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Abstract

This article considers the problem of how approach spaces can be used in
the study of near filters, in general, and descriptively near filters, in particular.
The solution to the problem stems from recent work on approach spaces, ap-
proach merotopies, near filters, descriptively near sets, and a specialised form
of merotopy defined in terms of a variation of the C̆ech gap functional in mea-
suring the distance between nonempty sets. A nonempty set equipped with a
distance function satisfying certain properties is an approach space. This ar-
ticle investigates the theory and application of merotopies and near filters in
terms of the nearness of digital images.
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1 Introduction

The problem considered in this paper is how to formulate a framework for the
study of near filters, in general, and descriptively near filters, in particular.
The solution to this problem stems from recent work on near families [25] and
near sets [10, 26, 28, 29, 36]. The collection of all subsets of a nonempty set X is
denoted by PX (or by P(X), for clarity). In addition, let A ∈ P2(X) denote a
collection of subsets in P(P(X)). This paper on near filters grew out of recent
work on the nearness of collections of subsets of PX viewed in the context of
approach spaces [1, 11, 16, 14, 15, 19, 21, 34] and the practical implications of
approach merotopies and near filters in classifying digital images.

2 Approach Spaces

An approach space (X, ρ) [1, 19, 21] is a nonempty set X equipped with a
distance function ρ : PX × PX :→ [0,∞] if, and only if, for all nonempty
subsets A,B,C ∈ PX, ρ satisfies properties (A.1)-(A.4), i.e.,

(A.1) ρ(A,A) = 0,
(A.2) ρ(A, ∅) =∞,
(A.3) ρ(A,B ∪ C) = min{ρ(A,B), ρ(A,C)},
(A.4) ρ(A,B) ≤ ρ(A,C) + sup

C∈PX
ρ(C,B).

It has been observed that the notion of distance in an approach space is closely
related to the notion of nearness [14].

Remark 2.1. Gap functional
For a nonempty subset A ∈ PX and a nonempty set B ∈ PX, define a gap
functional Dρ(A,B), a variation of the distance function introduced by E.

C̆ech in his 1936–1939 seminar on topology [6] (see, also, [18, 3, 8]), where
Dρ : PX × PX → [0,∞] is defined by

Dρ(A,B) =

{
inf {ρ(a, b) : a ∈ A, b ∈ B}, if A and B are not empty,

∞, if A or B is empty.

In general, hyperspace topologies arise from topologies determined by families
of gap functionals [2].

Remark 2.2. Norm
In this article, the distance function ρ‖·‖ is defined in the context of a normed
space. Let X be a linear space over the reals with origin 0. A norm on X is a
function ‖ · ‖: X → [0,∞] satisfying several properties for a normed space [32].
Each norm on X induces a metric d on X defined by d(x, y) =‖ x − y ‖ for
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x, y ∈ R [2]. For Example, let ~a,~b denote a pair of n-dimensional vectors
of numbers that are positive real values representing perceived intensities of
light reflected from objects in a visual field, i.e., ~a = (a1, . . . , ai, . . . , an),~b =
(b1, . . . , bi, . . . , bn) such that ai, bi ∈ R. Then, the distance function ρ‖·‖ :
Rn × Rn → [0,∞] is defined by the ‖ · ‖1 norm called the taxicab distance,
i.e.,

ρ‖·‖(~a,
~b) =‖ ~a−~b ‖1=

n∑
i=1

|ai − bi|.

The focus of this work is on measuring the nearness the descriptions of objects
in disjoint sets. For this reason, we consider the gap functional in terms of the
greatest lower bound of the distances between feature vectors ~a,~b for pairs of
objects a, b ∈ A,B ∈ PX such that A∩B = ∅, i.e., A and B are disjoint. For
this reason, we introduce Dρ‖·‖

: PX × PX → [0,∞] defined by

Dρ‖·‖
(A,B) =

{
inf {ρ‖·‖(~a,~b) : a ∈ A, b ∈ B}, if A and B are not empty,

∞, if A or B is empty.

Then Dρ‖·‖
(A,B) is a norm gap functional that is defined in terms of ρ‖·‖

to measure the lower distance between the descriptions of objects in a pair of
non-empty sets A,B.

Lemma 2.3. Suppose X is a metric space with distance function ρ, x ∈ X
and A ⊂ PX. Then

ρ(x,
⋃
A) = inf{ρ(x,A) : A ∈ A}.

