 4Sln[ﬁ]51nh[ﬁ]))) (Cos[x] — ZSm[ﬁ]Smh[ﬁ]))
(4.21)

At h = —1 the solution is given by

n-1
Pn(x) = Z yi(x)=, n=1.2,..

i=0
y(x) = lim@,(x) = lim,, Y15 v; (x) = e* —xe¥, (4.22)

that converges to the exact solution, we noticeé tha result obtained by the
present method is very superior (lower error combirwith less number of
iterations) to that obtained by HPM and VIM. Fraable 2, it can be deduced
that, the error decreased monastically with thesiment of the integer.

{b)
(a) - y :
3 —— —e——— | Y |
! _‘""-1‘_“_\_1‘1- | II|
g “‘““"--"""- et Lxig=BE
|
E -1 \\ 1 _E a J
2 \‘?\‘Apprux 2 /
- &
& \ /
5 \ L
¥ Il'l.. . ¥
m -
\ i
X

X

Figure 3: (a) The exact solution is compared with the approxémat
solutionwheh = —1

(b) Absolute Error of 5th-order approximate solutionhwi = —1.
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Table 2: Maximum error and EOC &t= —1

x Fix| £y E3
0.2 S56437E—14 03111E—19 0.99900
0.4 5. T7T02E—-11 0.3185E—-16 0990000
0.6 3.3326E—09 0.1837E—14 0.99900
0.8 5 9179E—08 0.3262E—13 0.99900
1.0 5.5115E—07 0_3038E—12 10000
According to the requirements of our test, "'T"_: l’ =<1 forall sr=01.2.---.n1 _

[l

From Table2, it can be deduced that, the error decreased mecatiptwith the
increment of the integer n.

Example 3

Let us test the homotopy analysis transform metbodthe following linear
system of two Volterra’s integro-differential equalts [30-33]:

u(x)=1+x+x%—v(x)— fox(u(t) + v(t))dt,

x 4.23
v'(x)=-1—x+u(x)— Js (w(®) —v(t))dt (4.23)
with the initial conditions
u(0) =1, v(0) = -1 (4.24)
and with the exact solutions
u(x) =x +e”, v(x) = x — e*(4.25)
Applying the Laplace transform, of equation (4.28¢, have
( 1r*
! L[u'(x)] = L[1 + x + x?] — L[v(x)] — E_f (u(® +v(©))dt,
0
, 1
L L[v'(0)] = L[~1 — 2] + Lu()] - Ef (u(®) — v(©)dt
0

(4.26)
( 1 1 2 1r*
! SL[u()] — u(0) (_E -- 5—3) + L] + Ef (u(®) + v(©))dt = 0,

0
1 1 1r*

| sLv @] () - (<) - tucor + Efo (u(®) — v(®)dt = 0

(4.27)

Using given the initial condition Eq. (4.24) becane
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1 1 1 2
l L@+ (-5 = 5= 55— =) + L] + f (u(®) + v(®))dt = 0,
S
| LIv o] + — - 1) Llu(ol + f (u(t) — v(®))dt = 0
S

\

We define a nonlinear operator as:

(4.28)

(M550 030560) = s + (3= 2= 2) kot )
+Slzf0x(<p1(x, t;q) + @,(x,t;q))dt =0,
Nlp:(x,t; q), 2(x, t; @)1 = Llp,(x, t; )] + G n 512 n 513) _ EL[rpl(x, .

\ +Sl2f§(<p1(x, t;q) —@,(x,t;q))dt =0,

(4.29)
Them-h order deformation equation is:
Uy (X, 1) = ¥mUm—1(x, t) + ALY (le(ﬁm_l(x, t))) (4.30)
V() = XV (6 ) + AL (Rom (Bna (6, 1)) )
Where
Rim(p—1) = Lluy_1] + (_ % - Siz - Sig - 1) + lL[Um 1]+ ifx(um 1(0) + Vm—1(t)) dt,
RZm(am—l) = L[vm—l] + (§ + Siz +Si3) zL[um 1 + f (um 1(t) vm—l(t))v
(4.31)
Using the Mathematica package, we obtain the solds
uO(x) = ex;
'UO(.X') = _ex'
) = —2h hx?  hx3
u(x) = X > 3
3hx?
vi(t) = >
2,4 h2x5

12 60 ’

1 1
() = ~2h(1+W)x =5 h(1+Wx? = Zh(Z + W)t +

2.3 2.4 2,5
v,(x) = 2h(3 + 5Sh)x? - - - 2 (@)3
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At h = —1 the solution is given by:

n-1

Pn(x) = Z u(x)=, n=12,..

i=0

n-1
u(x) = limg, (x) = lim Z u; (x) = x+e”,
n—ooo n—-oo
i=0

n-—1

Pn(x) = Z vi(x)=, n=1.2,..

i=0

(4.33)

() = lim () = iy, T 0,0 = % e,

(a)

aols
0oE |

B o00ms F

ool

Absohis Firor
7

Dbsohute Fror

oy
e i

0000 |

o

Figure 4: (a) and(b) Absolute Error of 5th-order approximate solutidix)and
v(x) with h = —1.
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Fig. 5 fi-curves: solid line: I[5th-order approximation
of #'(0); dashed line: 15th-order approximation of v {0,
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that converges to the exact solution, we noticeé tha result obtained by the
present method is very superior (lower error combirwith less number of
iterations) to that obtained by HPM and VIM.

5 Conclusions

In this paper, we presented the application ofttbmotopy analysis transform
method (HATM) for solving a special form of nonlareintegro-differential
equation. The sufficient condition for the converge of the method is illustrated
and then verified for three examples. As we canisefigures (1-5), HATM
solutions have a good agreement with the numeneallts provided that
appropriate values for the convergence controlmpaterh are chosen. The ability
of the HATM is mainly due to the fact that the nathprovides a way to ensure
the convergence of series solution. The solutidaiobd with the help of HATM
is more general as compared to HPTM,ADM and VIMugsoh. We can easily
recover all results of HPTM, ADM and VIM by assumin= —1. It is also
demonstrated that the Adomian decomposition method the homotopy
perturbation method are special cases of the HATi HATM is clearly a very
efficient and powerful technique for finding the merical solutions of the
proposed equation.
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