Proof. The proof appears in [30, p. 25].

Lemma 2.4. Dρ‖·‖
: PX × PX → [0,∞] satisfies (A.1)-(A.4) for ρ in an

approach space.

Proof. The proof appears in [25].

Theorem 2.5. (X,Dρ‖·‖
) is an approach space.

3 Merotopies

From an interest in determining the nearness of sets and collections rather the
nearness of points and collections, the distance function ρ : X×PX :→ [0,∞]
in [19, 21] is here defined in terms of a mapping from PX × PX to [0,∞].
The basic approach is to consider a nonempty set X equipped with a distance
function ρ : PX × PX :→ [0,∞] satisfying certain properties. In that case,
(X, ρ) is an approach space. Considered in the context of this form of an
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approach space, one can consider different forms of what are known as approach
merotopies.

A collection A corefines a collection B (denoted A ≺ B), if and only if,
for all A ∈ A, there exists a subset B ∈ B such that B ⊆ A. Let

A ∨ B = {A ∪B : A ∈ A, B ∈ B},⋂
A =

⋂
A∈A

A.

Let ε ∈ (0,∞]. Then, in a manner similar to [34], a function ν : P2X×P2X :→
[0,∞] is an ε-approach merotopy on X, if and only if, for any collections
A,B, C ∈ P2X, properties (AM.1)-(AM.5) are satisfied:

(AM.1) A ≺ B ⇒ ν(C,A) ≤ ν(C,B),
(AM.2) (

⋂
A) ∩ (

⋂
B) 6= ∅ ⇒ ν(A,B) < ε,

(AM.3) ν(A,B) = ν(B,A) and ν(A,A) = 0,
(AM.4) ∅ ∈ A ⇒ ν(C,A) =∞,
(AM.5) ν(C,A ∨ B) ≥ ν(C,A) ∧ ν(C,B).

The pair (X, ν) is called an ε-approach merotopic space. Recent work
has focused on approach merotopies that measure to what degree a collection
of sets contains near members [14]. In the current work, the focus is on ε-
approach merotopies that measure to what degree disjoint collections of sets
are near each other. This work has grown out recent studies of the nearness
of sets, especially the nearness of disjoint sets (something that is possible, if
measurement of the distance between descriptions of elements of nonempty
sets is considered).

Lemma 3.1. Let Dρ be a gap functional. Then the function νDρ : P2X ×
P2X :→ [0,∞] defined as

νDρ(A,B) := sup
A∈A,B∈B

Dρ(A,B)

is an ε-approach merotopy on X.

Proof. We will show only (AM.1) and (AM.5). Let A,B, C ⊂ PX.
(AM.1) If A ≺ B, A ∈ A, B ∈ B and C ∈ C, then Dρ(C,A) ≤ Dρ(C,B).
Hence, νDρ(C,A) ≤ νDρ(C,B). (AM.5) follows by noting that Dρ(A,B ∪C) =
min{Dρ(A,B), Dρ(A,C)}.

Lemma 3.2. A norm gap functional Dρ‖·‖
defines an ε-approach merotopy

νDρ‖·‖
on X, where

νDρ‖·‖
(A,B) := sup

A∈A,B∈B
Dρ‖·‖

(A,B).
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Proof.
Immediate from the definition of Dρ‖·‖

and Lemma 3.1.

The first part of the term merotopy comes from the Greek meros (part).
This makes sense, since merotopies are defined in terms of the parts (subsets)
of a collection. Merotopies were introduced by M. Katětov [12] and elaborated
in [20, 21, 34].

Example 3.3. Distance Between Sets and Collections
Consider a pair of collections B,A ∈ P2(X). Assume that B ∩ A = ∅ (the
collections are disjoint).
Let B ∈ B and A ∈ A, i.e., B,A are subsets in B,A, respectively. Put

ρ(B,A) = Dρ‖·‖
(B,A),

i.e., the distance function ρ is defined in terms of the gap functional Dρ‖·‖

in measuring the distance between a pair of sets. For simplicity, we omit
reference to a collection B ∈ P2X that contains subset B and only consider a
fixed subset B ∈ B. Then ν : P2X × P2X :→ [0,∞] is defined by

ν({B},A) := sup
A∈A

Dρ‖·‖
(B,A).

For simplicity, we will write ν({B},A) as ν(B,A).

Remark 3.4. Observe that in Example 3.3, the function ν is an ε-approach
merotopy on X.

Proof. Immediate from Lemma 3.2.

A nonempty collection A is near a set B ∈ B, if and only if ν(B,A) =
ν({B}, {A}) = 0 for at least one A ∈ A. In practice, this seldom occurs.
Hence, a nonempty collection A is considered weakly near (or ε-near) to a
set B ∈ B, provided there is a A ∈ A such that B and A are close enough or
not far apart. This is the main reason why we have defined the notion of an
ε-approach merotopy. That is, for ε ∈ (0,∞], a collection A is ε-near a set
B ∈ B if, and only if there is a subset A ∈ A such that ν(B,A) < ε. The
study of near sets and near collections is directly related to work on approach,
metric, proximity and topological spaces (see, e.g., [16, 14, 15, 19, 21, 22, 23,
24, 27, 28, 26, 29, 25, 34]).

4 Descriptively Near Collections

Descriptively near sets are disjoint sets that resemble each other. Feature
vectors (vectors of numbers representing feature values extracted from objects)
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provide a rigorous basis for set descriptions (see, e.g., [28, 26, 25, 23]). A
feature-based gap functional defined for the norm on a pair of nonempty sets
was introduced in [29]. Let B ⊂ X. Let Φn(x) = (φ1(x), . . . , φn(x)) for
x ∈ B denote a feature vector, where φi : B → <. In addition, let ΦB =
{Φ1(x), . . . ,Φ|X|(x)} denote a set of feature vectors for objects x ∈ B. Assume
A is a subset in a collectionA ∈ P2X, i.e., A ∈ A. In this article, a description-
based norm gap functional DΦ,ρ‖·‖

is defined in terms of the Hausdorff lower

distance [9] relative to the norm on P(ΦB)× P(ΦA) for sets B,A, i.e.,

DΦ,ρ‖·‖
(B,A) =

{
inf

{
ρ‖·‖(ΦB,ΦA)

}
, if ΦB and ΦA are not empty,

∞, if ΦB or ΦA is empty.

Theorem 4.1. (X,DΦ,ρ‖·‖
) is an approach space.

Proof. Immediate from the definition of DΦ,ρ‖·‖
and Lemma 2.4.

Given an approach space (X,φ), define ν : P(PX) :→ [0,∞] by

ν(A) = inf
x∈X

sup
A∈A

ρ(x,A).

The collection A ∈ P2X is near, if and only if, ν(A) = 0 for x ∈ X [21]. The
function ν is another form of an approach merotopy [34], if we assume that ρ
satisfies the conditions for a distance function in an approach space. In the
sequel, consider a function ν : P2X × P2X → [0,∞) defined by a function
ν(B,A) for B,A ∈ P2X. Then define a ν in the following way.

ν(B,A) = sup
A∈A,B∈B

DΦ,ρ‖·‖
(B,A).

For sake of clarity, ν
Φ,ρ‖·‖

(B,A) is also written to denote a description merotopy.

Remark 4.2. Nearness of Collections
A nonempty collection A is ε-near a collection B if, and only if there are B ∈
B, A ∈ A such that ν(B,A) < ε. A nonempty collection A is descriptively
near a nonempty collection B (denoted by A ./

Φ
B), if and only, if a description

merotopy

ν
Φ,ρ‖·‖

(B,A) = DΦ,ρ‖·‖
(B,A) = 0,

for at least one B ∈ B that is near at least one A ∈ A. By varying the choice
of features (with corresponding probe functions) used to construct feature
vectors used to compare A and B, the precision of the estimate of the closeness
of a pair of collections will either increase or decrease. A collection A is
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Figure 1: Near Collection

descriptively ε-near a nonempty collection B (denoted by A ./
Φ,ε
B), if and

only if, a description merotopy

ν
Φ,ρ‖·‖

(B,A) = DΦ,ρ‖·‖
(B,A) < ε,

for at least one B ∈ B that is near at least one A ∈ A. By varying the choice
ε and choice of features for feature vectors used to compare A and B, the
precision of the estimate of the closeness of a pair of collections will either
increase or decrease.

Example 4.3. Sample Near Image Collections
A digital image can be viewed as a set of points. In this case, a point is either
a picture element (pixel) or p × p subimage for p ∈ [1, n], n ∈ N. In this Ex-
ample, an approach space (X, ρ) is defined for a set of digital images X and
distance ρ = DΦ,ρ‖·‖

. For Example, let I1, I2 denote the pair of aircraft images

in Fig. 1. Put X = I1 ∪ I2 and assume the collection A always comes from
P2(I2) and the collection B always comes from P2(I1), i.e.,

A ∈ P2(I2) and B ∈ P2(I1),

where

X = I1 ∪ I2 and I1 ∩ I2 = ∅.

In this illustration, let B′ ∈ B denote the set of subimages contained in the
tail section for the small aircraft shown in Fig. 1 and let A ∈ P2(I2) denote a
collection of subsets containing subimages of the passenger plane in the same
figure. Then

ν(B′,A) = sup
A∈A

DΦ,ρ‖·‖
(B′, A).

The important thing to notice here is that B′ represents either a region of
interest (ROI) in image I1 in Fig. 1 or B′ is a subset containing subimages
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chosen arbitrarily (i.e., B′ is any random selection of subimages in I1). How-
ever, if we want to determine that some part of image I1 is similar (near to)
one or more parts of image I2, then subset B′ is specifically chosen because
there is something about the subimages in B′ that is interesting. In the case
of the small aircraft in image I1 in Fig. 1, the subset B′ is just the aircraft tail
section and we wish to determine if the description of B′ matches any portion
of image I2 shown in Fig. 1. In the case of image I2, the comparison between
B′ and a collection A using a merotopy ρ is made in terms of an arbitrary se-
lection of a collection A found in I2. In this Example, we use the ε-approach
merotopy from Example 3.3.

Basically, the description of each subimage in the nonempty subset B′ ∈
B ∈ P2(I1) is compared with the description of subimages contained in nonempty
subsets A in A ∈ P2(I2). For simplicity, we consider subimage description in
terms of feature values extracted from a subimage using a single probe func-
tionψ. That is, let Φ(x) = (φeo(x)) contain a single probe function φeo(x) =
that determines the average edge gradient direction of pixels in a subimage
x. A method that can be used to determine edge gradient direction is given
in [31, §5.3.2, p. 133] and not repeated, here. In that case, the similarities
in the gradient directions of the two tail sections of the aircraft in Fig. 1 may
lead to ν(B′,A) = 0 for some subset B′ ∈ B ∈ P2(I1). It is often the case
that ν(B′,A) < ε for some small ε. Then the set B′ and the collection A are
descriptively ε-near. The smaller the value of ε, the closer the description of
B′ is to collection A, when ν(B′,A) < ε. There are a number of different cases
to consider in determining the nearness or apartness of digital images. In the
following cases, assume ε-approach merotopy ν is defined in terms of distance
ρ = DΦ,ρ‖·‖

.

(n.1) Descriptively ε-near ROI-to-single collection case. A single region
of interest (ROI) B′ ∈ B from image I1 is near A from image I2 when
ν(B′,A) < ε, where the distance ν(B′,A) is defined to be

ν(B′,A) = sup
A∈A

DΦ,ρ‖·‖
(B′, A).

Then the ROI B′ is descriptively ε-near collection A when ν(B′,A) < ε
for ε > 0. In other words, region B′ in image I1 is descriptively similar
to one or more parts of image I2 represented by the collection A. It is
this case that is illustrated in Fig. 1, if we assume that ν(B′,A) < ε for
some small ε.

(n.2) Descriptively ε-near ROI-to-image case. A single ROI B′ ∈ B from
image I1 is compared with every collection A ∈ P2(I2) and ν(B′,A) < ε

ψFor a detailed view of multiple features in descriptions of descriptions subimages,
see [10].
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for ε > 0. Then region B′ ∈ B is descriptively ε-near image I2, where
the distance ν(B′,A) for all collections A ∈ P2(I2) is defined to be

ν(B′,A) = sup
A∈A

DΦ,ρ‖·‖
(B′, A).

To conclude that ROI B′ is sufficiently close to some part of image I2, it
is only necessary that B′ is near at least one part of image I2 represented
by a collection A. In other words, B′ in image I1 is descriptively similar
to one or more parts of image I2, if there is a collection A such that
ν(B′,A) < ε.

(n.3) Descriptively ε-near image-to-collection case. Every nonempty
subset B ∈ B ∈ P2(I1) is compared with a single, arbitrary collection A
from image I2 such that ν(B,A) < ε, where ν(B,A), for all collections
B ∈ P2(I1) and a single collection A ∈ P2(I2), is defined to be

ν(B,A) = sup
A∈A

DΦ,ρ‖·‖
(B,A).

That is, there is at least one subset B from I1 that is descriptively ε-
near a collection A in P2(I2). In other words, one or more subsets B in
image I1 resemble some part of image I2.

(n.4) Descriptively ε-near image-to-image case. This is the extreme case,
where every part of one image is compared with every part of a second
image. In other words, every subset B ∈ P2(I1) is compared with every
subset in the collection A ∈ P2(I2). Image I1 is considered ε-near
image I2 (i.e., P(I1) ./

Φ,ε
P(I2)) if, and only if there is at least one pair

B ∈ P2(I1),A ∈ P2(I2) such that ν(B,A) < ε, where, for all collections
B ∈ P2(I1) and all collections A ∈ P2(I2), ν(B,A) is defined by

ν(B,A) = sup
A∈A,B∈B

DΦ,ρ‖·‖
(B,A).

If ν(B,A) > ε for one of the comparison cases (n.1)-(n.4), then the images
I1, I2 used to define X are considered far apart (not near each other) for the
particular choice of probe function(s) in the descriptions of the subimages used
in computing ν.

Theorem 4.4. Given an approach space (X,DΦ,ρ‖·‖
), a collection A ∈ P2X

is near a subset B ∈ B ∈ P2X, if and only if, DΦ,ρ‖·‖
(B,A) = 0 for B ∈ B

and for at least one A ∈ A.

Proof.
⇒ Given that an ε-approach merotopy ν and a collection A ∈ P2(X) that is
near a set B ∈ B, then ν(B,A) = 0. Hence, there is at least one A ∈ A such
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that DΦ,ρ‖·‖
(B,A) = 0.

⇐ Given that DΦ,ρ‖·‖
(B,A) = 0 for B ∈ B and for at least one A ∈ A, it

follows that the collection A is near B ∈ B.

5 Filters

Filters were introduced by H. Cartan in 1937 [4, 5]. A theory of convergence
stems from the notion of a filter (see, e.g., [13], [33, p. 78ff]) and the comple-
tion of uniform spaces by Cauchy clusters [6, 17, 22]. A collection F ∈ P2(X)
containing subsets of X is a filter [7, p. 56], if and only if, for all nonempty
A,B ⊂ F , the collection F satisfies conditions (F.1)-(F.3)[33].

(F.1) A,B ∈ F implies A ∩B ∈ F ,
(F.2) if A ∈ F and A ⊂ B ⊂ P(X) implies B ∈ F ,
(F.3) ∅ 6∈ F .

In other words, a filter is a collection of ascending subsets, e.g., starting with
the smallest nonempty subset A0 ∈ F and next smallest subset A1 ∈ F ,
property (F2) guarantees that A0 ⊂ A1. This view of a filter is an example
of the traditional view of filters (see, e.g., [35]), since a filter is now defined in
terms of a collection in an approach space.

In an approach space X, let x0 ∈ X and put ε ∈ (0,∞]. The set

Bρ(x0, ε) = {y ∈ X : ρ(x0, y) < ε},

is called an open ball with center x0 and radius ε. A nonempty subset E ⊂ X
in an approach space (X, ρ) is termed as an open set if, and only if, for each
x ∈ E, there is an open ball B(x0, ε) ⊂ E. In other words, an open set is the
union of open balls. A subset N ⊂ X is a neighbourhood of a point x ∈ X
(denoted Nx) in an approach space (X, ρ), if and only if, there exists an open
set E ⊂ N such that x ∈ E.

For a neighbourhood Nx in an approach space X, point x is called a limit
of a filter F . This is a specialization of the notion of a neighbourhood in
a topology [33] in terms of approach spaces. J.L. Kelley [13] observes that a
filter F converges to a point x ∈ X, if and only if, each neighbourhood of x is
a member of F .

Theorem 5.1. Let F be a filter in an approach space (X, ρ). A point x ∈ X
is a limit of the filter, if and only if, Nx ⊃ F .

Proof. See proof in [33].

Corollary 5.2. Given an approach space (X,DΦX ,ρ‖·‖
), a filter F ∈ P2X

is near B ⊂ X, if and only if, DΦ,ρ‖·‖
(A,B) = 0 for at least one A ∈ F .
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Proof. Symmetric with the proof of Theorem 4.4.

Corollary 5.3. Given a neighbourhood Nx in an approach space (X,DΦ,ρ‖·‖
),

a filter F ∈ P2(X) is descriptively near Nx, if and only if, DΦ,ρ‖·‖
(Nx, A) = 0

for at least one A ∈ F .

Assume a merotopy ν is defined in terms of DΦ,ρ‖·‖
. In keeping with an interest

Figure 2: Sample Image Filter in Image I2

in applying filter theory to digital images, define a collection F to be a filter
that is descriptively ε-near to a subset B ∈ B, if and only if, there is at least
one A ∈ F such that ν(B,F ) < ε. This definition of a near filter differs from
the usual definition of a near collection, since a filter F is considered near B
when a subset A ∈ F is close enough to B, i.e., when the distance between B
and the filter F is less than some (usually small) ε.

Example 5.4. Sample ε-near Image Filters
In this Example, ε-near filters are considered in an approach space (X,DΦ,ρ‖·‖

),

where X = {I, I ′} contains a pair of digital images I, I ′ and P(I1) is the set of
all subsets of subimages in I1 and P(I2) is the set of all subsets of subimages
in I2. By contrast with Example 4.3, where separate collections of subsets (not
necessarily ascending) A ∈ P2(I2) are compared with a set B ∈ B ∈ P2(I1),
now ascending subsets F in a filter F ∈ P2(I2) are compared with B ∈ B.
Again, it is assumed that the collection B always comes from a region of
image I1 and the collection F always comes from a part of image I2. In this
Example, only cases (n.1)[ROI-to-single filter] and (n.3) [image-to-filter]
are considered. For case (n.1), recall that a single ROI B in image I1 is
compared with a single collection F that is a filter in image I2. This case is
represented in Fig. 2. For case (n.3), recall that image-to-collection, in general,
means every subset B in I1 is compared to a single collection, e.g., filter F
from image I2. There are two other cases to consider in this Example.

(n.5) Descriptively ε-near ROI-to-filters case. In practice, a limited
number of filters would be selected either from horizontal or vertical sections
of an image. Each section of the image would extend from one edge to another
edge of an image. For Example, the sample filter in Fig. 2 is extracted from
a horizontal section of the airline image in Fig. 1. A single region of interest
B from image I1 is compared with more than one filter F from image I2. An
image I1 is considered ε-near to an image I2, if an ROI B in I1 is descriptively
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similar to at least one subset F of a filter F in I2, i.e., ν(B,F ) < ε, where
ν(B,F), for some but not necessarily all filters F ∈ P2(I2), is defined to be

ν(B,F ) = DΦ,ρ‖·‖
(B,F ).

This case is a variation of case (n.2) and is partially represented in Fig. 2.

(n.6) Descriptively ε-near image-to-filters case. Every subset B ∈ B
from image I1 is compared with one or more filters F from image I2. Image
I1 is considered ε-near image I2, provided there is at least one B and at least
one subset F of a filter F in I2 such that ν(B,F ) < ε.

Again, let B denote the set of subimages contained in the the tail section
for the small aircraft shown in Fig. 1 and let F ∈ P2(X) denote a collection
of ascending subsets containing subimages of the passenger plane in Fig. 2.
For simplicity, again let Φ(x) = (φeo(x)) contain a single probe function φeo(x)
that extracts the average edge gradient direction for the pixels in a subimage
x. Edge gradient direction has been chosen, since there are obvious similari-
ties between the sample images in terms of the inclination of the aircraft tail
structures. In this case, the similarities in the edge directions of the subimages

in (from Fig. 1) are compared with the edge directions of the subimages in

the tail section in (from the filter in Fig. 2). The comparison between the
set of subimages in B and the subimages in a subset of the filter F in Fig. 2
terminates, whenever ν(B,F ) < ε (i.e., when there is a F ∈ F ∈ P2(I2)
that is ε-near subset B) or there are no further subimages to compare, i.e.
ν(B,F) > ε and F is not ε-near B. In that case, the collection of filters F is
descriptively far from B.
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